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We show that quantum geometry induces ferromagnetic fluctuation resulting in spin-triplet super-
conductivity. The criterion for ferromagnetic fluctuation is clarified by analyzing contributions from the
effective mass and quantum geometry. When the non-Kramers band degeneracy is present near the Fermi
surface, the Fubini-Study quantum metric strongly favors ferromagnetic fluctuation. Solving the linearized
gap equation with the effective interaction obtained by the random phase approximation, we show that the
spin-triplet superconductivity is mediated by quantum-geometry-induced ferromagnetic fluctuation.
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Introduction.—Unconventional superconductivity bey-
ond the canonical Bardeen-Cooper-Schrieffer theory shows
rich physical phenomena including high-temperature super-
conductivity and topological superconductivity. Various
fluctuations arising from many-body interactions play
the main role in the Cooper pairing for unconventional
superconductivity, and low-dimensional fluctuations are
particularly favorable. For example, it is argued that high-
temperature superconductivity in cuprates is mediated by
two-dimensional antiferromagnetic fluctuation [1–3]. Also,
in iron-based high-temperature superconductors the ex-
tended s-wave pairing is mediated by orbital [4–6] or anti-
ferromagnetic [7,8] fluctuation [9–11].
However, searching for topological superconductivity

[12–15] with Majorana fermion [16–18] is an unresolved
problemofmodern condensedmatter physics, which is attri-
buted to the fact that the platform for topological super-
conductivity is rare in nature. Spin-triplet superconductors
are canonical candidates, and it is expected that ferromag-
netic fluctuation mediates the spin-triplet Cooper pairing.
However, candidate materials are restricted to a few heavy-
fermion systems with three-dimensional multiple bands
[19–26].
In the two-dimensional isotropic continuum models,

ferromagnetic fluctuation is not favored because of the
constant density of states (DOS), which may imply the
absence of two-dimensional spin-triplet superconductivity.
Even for the anisotropic lattice systems, most quasi-two-
dimensional superconductors do not show ferromagnetic
fluctuation and antiferromagnetic fluctuations are rather
ubiquitous, as we mentioned above for cuprates and iron-
based compounds. Thus, spin-triplet superconductivity
from ferromagnetic fluctuation is expected to require
peculiar band structures, and the search for such systems
is challenging for both materials and theoretical models. In
this Letter, nevertheless, we propose a guiding principle for
realizing ferromagnetic fluctuation in two-dimensional

systems by referring to the quantum geometry of Bloch
electrons, which is recently attracting much attention in
various fields [27–46].
The importance of quantum geometry in superconduc-

tors has recently been recognized as it gives correction to
the superfluid weight [34–37]. In the flatband systems
[36,37,47–51] the superfluid weight from Fermi-liquid
theory vanishes, and the quantum geometric contribution
determines the superfluid weight. The quantum geometry
also plays essential roles in the monolayer FeSe [52] and
some finite-momentum Cooper pairing states [53–57].
However, how quantum geometry affects the pairing
mechanism of superconductivity has not been revealed.
This Letter elucidates a way to create a pairing glue of
unconventional superconductivity via quantum geometry.
To show that the quantum geometry enables strong

ferromagnetic fluctuation in two-dimensional systems,
resulting in spin-triplet superconductivity, we elucidate
the criterion for ferromagnetic fluctuation in the multiband
system with SU(2) symmetry. We find that the criterion is
given by the generalized electric susceptibility (GES)
which is defined as a natural extension of the electric
susceptibility to metals. The GES contains the terms
obtained by the effective mass and the quantum geometry.
The key physics of quantum-geometry-induced ferro-

magnetic fluctuation, which is shown below, is nontrivial
quantum geometry, especially Fubini-Study quantum met-
ric [28,58], from non-Kramers band degeneracy. As shown
in this Letter, the dispersive Lieb lattice model with non-
Kramers band degeneracy shows strong ferromagnetic
fluctuation by this mechanism. Solving the linearized
gap equation with the effective interaction calculated by
the random phase approximation (RPA), spin-triplet super-
conductivity is demonstrated.
Criterion for ferromagnetic fluctuation in multiband

