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A R T I C L E I N F O A B S T R A C T

Editor: B. Balantekin Differential cross sections of nuclear reactions often exhibit characteristic oscillations in the angular distribution 
originated from an interference of two indistinguishable processes. Here we propose a novel method to visualize 
origins of such oscillations. This is achieved by taking Fourier transform of scattering amplitudes, following 
the idea in wave optics. We apply this method to elastic scattering of 16O+16O and 18O+18O at energies 
above the Coulomb barrier. The former system shows strong oscillations in the angular distribution due to the 
nearside-farside interferences, while the oscillations are largely suppressed in the latter system due to a stronger 
absorption. We show that the images of the former and the latter systems correspond to a double-slit and a 
single-slit problems in quantum mechanics, respectively.
In quantum mechanics, when two or more indistinguishable pro-

cesses are involved, the probability is computed by taking the absolute 
square of the total amplitude, which is given as a sum of the amplitude 
of each process. This leads to the interference of each process due to 
the cross terms. This is referred to as quantum coherence, and this is 
one of the most fundamental features of quantum mechanics. In addi-

tion to the famous double-slit problem, a textbook example for this is 
scattering of two identical particles, for which a detector cannot distin-

guish scattering at angle 𝜃 from scattering at angle 𝜋 − 𝜃. In this case, 
the differential cross sections are given by 𝑑𝜎∕𝑑Ω = |𝑓 (𝜃) ± 𝑓 (𝜋 − 𝜃)|2, 
where 𝑓 (𝜃) and 𝑓 (𝜋 − 𝜃) are scattering amplitudes for the angles 𝜃
and 𝜋 − 𝜃, respectively, and the sign of the superposition depends on 
the statistics of the particles. Due to the interference between 𝑓 (𝜃) and 
𝑓 (𝜋−𝜃), the differential cross sections exhibit characteristic oscillations 
as a function of the scattering angle 𝜃. Such oscillations have been ac-

tually observed e.g., in elastic scattering of 16O+16O at energies below 
the Coulomb barrier [1]. At such energies, the nuclear effect can be ne-

glected, and the experimental data can be well accounted for by taking 
a superposition of the Rutherford scattering amplitudes at 𝜃 and 𝜋 − 𝜃.

Besides the interference due to the exchange of two identical par-

ticles, there are many other interference phenomena known in low-

energy nuclear reactions. These include, the Coulomb-nuclear inter-

ference [2], the nearside-farside interference [3–5], and the barrier-

wave-internal-wave interference [6]. In particular, an analogy between 
the nearside-farside interference and the double-slit problem has been 
discussed in Ref. [5]. Here, the nearside component corresponds to scat-

tering at a positive scattering angle with a positive impact parameter 
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while the farside component corresponds to scattering with a negative 
impact parameter. Due to a strong absorption inside a nucleus, scat-

tering takes place only at the edge of a nucleus, which corresponds to 
scattering through two slits in a double slit problem.

In this paper, we propose a novel way to visualize an origin of oscil-

lations in the angular distribution of nuclear reactions. The idea of this 
method is to take Fourier transform of a scattering amplitude, similar 
to what is done in wave optics. A similar method has been applied in 
particle physics, in which the images of string scattering [7] and that of 
black holes in the AdS/CFT correspondence [8,9] have been discussed. 
In particular, it has been demonstrated that the image of string scatter-

ing corresponds to a double slit [7]. With a similar motivation to that 
of Ref. [7], we here apply the method to elastic scattering of 16O+16O 
and 18O+18O at energies above the Coulomb barrier, and show how 
the quantum coherence in 16O+16O is decohered in 18O+18O by nu-

clear absorption.

