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A q-analogue of the matrix fifth Painlevé system

By

Hiroshi KAWAKAMI∗

Abstract

We consider a degeneration of the q-matrix sixth Painlevé system. As a result, we obtain

a system of non-linear q-difference equations, which describes a deformation of a certain “non-

Fuchsian” linear q-difference system. We define the spectral type for non-Fuchsian q-difference

systems and characterize the associated linear problem in terms of the spectral type. We also

consider a continuous limit of the non-linear q-difference system and show that the resulting

system of non-linear differential equations coincides with the matrix fifth Painlevé system.

§ 1. Introduction

The Painlevé equations are non-linear second order ordinary differential equations

that define novel transcendental functions. Historically, the Painlevé equations were

classified into six equations. We refer to them as PI, PII, . . . , PVI. The sixth Painlevé

equation PVI serves as the “source” from which all the other Painlevé equations can be

derived through degeneration processes.

Since the 1990s, various generalizations of the Painlevé equations have been pro-

posed in the literature, such as discretizations, higher-dimensional analogues, quantiza-

tions, and so on.

Recently, Painlevé-type differential equations with four-dimensional phase space

have been classified from the perspective of isomonodromic deformations of linear differ-

ential equations [4, 9, 10, 11]. This series of studies shows that, in the four-dimensional

case, there exist four “sources” as extensions of the sixth Painlevé equation. Namely,

they are
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• the Garnier system [3], which is a classically known multivariate extension of PVI,

• the Fuji-Suzuki-Tsuda system [2, 22], which is an extension of PVI with the affine

Weyl group symmetry of type A,

• the Sasano system [19], which is an extension of PVI with the affine Weyl group

symmetry of type D,

• the matrix sixth Painlevé system [1, 4], which is a non-abelian extension of PVI.

Note that each of the four equations has its extensions defined in arbitrary even dimen-

sions. These four families are expected to have an impact on fields such as integrable

systems, special functions, and so on.

On the other hand, Sakai [16] established an algebro-geometric theory which pro-

vides a comprehensive understanding of two-dimensional (or second order) Painlevé

equations. According to Sakai’s theory, when the phase spaces are two-dimensional, the

discrete Painlevé equations are more fundamental. Roughly speaking, by classifying a

certain kind of rational surfaces, 22 different surfaces are obtained. From the discrete

symmetry of each surface, a discrete dynamical system (a system of difference equa-

tions) is generated. The theory classifies these discrete Painlevé equations into three

types: additive difference, multiplicative difference (q-difference), and elliptic difference

equations. The Painlevé (differential) equations are understood through the continuous

limit of these discrete Painlevé equations. In this sense, we can say that the discrete

Painlevé equations are more fundamental than the Painlevé differential equations.

Our aim is, inspired by the two-dimensional case, to construct a unified framework

for discrete Painlevé-type equations in higher dimensions. However, it is difficult to

classify algebraic varieties when the phase spaces have four or more dimensions. In-

stead, from the standpoint of the classification theory (by Katz [7] and Oshima [15])

of linear differential equations and the isomonodromic/connection-preserving deforma-

tion theory, we would like to develop a framework for higher-dimensional Painlevé-type

equations that involves discrete Painlevé-type equations.

In [13], we have defined an equivalence relation between spectral types of linear

differential equations (that is, those can be transformed into each other by Möbius

transformations, the Harnad dual, or certain scalar gauge transformations are equiva-

lent) and shown that there is a tree structure among the equivalence classes including

differential equations without continuous deformations. The tree structure of equiva-

lence classes corresponds to the additive surfaces in Sakai’s list. As a next step, we

investigate multiplicative difference Painlevé-type equations in higher dimensions.

Among the four families mentioned above, q-analogues of the Garnier systems, the

Fuji-Suzuki-Tsuda systems, and the Sasano systems have been obtained and studied
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by several authors [17, 20, 21, 14]. Recently, a q-analogue of the matrix sixth Painlevé

system, which we call the q-matrix PVI, has been obtained [12].

In this paper we investigate a degeneration of the q-matrix PVI with the aim of

constructing a degeneration scheme for higher dimensional q-difference Painlevé-type

equations. As a result, a system of non-linear q-difference equations is obtained, which

corresponds to the matrix fifth Painlevé system in the continuous limit. We tentatively

denote the non-linear system by the q-matrix PV. The q-matrix PV is expressed as a

deformation equation of a non-Fuchsian linear q-difference equation.