Hubbard models.—We consider the multiband Hubbard
model with SU(2) symmetry, which contains multiple
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degrees of freedom such as orbitals and sublattices, as shown
in the Supplemental Material [59]. The SU(2) symmetry
means that the spin-orbit coupling and themagnetic field are
absent. For the interacting Hamiltonian, we consider the on-
site Coulomb interaction U strong enough for the super-
conducting transition, by assuming strongly correlated
materials. We then focus on the momentum dependence
of the fluctuation, which mainly determines the super-
conducting symmetry [3]. While we consider two-dimen-
sional systems, the following discussions apply to three-
dimensional systems.
Throughout this Letter, U is treated in the RPA scheme.

When the system has only one band, the spin (charge)
susceptibility χsðcÞðq; iΩnÞ can be obtained as χsðcÞðq; iΩnÞ ¼
χ0sðcÞðq; iΩnÞ=½1 ∓ ðU=2Þχ0sðcÞðq; iΩnÞ� by using the bare

spin (charge) susceptibility of noninteracting systems,
χ0sðcÞðq; iΩnÞ. The interaction does not change the position

of peaks in the momentum q space. Therefore, also for most
multiband systems, it is expected that the momentum
dependence of fluctuations arises from the bare susceptibility.
Because the low-frequency spin (charge) fluctuation plays the
dominant role in mediating superconductivity, hereafter we
focus on the static fluctuations at Ωn ¼ 0.
In multiband systems with SU(2) symmetry, the bare

spin and charge susceptibilities hold the relationship
χ0s ðqÞ ¼ χ0cðqÞ ¼ 2χ0ðqÞ with the bare susceptibility
χ0ðqÞ. Thus, our main concern is the presence and absence
of the peak of χ0ðqÞ at q ¼ 0, corresponding to the presence
and absence of ferromagnetic fluctuation. The structure of
susceptibility χ0ðqÞ around q ¼ 0 is determined by the
curvature limq→0∂qμ∂qνχ

0ðqÞ with μ; ν ¼ x, y [63]. As a
result, the criterion for the ferromagnetic fluctuation is
given by the sign of the curvature (see Fig. 1).
Ferromagnetic fluctuation may be present when
limq→0∂qμ∂qνχ

0ðqÞ is negative. Otherwise, ferromagnetic
fluctuation is prohibited.
The curvature limq→0∂qμ∂qνχ

0ðqÞ itself has a physical
meaning. For the discussion, it is useful to consider the
charge susceptibility in insulators at zero temperature,
instead of the spin susceptibility. Based on the Kubo
formula, the curvature expresses the correction to the
charge density, δhn̂ðrÞi, by the external electric field
EνðrÞ as, δhn̂ðrÞi ¼ −

P
μν ∂rν ½limq→0

1
2
∂qμ∂qνχ

0
cðqÞEνðrÞ�

[59]. This means that the curvature limq¼0∂qμ∂qνχ
0ðqÞ is

the electric susceptibility. Thus, by generalizing the concept
of the electric susceptibility to metals, we define the GES as
χ0∶μνe ≡ limq¼0∂qμ∂qνχ

0ðqÞ [59].
Formula of GES.—Here, we derive the formula of GES

[59], χ0∶μνe ¼ χ0∶μνe∶geom þ χ0∶μνe∶mass,

χ0∶μνe∶geom¼2
X

n

Z
dk

ð2πÞ2
�
f0½ϵnðkÞ�

2
gμνn ðkÞþf½ϵnðkÞ�Xμν

n ðkÞ
�

;