Following Ref. [7], we take an image of scattering using a lens lo-

cated at the direction (𝜃0, 𝜑0) from the scattering center. To this end, 
we take Fourier transform of scattering amplitude in a form of

Φ(𝑋,𝑌 ) = 1
𝑆

𝜃0+Δ𝜃

∫
𝜃0−Δ𝜃

𝑑𝜃𝑒𝑖𝑘(𝜃−𝜃0)𝑋𝑓 (𝜃)

𝜑0+Δ𝜑

∫
𝜑0−Δ𝜑

𝑑𝜑𝑒𝑖𝑘(𝜑−𝜑0)𝑌 , (1)

where (𝑋, 𝑌 ) is the coordinate on the virtual screen behind the lens 
and 𝑘 is the wave number, 𝑘 =

√
2𝜇𝐸∕ℏ2, 𝜇 and 𝐸 being the reduced 

mass and the energy in the center of mass frame, respectively. See Ap-
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Fig. 1. The image of Rutherford scattering for 16O+16O at 𝐸c.m. = 8.8 MeV with 
the unsymmetrized Coulomb scattering amplitude. The angles in Eq. (1) are set 
to be 𝜃0=90 degrees and Δ𝜃=Δ𝜑=30 degrees.

pendix A for a derivation of this formula. We have assumed that the 
scattering amplitude 𝑓 is independent of the angle 𝜑. In Eq. (1), 𝑆 is 
the angular area of the lens given by

𝑆 =

𝜃0+Δ𝜃

∫
𝜃0−Δ𝜃

𝑑𝜃

𝜑0+Δ𝜑

∫
𝜑0−Δ𝜑

𝑑𝜑 = 4(Δ𝜃)(Δ𝜑). (2)

The actual image is given by 𝐼(𝑋, 𝑌 ) = |Φ(𝑋, 𝑌 )|2. In this paper, fol-

lowing Ref. [7], we take Δ𝜑 = Δ𝜃∕ sin𝜃0, that corresponds to a square 
lens.

Since the scattering amplitude does not depend on the angle 𝜑, the 𝑌
direction of the image 𝐼(𝑋, 𝑌 ) does not provide any useful information. 
Nevertheless, we prefer to keep a two-dimensional image, as it can be 
extended to a more general case where a scattering amplitude depends 
both on 𝜃 and 𝜑. For a 𝜑-independent scattering amplitude, 𝑓 (𝜃), the 
integral for 𝜑 is trivial in Eq. (1) and is given by

𝜑0+Δ𝜑

∫
𝜑0−Δ𝜑

𝑑𝜑𝑒𝑖𝑘(𝜑−𝜑0)𝑌 = 2Δ𝜑
sin(𝑘𝑌Δ𝜑)

𝑘𝑌Δ𝜑
. (3)

This function is peaked at 𝑌 = 0 and has a width of 2𝜋∕(𝑘Δ𝜑) [7]. 
The resolution of the image in the 𝑌 direction is thus determined by 
the quantity 𝑘Δ𝜑. Notice that Eq. (3) is independent of 𝜑0. For a flat 
angular distribution with 𝑓 (𝜃)=const., the same argument holds for the 
position and the resolution of the peak in the 𝑋 direction.

Let us first apply Eq. (1) to Rutherford scattering, that is, scattering 
with a pure Coulomb potential, 𝑉 (𝑟) =𝑍1𝑍2𝑒

2∕𝑟, where 𝑍1 and 𝑍2 are 
atomic numbers of two colliding nuclei, for which the scattering ampli-

tude 𝑓 (𝜃) is known analytically, see e.g. Ref. [10]. Fig. 1 shows the 
image of Rutherford scattering for 16O+16O at 𝐸c.m. = 8.8 MeV. Even 
though this is a system with identical bosons, the symmetrization of the 
wave function is not taken into account here in order to investigate an 
image of pure Rutheford scattering. For the image, we take 𝜃0=90 de-

grees with Δ𝜃 =Δ𝜑=30 degrees. One can see that the image has a peak 
at 𝑋 = 5.65 fm. This is actually close to the classical impact parameter 
for Rutherford scattering of this system at 𝜃0=90 degree, 𝑏cl = 5.24 fm. 
As we derive in Appendix B, for Rutherford scattering the peak of the 
image indeed coincides with the classical impact parameter in the limit 
of Δ𝜃 → 0. We expect that this holds in general for heavy-ion reactions, 
for which the Coulomb interaction plays an important role in determin-

ing the reaction dynamics.