This paper is organized as follows. In Section 2 we describe how to construct formal

solutions to linear q-difference systems. We also give the definition of spectral types for

non-Fuchsian linear q-difference systems. In Section 3 we review the q-matrix PVI. In

Section 4 we consider a degeneration of the q-matrix PVI. In Section 5 we consider a

continuous limit of the q-matrix PV obtained in Section 4. The appendix is devoted to

a brief description of the matrix fifth Painlevé system.
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§ 2. Linear q-difference systems

In this section, we collect some facts about linear q-difference systems. The formal

normal form is used to define the spectral type for non-Fuchsian systems.

§ 2.1. Formal normal form: Fuchsian case

Let q be a complex number satisfying 0 < |q| < 1. Consider a linear q-difference

system with polynomial coefficients

(2.1) Y (qx) = A(x)Y (x), A(x) = A0 +A1x+ · · ·+ANxN

where Aj ∈ Mm(C) and A0, AN ̸= O. If A0 and AN are both invertible, then the

system (2.1) is said to be Fuchsian. For simplicity we assume that A0 and AN are

diagonalizable. In this subsection we outline the procedure to transform the given

Fuchsian system into its formal normal forms at x = 0 and x = ∞.

We use the following well-known fact from linear algebra. We denote the set of all

eigenvalues of a matrix A by Sp(A).

Proposition 2.1. Let A ∈ Mm(C) and B ∈ Mn(C). Then the linear map

(2.2) φ : Mm,n(C) → Mm,n(C), φ(X) = AX −XB
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is an isomorphism of vector spaces if and only if Sp(A) ∩ Sp(B) = ∅.

The linear q-difference systems that will be treated mainly in this paper are those

with polynomial coefficients, while the process of constructing the formal normal form

involves systems with infinite series coefficients. Therefore, in Section 2.1 and 2.2, we

will discuss the linear q-difference systems of infinite series coefficients.

First we explain the formal normal form at x = 0. For the convenience of later

discussion, we consider a system of the following form:

(2.3) Y (qx) = A(x)Y (x), A(x) = xr(A0 +A1x+A2x
2 + · · · )

where A(x) is an m×m formal power series. Here A0 is invertible and diagonalizable,

and r is a non-negative integer. Let the eigenvalues of A0 be θ1, . . . , θm. We also assume

that the system is non-resonant, that is, for any i, j

(2.4) θj/θi /∈ qZ≥1 = {qn | n ∈ Z≥1}.

Let P (x) =
∑∞

n=0 Pnx
n be an m × m formal power series with P0 = Im. The

substitution Y (x) = P (x)Z(x) yields

(2.5) Z(qx) = P (qx)−1A(x)P (x)Z(x).

We can choose the matrix P (x) so that

(2.6) P (qx)−1A(x)P (x) = xrA0.

The matrix P (x) can be constructed as follows. The equation (2.6) can be written as

(2.7) (A0+A1x+A2x
2+ · · · )(Im+P1x+P2x

2+ · · · ) = (Im+qP1x+q2P2x
2+ · · · )A0.

Equating the coefficients of xn (n ≥ 1) on both sides, we obtain

(2.8) A0Pn − Pn(q
nA0) = −

n−1∑
k=0

An−kPk.

If the coefficient matrices P1, . . . , Pn−1 are determined, then the equation (2.8) uniquely

determines Pn by Proposition 2.1 and non-resonant condition. In this way, the matrix

P (x) is constructed inductively. Then the matrix xrA0 is the formal normal form of

(2.3) in this case.

The construction at x = ∞ is almost the same. Assume that

(2.9) A(x) = xr(A0 +A1x
−1 +A2x

−2 + · · · )

where A0 is invertible, r ∈ Z≥0. We can construct the transformation matrix P (x) =∑∞
n=0 Pnx

−n at x = ∞ such that P (qx)−1A(x)P (x) = xrA0 holds in a similar way.
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§ 2.2. Formal normal form: non-Fuchsian case

In the case that A0 or AN of (2.1) is not invertible, the construction of the formal

normal form can be modified as follows. Consider at x = 0

(2.10) Y (qx) = A(x)Y (x), A(x) = xr(A0 +A1x+A2x
2 + · · · ).