ð1Þ

χ0∶μνe∶mass ¼ −2
X

n

Z
dk

ð2πÞ2
fð2Þ½ϵnðkÞ�

12
½mμν

n ðkÞ�−1; ð2Þ

where ϵnðkÞ is the energy of the noninteracting
Hamiltonian σ0 ⊗ H0ðkÞ, which follows H0ðkÞjunðkÞi ¼
ϵnðkÞjunðkÞi with the Bloch wave function junðkÞi. Note
that σ0 is the unit matrix of spin space and n is the band
index. Thus, GES is given by the two terms, χ0∶μνe∶geom and

χ0∶μνe∶mass.
The first term χ0∶μνe∶geom named thequantumgeometric term is

determined by the geometric quantities, namely, the Fubini-
Study quantum metric gμνn ðkÞ¼P

mð≠nÞA
μ
nmðkÞAν

mnðkÞþc:c:
and the positional shift Xμν

n ðkÞ ¼ P
mð≠nÞ½Aμ

nmðkÞAν
mnðkÞ þ

c:c:�=½ϵmðkÞ − ϵnðkÞ� with the Berry connection Aμ
nmðkÞ ¼

ih∂kμunðkÞjumðkÞi. This term arises from purely interband
effects and is absent in single-band systems. In this term, the
contributions from thequantummetric and thepositional shift
are competitive. First, the quantum metric [28,58], which is
the counterpart of the Berry curvature [64], represents the
distance between two adjacent states and is a positive definite
tensor. Therefore, combined with negative f0½ϵnðkÞ�, the
contribution from the quantum metric is always negative,
favoring ferromagnetic fluctuation. Second, the positional
shift [29] means the shift of electrons by the external electric
field. In insulators at zero temperature, the contribution from
the positional shift corresponds to the well-known formula
of electric susceptibility [65]. This term can be rewritten as
it is proportional to FnmðkÞ½Aμ

nmðkÞAν
mnðkÞ þ c:c:� with

the integrand of the Lindhard function, Fnmðk; qÞ ¼
ff½ϵmðkÞ� − f½ϵnðkþ qÞ�g=½ϵnðkþ qÞ − ϵmðkÞ�⟶

q→0
FnmðkÞ.

Therefore, this contribution is always positive, which favors
antiferromagnetic fluctuation.
Importantly, both quantum metric and positional

shift diverge at the non-Kramers band-degenerate point.
Therefore, quantum geometry plays an essential role when
non-Kramers band degeneracy exists. However, the total
geometric term does not diverge because of the cancellation
of two contributions, as shown in the Supplemental
Material [59].
The effective-mass term χ0∶μνe∶mass of GES is the purely

intraband effect and is determined by the band dispersion
through the effective mass ½mμν

n ðkÞ�−1 ¼ ∂kμ∂kνϵnðkÞ. In
FIG. 1. Schematic figures for (a) ferromagnetic and (b) antiferro-
magnetic fluctuation. We illustrate the q-dependence of χ0ðqÞ.
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single-band systems, only this term is finite. This term can
be positive or negative. For the hyperbolic dispersion
ϵnðkÞ ¼ k2=2m, the effective-mass term is zero because
the DOS and effective mass are constants, which means the
absence of ferromagnetic fluctuation, as shown in the
Supplemental Material [59].
GES with non-Kramers band degeneracy.—Because the

non-Kramers band degeneracy enhances the quantum
geometry, we focus on the Lieb lattice, which has been
realized in ultracold atoms allowing us to tune the strength
of U [66,67], with the experimental test in mind. The Lieb
lattice hosts the flat band with threefold band degeneracy,
and the ground state shows the flatband ferromagnetism
[68]. To distinguish the quantum-geometry-induced ferro-
magnetic fluctuation from the flatband ferromagnetism, we
study the dispersive Lieb lattice model in which the second
and third-nearest-neighbor hoppings are finite. Unlike the
usual Lieb lattice with only the nearest-neighbor hopping,
the flat band becomes dispersive, and the threefold
band degeneracy at the M point [k ¼ ðπ; πÞ] is partially
lifted, while the twofold degeneracy remains protected by
the C4 rotation symmetry, as shown in the Supplemental
Material [59].
The dispersive Lieb lattice model is illustrated in