Notice that Eq. (1) for 𝜃0 = 𝜋∕2 has a property that Φ(𝑋, 𝑌 ) with 
𝑓 (𝜋 − 𝜃) is identical to Φ(−𝑋, 𝑌 ) with 𝑓 (𝜃). Therefore the image of 
16O+16O scattering with the symmetrized scattering amplitude 𝑓 (𝜃) +
𝑓 (𝜋 − 𝜃) has two symmetric peaks at 𝑋peak and −𝑋peak , just as in the 
double-slit problem discussed in Ref. [7]. See the Appendix C for details.

Let us next discuss elastic scattering of 16O+16O and 18O+18O at 
2

energies above the Coulomb barrier, at which both the Coulomb and 
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Fig. 2. (the upper panel) The angular distribution of the 16O+16O elastic scat-

tering at 𝐸c.m. = 26.5 MeV. The solid line shows a fit with a deep squared 
Woods-Saxon potential, while the dashed line shows the unsymmetrized cross 
sections obtained with the same potential. The experimental data are taken 
from Ref. [11]. (the lower panel) The same as the upper panel, but for the 
18O+18O elastic scattering at 𝐸c.m. = 26 MeV. The surface imaginary potential 
is also added to the optical potential. The experimental data are taken from 
Ref. [12].

the nuclear interactions play a role. The upper panel of Fig. 2 shows 
the angular distribution of 16O+16O elastic scattering at 𝐸c.m. = 26.5
MeV [11]. With a standard global nuclear potential, the height of the 
Coulomb barrier for this system is estimated to be around 10.3 MeV, 
and thus this energy is about 2.6 times the barrier height. The exper-

imental angular distributions for this system show a strong oscillatory 
pattern. We fit this with a deep squared Woods-Saxon potential for the 
nuclear part of internucleus potential [13,14],

𝑉𝑁 (𝑟) = −𝑉0 𝑔(𝑅𝑅,𝑎𝑅, 𝑟)2 − 𝑖𝑊0 𝑔(𝑅𝑊 ,𝑎𝑊 , 𝑟)2, (4)

with

𝑔(𝑅,𝑎, 𝑟) = 1∕(1 + exp[(𝑟−𝑅)∕𝑎]). (5)

The solid line in the upper panel is obtained with the parameters 
𝑉0=421.28 MeV, 𝑅𝑅 = 4.12 fm, 𝑎𝑅 = 1.52 fm, 𝑊0=157.1 MeV, 𝑅𝑊 =
4.39 fm, and 𝑎𝑊 = 0.151 fm, together with the radius of the uniform 
charge distribution of 5.54 fm. The observed oscillations are reasonably 
well accounted for with this parameter set. The lower panel of Fig. 2

shows the angular distribution for the 18O+18O at a similar energy as 
the one shown in the upper panel for 16O+16O [12]. For this system, 
the oscillatory pattern is much less pronounced (see also Ref. [15]), 
and the same squared Woods-Saxon potential as that for the 16O+16O 
system does not fit well the experimental data. This is most likely due 
to the two extra neutrons outside the doubly magic 16O nucleus, with 
which the 18O nuclei are excited more easily than the 16O nuclei. A 
stronger absorption is necessary to fit the data [16,17], and for this 
purpose we introduce a surface imaginary potential,

𝑊𝑆 (𝑟) = −𝑖𝑊𝑠 𝑑𝑔(𝑅𝑠, 𝑎𝑠, 𝑟)∕𝑑𝑟. (6)

The solid line in the lower panel is obtained with the parameters 
𝑊𝑠 = 94.01 MeV, 𝑅𝑠 = 5.61 fm, and 𝑎𝑠 = 0.734 fm, together with the 
potential given by Eq. (4) with a scaling of 𝑅𝑅 and 𝑅𝑊 by a factor 
of 1.04 to account for the mass number dependence of the nuclear 
radii. One can see that this calculation well accounts for the data for 

the 18O+18O system. Notice that the average differential cross sections 
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Fig. 3. The unsymmetrized cross sections for elastic scattering of the 16O+16O 
(the upper panel) and the 18O+18O (the lower panel) systems. The solid lines 
show the total cross sections, while the dashed and the dotted lines denote their 
decompositions into the nearside and the farside components, respectively.

for the 18O+18O system fall off much more rapidly as a function of scat-

tering angle as compared to those for the 16O+16O system. This is most 
likely due to the surface properties of the optical potentials, that is, the 
imaginary part has a larger surface diffuseness in the 18O+18O system 
due to the suraface absorption term, Eq. (6).