Here we assume that

(2.11) A0 = diag(θ1, . . . , θs, 0, . . . , 0) = Θ⊕Om−s,

where for any i, j

(2.12) θi ̸= 0, θj/θi /∈ qZ≥1 .

Let P (x) =
∑∞

n=0 Pnx
n be an m × m formal power series with P0 = Im. We have

Z(qx) = P (qx)−1A(x)P (x)Z(x) by the substitution Y (x) = P (x)Z(x). Set

(2.13) B(x) := P (qx)−1A(x)P (x) = xr
∞∑

n=0

Bnx
n.

From the coefficients of x0 in A(x)P (x) = P (qx)B(x), we have B0 = A0. Then the

coefficients of xn (n ≥ 1) gives the following relation:

Bn = An +
n−1∑
j=1

(An−jPj − qjPjBn−j) +A0Pn − Pn(q
nA0).(2.14)

Set

(2.15) Cn =

(
C

(n)
11 C

(n)
12

C
(n)
21 C

(n)
22

)
:= An +

n−1∑
j=1

(An−jPj − qjPjBn−j)

for simplicity. Here C
(n)
11 is s× s, C

(n)
12 is s× (m− s), C

(n)
21 is (m− s)× s, and C

(n)
22 is

(m− s)× (m− s). Then we have

(2.16) A0Pn − Pn(q
nA0) = Bn − Cn.

Unlike the Fuchsian case, Sp(A0)∩Sp(qnA0) ̸= ∅. Thus the equation (2.16) with respect

to Pn does not necessarily have a solution. Instead, we partition Pn conformably with

Cn

(2.17) Pn =

(
P

(n)
11 P

(n)
12

P
(n)
21 P

(n)
22

)
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and choose Pn so that P
(n)
11 = O, P

(n)
22 = O, and

Bn = Cn +

(
O ΘP

(n)
12

−P
(n)
21 (qnΘ) O

)
(2.18)

to be block-diagonal. More specifically, we set

(2.19) P
(n)
12 = −Θ−1C

(n)
12 , P

(n)
21 = q−nC

(n)
21 Θ−1.

Thus we have the following proposition.

Proposition 2.2. For any system (2.10) with (2.11) and (2.12) there exists a

formal power series with matrix coefficients P (x) =
∑∞

n=0 Pnx
n where P

(n)
11 = O and

P
(n)
22 = O such that the gauge transformation by P (x) is block-diagonal:

Z(qx) = B(x)Z(x), B(x) = P (qx)−1A(x)P (x) =

(
B1(x) O

O B2(x)

)
.(2.20)

Now we apply the above construction to a polynomial coefficient system

(2.21) Y (qx) = A(x)Y (x), A(x) = A0 +A1x+ · · ·+ANxN .

If A0 is of the form (2.11), then the constant term of B1(x) of (2.20) is Θ. Thus the

formal normal form of B1(x) at x = 0 is Θ. On the other hand, B2(x) is of the following

form:

(2.22) B2(x) = xr2B′
0 + xr2+1B′

1 + · · ·

where r2 is a positive integer. If B′
0 is similar to Θ′⊕O where Θ′ is diagonal, invertible,

and non-resonant (in particular we assume that B′
0 is diagonalizable), then B2(x) can

be block-diagonalized into the following form

(2.23)

(
xr2Θ′ O

O xr3C2(x)

)
.

To summarize the above, a linear q-difference system (2.21) satisfying diagonaliz-

ability (of the first term of each direct summand) and the non-resonant condition can

be transformed into the following block diagonal form:

Z(qx) = B(x)Z(x), B(x) = P (qx)−1A(x)P (x) =


xr1B1

. . .

xrkBk

(2.24)
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where Bj ∈ GLmj
(C). ri’s are non-negative integers satisfying r1 = 0 < r2 < · · · < rk.

Here the numbers ri’s and mj ’s are uniquely determined only by the original system

(2.21). Moreover, if we require that any eigenvalue λ of Bj satisfies |q| < |λ| ≤ 1, then

the conjugacy class of Bj is uniquely determined (for example see [5]). Then (2.24) is

the formal normal form of (2.21) at x = 0.