Fig. 2(a). The Fermi surfaces for the chemical potential
μc ¼ 0.5, 0.7, and 0.9 are shown in Fig. 2(b), and the band
dispersion is in Fig. 2(c). The band-degenerate point lies on
the Fermi surface, when μc ¼ 0.7. As shown in Fig. 2(d),
the maximum of DOS corresponds to μc ¼ 0.7.
In Fig. 3(a), we show the chemical-potential dependence

of GES χ0∶xxe . In some regions near the Lifshitz transi-
tions (μc ≃ −0.1 and 0.9), the GES shows the dip structure.
This structure is induced by the effective-mass term.
The effective-mass contribution from each band is propor-
tional to an odd function fð2Þ½ϵnðkÞ�, and therefore, the

effective-mass term tends to cancel out between the states
below and above the Fermi energy. However, the cancel-
lation is incomplete for μc near the Lifshitz transition point,
and thus, the effective-mass term gives a negative GES.
This is an understanding of why ferromagnetic fluctuation
appears at finite temperatures when the Fermi surface is
small, from the viewpoint of the GES.
In contrast, accompanying the band degeneracy on the

Fermi surface, we obtain the maximally negative value of
GES χ0∶xxe at μc ¼ 0.7, which is dominated by the quantum
geometric contribution. As expected from the band degen-
eracy at the M point, the quantum geometric term of the
GES mainly comes from the region near the M point. This
is verified by the k-resolved quantum geometric contribu-
tion shown in Fig. 3(b). We find a large negative con-
tribution to the GES from the vicinity of theM point, which
in turn induces ferromagnetic fluctuation.
As we have mentioned, the quantum metric gives a

negative contribution to the GES, while the positional shift
positively contributes. Our results imply that the quantum
metric overcomes the positional shift when the band-
degenerate point lies on the Fermi surface. This can be
intuitively understood from the formula of the quantum
geometric term. The quantum metric contributes to the
GES with f0½ϵnðkÞ�, which is divergent on the Fermi sur-
face at low temperatures, [f0ð0Þ ∝ 1=T]. On the other
hand, FnmðkÞ in the positional shift contribution is a
regular function. Therefore, the quantum metric becomes

FIG. 2. (a) The dispersive Lieb lattice model, unit cell (gray
box), and hopping integrals (blue arrows). The first-nearest-
neighbor hopping is taken as the unit of energy, t ¼ 1. (b) The
Fermi surface for μc ¼ 0.5 (green line), 0.7 (blue line), and 0.9
(red line). (c) The band dispersion. (d) The DOS.

FIG. 3. GES χ0∶xxe of the dispersive Lieb lattice model. In (a),
(c), and (d), the triangles, circles, and squares show χ0∶xxe , χ0∶xxe∶geom,
and χ0∶xxe∶mass, respectively. (a) The μc dependence for T ¼ 0.01.
(b) The quantum geometric contribution to the GES from each k
point for ðμc; TÞ ¼ ð0.7; 0.02Þ. Inset: the contribution near the M
point with band degeneracy. (c), (d) The temperature dependence
for μc ¼ 0.7 and μc ¼ 0.65, respectively. The purple line in (c) is
a fitting curve χ0∶xxe∶geom ≃ −0.0631779=T þ 0.462022.
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significant in the presence of band degeneracy at low
energies. Consistent with the intuitive explanation, the
geometric term is negatively enhanced at low temperatures
owing to the contribution of quantum metric, as shown in
Fig. 3(c). The geometric term is well fitted by the scaling
χ0∶μνe∶geom ¼ a=T þ b with constants a, b. Thus, we conclude
that the quantum metric on the Fermi surface induces
ferromagnetic fluctuation when the non-Kramers band
degeneracy lies on the Fermi surface.
However, when the band-degenerate point is slightly off