We notice that the unsymmetrized cross sections, obtained only with 
the scattering amplitude 𝑓 (𝜃), show strong oscillations for the 16O+16O 
system (see the dashed line in the upper panel). This indicates that the 
effect of symmetrization due to the identical bosons plays a minor role 
at this energy in the oscillations for the 16O+16O system, even though 
the small oscillations around 𝜃 = 𝜋∕2 for the 18O+18O system are cer-

tainly due to the symmetrization of the wave function. To investigate 
the origin for the oscillations in the 16O+16O, we decompose the scat-

tering amplitude into the nearside and the farside components by using 
the Legendre functions of the second kind [3]. The solid lines in Fig. 3

show the unsymmetrized cross sections for the 16O+16O (the upper 
panel) and the 18O+18O (the lower panel) systems, while the dashed 
and the dotted lines show their decompositions into the nearside and 
the farside components, respectively. The upper panel indicates that the 
nearside and the farside components cross each other at around 𝜃 = 51
degrees, and the strong oscillations are indeed caused by an interfer-

ence between the nearside and the farside components. On the other 
hand, the farside component is largely suppressed in the 18O+18O sys-

tem due to the strong absorption, and the scattering amplitude is almost 
solely given by the nearside component. In this way, the quantum co-

herence observed in the 16O+16O system is decohered in the 18O+18O 
system due to the couplings to the internal degrees of freedom, that 
may be regarded as an internal environment.

The images of the unsymmetrized cross sections for the 16O+16O 
and the 18O+18O systems are shown in the upper and the lower pan-

els of Fig. 4, respectively. These are obtained with 𝜃0=55 degrees and 
Δ𝜃=15 degrees. Here we set 𝜃0 close to the crossing point of the 
nearside and the farside components in the 16O+16O so that both the 
components contribute with similar magnitudes. For the 16O+16O sys-

tem, the image has two distinct peaks. The analysis with the nearside 
and the farside amplitudes indicates that the peak at a positive value 
of 𝑋 corresponds to the nearside component while the peak at a neg-

ative 𝑋 corresponds to the farside component. As we have discussed 
3

with the Rutherford scattering, the peak of an image corresponds to the 
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Fig. 4. The images of the unsymmetrized cross sections for elastic scattering of 
the 16O+16O (the upper panel) and the 18O+18O (the lower panel) systems. The 
angles in Eq. (1) are set to be 𝜃0=55 degrees and Δ𝜃=15 degrees.

classical impact parameter of scattering. Fig. 4 therefore agrees with 
the physical picture of the nearside and the farside components, that is, 
the nearside and the farside components correspond to a positive and a 
negative impact parameters, respectively. This can also be seen in the 
18O+18O system, for which only the nearside component contributes 
significantly to the cross sections. The image for this system has a peak 
at a positive value of 𝑋, reflecting a positive impact parameter for the 
nearside component.

In summary, we have proposed a novel way to image nuclear re-

actions. Based on an idea in wave optics, as had been advocated in 
the field of particle physics, the image can be obtained by performing 
Fourier transform of a scattering amplitude. For an angle-independent 
scattering amplitude, the image is peaked at the origin with the widths 
determined by parameters in the Fourier transform. For Rutherford scat-

tering, the peak of the image is shifted to the position corresponding 
to the classical impact parameter of scattering. We have applied this 
method to elastic scattering of the 16O+16O and 18O+18O systems at en-

ergies about 2.6 times the Coulomb barrier. The image for the 16O+16O 
system has been found to have two peaks, corresponding to the near-

side and the farside components of the reaction process. The quantum 
interference between the two components is largely decohered in the 
18O+18O system due to the strong absorption originated from the two 
extra neutrons outside 16O. The image for this system has been found 
to have a single peak, corresponding solely to the nearside component. 
Elastic scattering for the 16O+16O and 18O+18O systems at these en-

ergies therefore has close analogies to a double slit and a single slit 
problems in quantum mechanics, respectively.