Similarly, the formal normal form of (2.21) at x = ∞ has the following form:

(2.25)


xN−s1B′

1

. . .

xN−sℓB′
ℓ


where B′

j ∈ GLm′
j
(C) and s1 = 0 < s2 < · · · < sℓ. The formal normal form at x = ∞ is

also unique in the same sense as above.

§ 2.3. Spectral types of linear q-difference systems

First we recall the notion of spectral type of Fuchsian linear q-difference systems

[18]. Consider the following Fuchsian linear q-difference system of rank m:

(2.26) Y (qx) = A(x)Y (x), A(x) = A0 +A1x+ · · ·+ANxN

where A0 and AN are invertible. We assume that, for any a ∈ C, A(a) ̸= O. In addition,

we assume that A0 and AN are diagonalizable for simplicity. Let the eigenvalues of A0

be θj (j = 1, . . . , k), and let their multiplicities be mj (j = 1, . . . , k). Also, let the

eigenvalues of AN be κj (j = 1, . . . , ℓ), and let their multiplicities be nj (j = 1, . . . , ℓ):

(2.27) A0 ∼ θ1Im1 ⊕ · · · ⊕ θkImk
, AN ∼ κ1In1 ⊕ · · · ⊕ κℓInℓ

.

Then we define partitions S0 and S∞ of m as

(2.28) S0 = m1, . . . ,mk, S∞ = n1, . . . , nℓ.

Let ZA be the set of the zeros of detA(x):

(2.29) ZA = {a ∈ C | detA(a) = 0} = {α1, . . . , αp}.

We denote by di (i = 1, . . . ,m) the elementary divisors of A(x). Here we assume that

di+1|di. For any αi ∈ ZA, we denote by ñi
k the order of αi in dk. For each i, let {ni

j}j
be the partition conjugate to {ñi

k}k. Then we define Sdiv as

(2.30) Sdiv = n1
1 . . . n

1
k1
, . . . , np

1 . . . n
p
kp
.

We call the triple [S0; S∞; Sdiv] the spectral type of the Fuchsian system (2.26).
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Example 2.3. Consider a linear q-difference system Y (qx) = A(x)Y (x) with

A(x) = A0 +A1x+A2x
2,

where A0 is similar to diag(θ1, θ1, θ1, θ2), A2 is similar to diag(κ1, κ1, κ2, κ2), and the

Smith normal form of A(x) is
(x− α1)(x− α2)(x− α3)

2(x− α4)(x− α5)

(x− α1)(x− α2)

1

1

 .

Then the spectral type of the system is [3, 1; 2, 2; 2, 2, 11, 1, 1].

Spectral types can also be defined for non-Fuchsian systems. Taking the formal

normal form (2.24) into account, we can define S0 as S0 =

r1-tuple︷ ︸︸ ︷
(· · · (λ1) · · · ), . . . ,

rk-tuple︷ ︸︸ ︷
(· · · (λk) · · · )

where λj is the partition of mj determined by the multiplicities of the eigenvalues of

Bj . For example, if the normal form of A(x) around x = 0 is (B1) ⊕ (xB2) ⊕ (x3B3)

and the partitions corresponding to Bj ’s are

(2.31) B1 : 3, 1 B2 : 2, 1 B3 : 2, 2, 2

then S0 = 3, 1, (2, 1), (((2, 2, 2))).

Similarly, taking (2.25) into account, we define S∞ as S∞ =

s1-tuple︷ ︸︸ ︷
(· · · (λ′

1) · · · ), . . . ,

sℓ-tuple︷ ︸︸ ︷
(· · · (λ′

ℓ) · · · )
where λ′

j is the partition of m′
j corresponding to B′

j .

Sdiv is the same as in the Fuchsian case. Then the triple [S0; S∞; Sdiv] is the

spectral type.

§ 3. q-matrix PVI

In this section we review the q-matrix PVI [12], which describes a connection-

preserving deformation of the Fuchsian linear q-difference system of spectral type [m,m;m,m−
1, 1;m,m,m,m] (see [6, 12] for the connection-preserving deformation).