the Fermi surface and temperature decreases so that
T ≪ jμc − 0.7j, the negative geometric term is suppressed
as shown in Fig. 3(d). This is consistent with the fact that
the quantum metric contribution is a Fermi-surface term.
As the band-degenerate point moves away from the Fermi
surface by much more than T, f0½ϵnðkÞ� near the M point
decays, and the quantum metric contribution is suppressed.
At low temperatures, the positional shift contribution
overcomes the quantum metric contribution, and the
quantum geometric term is positive. Thus, in this case,
the ferromagnetic-antiferromagnetic crossover of fluc-
tuation occurs as the temperature decreases.
Quantum-geometry-induced ferromagnetic fluctuation.—

Then, to justify the above discussion, we show the bare spin
susceptibility defined by χ0s ðqÞ ¼ 2

P
nm

R ½dk=ð2πÞ2�×
Fnmðk; qÞ½1 −Dnmðk; qÞ�, where the quantum distance
Dnmðk; qÞ≡ 1 − jhunðkþ qÞjumðkÞij2 is closely related
to the quantum geometry. Quantum geometry suppresses
χ0s ðqÞ at q ≠ 0 via nonzero quantum distance Dnnðk; qÞ,
which is expanded as ∼

P
μν g

μν
n ðkÞqμqν þ � � � with the

quantum metric. However, χ0s ð0Þ is not suppressed, and
ferromagnetic fluctuation is relatively enhanced. The Van
Vleck susceptibility arising from Dnmðk; qÞ for n ≠ m
corresponds to the positional-shift contribution to the
GES. For comparison, we also define the bare spin su-
sceptibility without quantum geometry, χ0s∶bandðqÞ ¼
2
P

n

R ½dk=ð2πÞ2� × Fnnðk; qÞ, in which magnetic fluc-
tuation is determined by only the effective-mass term.
By comparing these two quantities, we can elucidate the
effects of quantum geometry.
In Figs. 4(a) and 4(b), we show χ0s ðqÞ and χ0s∶bandðqÞ in

the dispersive Lieb lattice model for μc ¼ 0.7. As expected
by Fig. 3(a) showing the negative GES, χ0∶μνe ¼
limq¼0 ∂qμ∂qνχ

0ðqÞ, the bare spin susceptibility shows
ferromagnetic fluctuation [Fig. 4(a)]. However, antiferro-
magnetic fluctuation is obtained when we neglect the
quantum geometry [Fig. 4(b)]. Thus, we conclude that
the quantum geometry induces the ferromagnetic fluc-
tuation. It is emphasized that the maximum of DOS at μc ¼
0.7 is not sufficient for the ferromagnetic fluctuation; the
relative enhancement of χ0s ð0Þ compared to χ0s ðq ≠ 0Þ by
the quantum distance-quantum geometry is essential. Note
that the momentum dependence of spin susceptibility
plays an essential role in unconventional superconductivity

[1,3]. We also show χ0s ðqÞ for ðμc; TÞ ¼ ð0.65; 0.05Þ and
ðμc; TÞ ¼ ð0.65; 0.01Þ in Figs. 4(c) and 4(d), respectively.
Consistent with Fig. 3(d), we confirm the crossover from
ferromagnetic to antiferromagnetic fluctuation as the tem-
perature decreases.
Spin-triplet superconductivity.—Finally, we show that

quantum-geometry-induced ferromagnetic fluctuation medi-
ates spin-triplet superconductivity. To see this, we set the
on-site interaction as U¼0.86 and solve the linearized gap