In this way, the imaging proposed in this paper provides an intuitive 
understanding of the origin and the underlying dynamics of quantum 
interference phenomena in nuclear reactions. Of course, a scattering 
amplitude is not an observable, unlike cross sections. However, one can 
make an attempt to fit data with an optical model, from which one 
can obtain a scattering amplitude to be used for imaging. There are a 
variety of interference phenomena in nuclear reactions. We leave appli-
cations of the imaging to these phenomena for interesting future works. 
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Fig. 5. A schematic view of the set up of a lens and a screen for the imaging. 
The angle of the lens from the 𝑧 axis is 𝜃0 and thus the distance of the lens from 
the 𝑧 axis is 𝐿′ sin𝜃0.

An application to inelastic scattering [18] will be another interesting 
direction for future works.
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Appendix A. Derivation of Eq. (1)

In a scattering problem, one considers the asymptotic wave function 
in a form of

𝜓(𝒓)→ 𝑒𝑖𝑘𝑧 + 𝑓 (𝜃) 𝑒
𝑖𝑘𝑟

𝑟
(𝑟→∞), (A1)

where 𝑘 =
√
2𝜇𝐸∕ℏ2 is the wave number with 𝐸 and 𝜇 being the en-

ergy in the center of mass frame and the reduced mass, respectively. 
Here we have taken the 𝑧-axis for the direction of the incident wave 
and assumed that the scattering amplitude 𝑓 (𝜃) depends only on the 
angle 𝜃.

We put a convex lens at the distance 𝐿′ from the origin in the direc-

tion of (𝜃0, 𝜑0) and take an image on the screen located at the distance 
𝐿 from the origin (see Fig. 5). In Fig. 6, the center of the lens is denoted 
as 𝑃 ′, while the center of the screen is denoted as 𝑃 , both of them are 
in the direction (𝜃0, 𝜑0) from the origin. We use the two-dimensional 
Cartesian coordinate systems (𝜉, 𝜂) and (𝑋𝑠, 𝑌𝑠) to express the position 
of a point on the lens and the screen, respectively. We put the lens in 
the tangential direction of the sphere at the point 𝑃 ′ and take the 𝜉 and 
the 𝜂 axis in the −𝜃 and the 𝜑 directions, respectively. 𝜉 and 𝜂 are then 
expressed as 𝜉 ∼ −𝐿′(𝜃 − 𝜃0) and 𝜂 ∼ (𝐿′ sin𝜃0)(𝜑 − 𝜑0), respectively, 
for large values of 𝐿′.

We assume that 𝐿′ is much larger than the size of the lens such that 
the wave which is incident on the lens can be approximately regarded 
as a plane wave. The role of the lens is to convert a plane wave to an 
4

incoming spherical wave (see Fig. 4 in Ref. [9]). Assuming that the lens 
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Fig. 6. The definition of the coordinate systems (𝜉, 𝜂) and (𝑋𝑠, 𝑌𝑠) for the imag-

ing. The direction of 𝜉 and 𝑋𝑠 is taken to be in the −𝜃-direction, while the 
direction of 𝜂 and 𝑌𝑠 is in the 𝜑-direction.

is infinitely thin, the amplitude at the point (𝑋𝑠, 𝑌𝑠) on the screen then 
reads,

Ψ𝑠(𝑋𝑠,𝑌𝑠) =

𝑑𝜉

∫
−𝑑𝜉

𝑑𝜉

𝑑𝜂

∫
−𝑑𝜂

𝑑𝜂 𝐴(𝜉, 𝜂)𝑒−𝑖𝑘𝑟 (A2)

where 𝐴(𝜉, 𝜂) is the amplitude for the scattering wave at the point (𝜉, 𝜂)
on the lens, and the size of the lens is taken to be 𝑑𝜉×𝑑𝜂 . 𝑟 = [(𝑋𝑠−𝜉)2 +
(𝑌𝑠− 𝜂)2 + (𝐿 −𝐿′)2]1∕2 is the distance between the point at (𝜉, 𝜂, 𝐿′) on 
the lens and the point at (𝑋𝑠, 𝑌𝑠, 𝐿) on the screen. We further assume 
that the size of the lens is much smaller than 𝐿 − 𝐿′. Eq. (A2) is then 
transformed to