Consider a linear q-difference system of the following form:

Y (qx) = A(x)Y (x), A(x) = A0 +A1x+A2x
2, Aj ∈ M2m(C),(3.1)

where

A2 =

(
κ1Im O

O K

)
, K = diag(

m−1︷ ︸︸ ︷
κ2, . . . , κ2, κ3), A0 ∼

(
θ1tIm O

O θ2tIm

)
.(3.2)
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Since Sdiv = m,m,m,m, the Smith normal form of the polynomial matrix A(x) is of

the following form:

(3.3)

(
Im O

O
∏4

i=1(x− αi)Im

)
.

That is, d1 = · · · = dm =
∏4

i=1(x− αi), dm+1 = · · · = d2m = 1, so we have ñi
k = 1 (i =

1, 2, 3, 4, k = 1, . . . ,m).

We assume that αj ’s depend on t as follows:

(3.4) αj =

{
ajt (j = 1, 2),

aj (j = 3, 4).

We also assume qαi ̸= αj (i ̸= j).

The linear q-difference systems satisfying the above conditions can be parametrized

as follows:

A(x) =

(
WK{κ1(xIm − F )(xIm −α) + κ1G1}K−1W−1 WK(xIm − F )

κ1(γx+ δ)W−1 K(xIm − β)(xIm − F ) +KG2

)(3.5)

where

α = (κ1 −K)−1
{
(θ1 + θ2)tF

−1 − κ1F
−1G1 −KG2F

−1 +K(F +G−1
1 FG1 + β1)

}
,

(3.6)

β = (κ1 −K)−1
{
−(θ1 + θ2)tF

−1 + κ1F
−1G1 +KG2F

−1 − κ1(F +G−1
1 FG1 + β1)

}
,

(3.7)

γ = K{G1 +G2 + Fα+ βF + βα−G−1
1 (F 2 + β1F + β2)G1}K−1,

(3.8)

δ = κ−1
1 {t2θ1θ2F−1 − κ1K(G2 + βF )F−1(G1 + Fα)}K−1.

(3.9)

Here the auxiliary parameters βj ’s are defined by

(3.10)
4∑

j=0

β4−jz
j :=

4∏
j=1

(z − αj).

Also, the matrices G1 and G2 satisfy

G1G2 = (F − α1Im)(F − α2Im)(F − α3Im)(F − α4Im).(3.11)

The relation (3.11) allows us to introduce a new variable G by

G1 = q−1κ−1
1 (F − α1)(F − α2)G

−1, G2 = qκ1G(F − α3)(F − α4).(3.12)
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Then, from the assumption about the Smith normal form (3.3), F and G must satisfy

the following commutation relation:

F−1GFG−1 = ρK, ρ =
a1a2a3a4κ1

θ1θ2
.(3.13)

Since

(3.14) detA(x) = κm
1 κm−1

2 κ3

4∏
i=1

(x− αi)
m,

we have

(3.15) κ1
mκ2

m−1κ3

4∏
i=1

ai
m = θ1

mθ2
m.

Let us consider the connection-preserving deformation of the system (3.1). We

choose t as a deformation parameter. The parameters θj , κj , and aj ’s are independent

of t. In the following we write A(x, t) instead of A(x) when it is necessary to emphasize

that A(x) depends on t.

The connection-preserving deformation of (3.1) is given by

Y (x, qt) = B(x, t)Y (x, t)(3.16)

where

B(x, t) =
x(xI2m +B0)

(x− qa1t)(x− qa2t)
, B0 =

(
B11 B12

B21 B22

)
.(3.17)

Here Bij ’s are m×m matrices and given as follows:

B11 = qWK(Im −GK)−1GK
[
K−1G

−1{F − (a1 + a2)t}+ β
]
K−1W−1,(3.18)

B12 = qWK(Im −GK)−1G,(3.19)

B21 = qκ1

{
q−1κ−1

1 (F − qa2t)G
−1 − qa1t+α

}
(Im − qκ1G)−1

×GK
{
K−1G

−1
(F − a2t)− a1t+ β

}
K−1W−1(3.20)

= qκ1

{
q−1κ−1

1 (F − qa1t)G
−1 − qa2t+α

}
(Im − qκ1G)−1

×GK
{
K−1G

−1
(F − a1t)− a2t+ β

}
K−1W−1,(3.21)

B22 =
[
q−1κ−1

1 {F − q(a1 + a2)t}G
−1

+α
]
qκ1G(Im − qκ1G)−1.(3.22)

Here the overline denotes the q-shift with respect to t: f = f(qt) for f = f(t).
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Now we have the pair of linear q-difference systems:

(3.23)

{
Y (qx, t) = A(x, t)Y (x, t),

Y (x, qt) = B(x, t)Y (x, t).