equation, λtðsÞΔll0 ðkÞ ¼ −ð1=NβÞPk0ωn

P
flig V

tðsÞ
ll1;l2l0

ðk−
k0ÞGl1l3ðk0; iωnÞΔl3l4ðk0ÞGl2l4ð−k0;−iωnÞ, using the effec-
tive interaction obtained by RPA V tðsÞðqÞ, which is
≃½−1ð3Þ=4�UχsðqÞU in single-band systems [1,3,69–71]
but here extended to multiband systems, as shown in the
Supplemental Material [59]. Here, Gðk; iωnÞ is the Green
function with the Matsubara frequency, iωn. The instability
of spin-triplet (singlet) superconductivity with the form
factor ΔðkÞ is determined by the maximum eigenvalue λtðsÞ.
While the mean-field formalism overestimates the transi-
tion temperature, the dynamical effect of effective inter-
action is expected not to alter the superconducting
symmetry, as in the cases of 3He [69] and cuprates [72].
Figure 5(a) shows the spin susceptibility at μc ¼ 0.7

obtained by RPA. Ferromagnetic fluctuation is enhanced by
the Coulomb interaction, as we see from the comparison to
Fig. 4(a). Eigenvalues of the linearized gap equation are
shown in Fig. 5(b) for spin-singlet extended-s-wave
(orange line) and spin-triplet p-wave (blue line) super-
conductivity, as shown in the Supplemental Material [59].
It is revealed that the spin-triplet superconductivity is
stabilized around μc ≃ 0.7 and 0.9 corresponding to the
negative peak of GES in Fig. 3(a).
Especially, we obtain the largest eigenvalue at

μc ¼ 0.7 where quantum geometry induces ferromagnetic

FIG. 4. The bare spin susceptibility in the dispersive Lieb lattice
model. (a) χ0s ðqÞ and (b) χ0s∶bandðqÞ for ðμc; TÞ ¼ ð0.7; 0.01Þ with
the same color bar. (c),(d) χ0s ðqÞ for ðμc; TÞ ¼ ð0.65; 0.05Þ and
(0.65,0.01), respectively.
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fluctuation. Combined with the large DOS, the strong
ferromagnetic fluctuation enhanced by interaction gives a
large eigenvalue for spin-triplet superconductivity. Thus,
we conclude spin-triplet superconductivity from quantum-
geometry-induced ferromagnetic fluctuation.
Discussion.—In this Letter, we show that quantum geo-

metry induces ferromagnetic fluctuation and results in spin-
triplet superconductivity. The Fubini-Study quantum metric
on the Fermi surface is an essential quantity for this
mechanism of magnetism and superconductivity. Using
the dispersive Lieb lattice model, we demonstrated that
the non-Kramers band degeneracy on the Fermi surface
plays the central role in enhancing the quantum-geometry-
induced phenomena. In the diverse studies on unconven-
tional superconductivity, the quantum geometry of electrons
coupled to many-body effects has not been focused on.
Stimulated by recent developments in the topology and
geometry of quantum materials, we shed light on a route to
spin-triplet superconductivity and, thereby, topological
superconductivity.
A question of interest is whether our theory can be

applied to other systems as well. To answer this, we have
calculated the GES of Raghu’s model [73] for iron-based
superconductors, as shown in the Supplemental Material
[59]. This model has the non-Kramers band degeneracy at
the Γ point. Also in this model, the quantum geometry
induces ferromagnetic fluctuation due to the non-Kramers
band degeneracy. In addition, we confirmed the quantum-
geometry-induced ferromagnetic fluctuation in other mod-
els with the flat band and various band touching including
the usual Lieb lattice model [74]. Thus, a wide range of
materials with non-Kramers band degeneracy [75,76] are
candidates for quantum-geometry-induced ferromagnetism
and superconductivity. We expect that future material-
specific studies will be stimulated by our Letter. The
exploration of two-dimensional materials with high tuna-
bility, e.g., by band engineering through heterostructures,
gate voltage, strain, and twist angle is also expected.
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