Ψ𝑠(𝑋𝑠,𝑌𝑠) ∼ 𝑒−𝑖𝑘(𝐿−𝐿′)𝑒
−𝑖𝑘

𝑋2
𝑠 +𝑌 2

𝑠
2(𝐿−𝐿′)

𝑑𝜉

∫
−𝑑𝜉

𝑑𝜉

𝑑𝜂

∫
−𝑑𝜂

𝑑𝜂 𝑒
𝑖𝑘

𝜉𝑋𝑠+𝜂𝑌𝑠
𝐿−𝐿′ 𝐴(𝜉, 𝜂). (A3)

Using the relations 𝜉 ∼ −𝐿′(𝜃 − 𝜃0) and 𝜂 ∼ 𝐿′ sin𝜃0(𝜑 − 𝜑0), and by 
substituting the scattering amplitude 𝑓 (𝜃) to 𝐴(𝜉, 𝜂), one finds

Ψ𝑠(𝑋𝑠,𝑌𝑠) ∼ 𝑒−𝑖𝑘(𝐿−𝐿′)𝑒
−𝑖𝑘

𝑋2
𝑠 +𝑌 2

𝑠
2(𝐿−𝐿′)

×

𝜃0+Δ𝜃

∫
𝜃0−Δ𝜃

𝑑𝜃

𝜑0+Δ𝜑

∫
𝜑0−Δ𝜑

𝑑𝜑𝑒
𝑖𝑘

−𝐿′(𝜃−𝜃0)𝑋𝑠+𝐿′ sin𝜃0𝑌𝑠(𝜑−𝜑0)
𝐿−𝐿′ 𝑓 (𝜃), (A4)

with Δ𝜃 = 𝑑𝜉∕𝐿′ and Δ𝜑 = 𝑑𝜂∕(𝐿′ sin𝜃0). Introducing scaled coordi-

nates 𝑋 ≡ −𝐿′𝑋𝑠∕(𝐿 − 𝐿′) and 𝑌 ≡ 𝐿′ sin𝜃0𝑌𝑠∕(𝐿 − 𝐿′), one finally 
obtains Eq. (1), up to a phase factor. Notice that the relation Δ𝜑 =
Δ𝜃∕ sin𝜃0 holds for a square lens, 𝑑𝜉 = 𝑑𝜂 .

Appendix B. The image of Rutherford scattering

We evaluate the image in the 𝑋 direction,

Φ(𝑋) =

𝜃0+Δ𝜃

∫
𝜃0−Δ𝜃

𝑑𝜃 𝑒𝑖𝑘(𝜃−𝜃0)𝑋𝑓 (𝜃), (B1)

for small values of Δ𝜃. To this end, we expand 𝑒𝑖𝑘(𝜃−𝜃0)𝑋 and 𝑓 (𝜃)
around 𝜃 = 𝜃0 up to the second order:

𝑒𝑖𝑘(𝜃−𝜃0)𝑋 ∼ 1 + 𝑖𝑘(𝜃 − 𝜃0)𝑋 − 𝑘2𝑋2(𝜃 − 𝜃0)2∕2, (B2)

𝑓 (𝜃) ∼ 𝑓 (𝜃0) + 𝑓 ′(𝜃0)(𝜃 − 𝜃0) + 𝑓 ′′(𝜃0)(𝜃 − 𝜃0)2∕2. (B3)

The integral in Eq. (B1) can then be performed easily and reads,

Φ(𝑋) ∼ 2Δ𝜃
{
𝑓 (𝜃0)

+ (Δ𝜃)2

3

(
−𝑘2𝑋2

2
𝑓 (𝜃0) + 𝑖𝑘𝑋𝑓 ′(𝜃0) +

𝑓 ′′(𝜃0)
2

)}
. (B4)
From this equation, one obtains
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Fig. 7. (Upper panel) The differential cross sections for elastic scattering of 
16O+16O at 𝐸c.m. = 8.8 MeV. The contributions of unsymmetrized scattering 
amplitudes are also shown by the dashed and the dotted lines. The experimental 
data are taken from Ref. [1]. (Lower panel) The image of Mott scattering shown 
in the upper panel. 𝜃0 and Δ𝜃 are taken to be 90 and 30 degrees, respectively.

𝑑

𝑑𝑋
|Φ(𝑋)|2 ∝ −2𝑘2|𝑓 (𝜃0)|2𝑋

+𝑖𝑘(𝑓 ∗(𝜃0)𝑓 ′(𝜃0) − 𝑓 (𝜃0)𝑓 ′(𝜃0)∗). (B5)

The peak of the image then appears at

𝑋 = 𝑖

2𝑘

(
𝑓 ′(𝜃0)
𝑓 (𝜃0)

−
𝑓 ′(𝜃0)∗

𝑓 ∗(𝜃0)

)
. (B6)

We apply this to Rutherford scattering, whose scattering amplitude is 
given by,

𝑓𝐶 (𝜃) = − 𝜂

2𝑘 sin2 𝜃

2

exp
[
−𝑖𝜂 ln

(
sin2 𝜃

2

)
+ 2𝑖𝜎0

]
. (B7)

Here, 𝜂 =𝑍1𝑍2𝑒
2∕ℏ𝑣 is the Sommerfeld parameter, where 𝑣 is the rel-

ative velocity, and 𝜎0 = argΓ(1 + 𝑖𝜂) is the 𝑠-wave Coulomb phase shift. 
For Eq. (B7), one finds

𝑓 ′
𝐶
(𝜃)

𝑓𝐶 (𝜃)
= −(1 + 𝑖𝜂) cot

(
𝜃

2

)
. (B8)

The peak of the image therefore appears at

𝑋 = 𝜂

𝑘
cot

(
𝜃0
2

)
, (B9)

that is nothing but the impact parameter for Rutherford scattering.

Appendix C. The image of Mott scattering

Let us consider Mott scattering, i.e., scattering of two identical par-

ticles, for which the scattering amplitude is given by 𝑓 (𝜃) ± 𝑓 (𝜋 − 𝜃). 
5

For the component 𝑓 (𝜋 − 𝜃), the 𝑋 dependence of Eq. (1) reads
Physics Letters B 848 (2024) 138326

Φ𝜋−𝜃(𝑋) ≡
𝜃0+Δ𝜃

∫
𝜃0−Δ𝜃

𝑑𝜃 𝑒𝑖𝑘(𝜃−𝜃0)𝑋𝑓 (𝜋 − 𝜃) (C1)

=

𝜋−𝜃0+Δ𝜃

∫
𝜋−𝜃0−Δ𝜃

𝑑𝜃 𝑒𝑖𝑘(𝜋−𝜃−𝜃0)𝑋𝑓 (𝜃), (C2)

where 𝜃 is defined as 𝜃 = 𝜋 − 𝜃. For 𝜃0 = 𝜋∕2, this is equivalent to

Φ𝜋−𝜃(𝑋) =

𝜃0+Δ𝜃

∫
𝜃0−Δ𝜃

𝑑𝜃 𝑒𝑖𝑘(𝜃0−𝜃)𝑋𝑓 (𝜃) = Φ𝜃(−𝑋). (C3)

Thus, the image of Mott scattering is symmetric with respect to 𝑋 = 0, 
and it therefore has two symmetric peaks at 𝑋peak and −𝑋peak .

The upper panel of Fig. 7 shows the differential cross sections for 
elastic scattering of 16O+16O at 𝐸c.m. = 8.8 MeV. This energy is at 
about 1.5 MeV below the Coulomb barrier, and the nuclear effect can 
be neglected. In fact, the experimental data can be well fitted using the 
Coulomb scattering amplitudes, 𝑑𝜎∕𝑑Ω = |𝑓𝐶 (𝜃) +𝑓𝐶 (𝜋−𝜃)|2. The con-

tributions of 𝑓𝐶 (𝜃) and 𝑓𝐶 (𝜋 − 𝜃) are also shown by the dashed and the 
dotted lines, respectively. The image of Mott scattering is shown in the 
lower panel. 𝜃0 and Δ𝜃 are taken to be 90 and 30 degrees, respectively. 
As we have argued, the image has two symmetric peaks. A comparison 
with Fig. 1 indicates that the peak at a positive 𝑋 corresponds to the 
contribution of 𝑓𝐶 (𝜃), while the peak at a negative 𝑋 corresponds to 
the contribution of 𝑓𝐶 (𝜋 − 𝜃).
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