Then the compatibility condition of (3.23)

(3.24) A(x, qt)B(x, t) = B(qx, t)A(x, t)

reduces to a system of non-linear q-difference equations satisfied by F , G, and W .

Theorem 3.1 ([12]). The compatibility condition A(x, qt)B(x, t) = B(qx, t)A(x, t)

is equivalent to

GKG =
1

qκ1
(F − a1t)(F − a2t)(F − a3)

−1(F − a4)
−1,(3.25)

FKF =
θ1θ2

κ1a1a2

(
G− t

a1a2
θ1

)(
G− t

a1a2
θ2

)(
G− 1

qκ1

)−1 (
G− ρ

)−1
,(3.26)

W−1W = qκ1(G−K−1)−1

(
G− 1

qκ1

)
K−1.(3.27)

We call the system (3.25) and (3.26) (with (3.13)) the q-matrix PVI. Although

this system appears to have eight parameters (θi’s, κi’s, and ai’s with a single relation

(3.15)), the number of parameters can be reduced to five by rescaling F , G, and t.

§ 4. Degeneration of q-matrix PVI

Now we consider a degeneration of the q-matrix PVI which corresponds to the limit

κ1 to 0.

§ 4.1. From q-matrix PVI to q-matrix PV

Consider the following transformation:

(4.1)
t = εt̃, F = εF̃ , G = εG̃, W = εW̃ ,

a3 = −εã3, a4 = −ε−1κ̃1, κ1 = ε, κ2 = ε−1κ̃2, κ3 = ε−1κ̃3.

We set K̃ = diag(

m−1︷ ︸︸ ︷
κ̃2, . . . , κ̃2, κ̃3) so that we have K = ε−1K̃. The other parameters

a1, a2 and θ1, θ2 are not changed. This transformation is compatible with the commu-

tation relation (3.13), that is, F̃−1G̃F̃ G̃−1 = ρ̃K̃ holds where ρ̃ = a1a2ã3κ̃1

θ1θ2
. From the

relation (3.15), we have

(4.2) κ̃1
mκ̃2

m−1κ̃3a1
ma2

mã3
m = θ1

mθ2
m.
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Substituting (4.1) into (3.25), we have

(4.3) εG̃K̃G̃ =
ε

q
(F̃ − a1t̃)(F̃ − a2t̃)(F̃ + ã3)

−1(ε2F̃ + κ̃1)
−1.

Letting ε → 0, we obtain

(4.4) G̃K̃G̃ =
1

qκ̃1
(F̃ − a1t̃)(F̃ − a2t̃)(F̃ + ã3)

−1.

Similarly, from the equation (3.26) we have

(4.5) εF̃ K̃F̃ = ε
θ1θ2
a1a2

(
G̃− t̃

a1a2
θ1

)(
G̃− t̃

a1a2
θ2

)(
ε2G̃− 1

q

)−1 (
G̃− ρ̃

)−1

.

Letting ε → 0, we obtain

(4.6) F̃ K̃F̃ = −q
θ1θ2
a1a2

(
G̃− t̃

a1a2
θ1

)(
G̃− t̃

a1a2
θ2

)(
G̃− ρ̃

)−1

.

From the equation (3.27) we have

(4.7) W̃−1W̃ = q(G̃− K̃−1)−1

(
ε2G̃− 1

q

)
K̃−1.

Letting ε → 0, we obtain

(4.8) W̃−1W̃ = −(K̃G̃− Im)−1.

Omitting the tilde, we obtain the following system of non-linear q-difference equa-

tions

GKG =
1

qκ1
(F − a1t)(F − a2t)(F + a3)

−1,(4.9)

FKF = −q
θ1θ2
a1a2

(
G− t

a1a2
θ1

)(
G− t

a1a2
θ2

)(
G− ρ

)−1
,(4.10)

W−1W = (Im −KG)−1.(4.11)

The associated linear system (3.1) can also be degenerated in the same manner as

above. Set x = εx̃. Notice that

(4.12)

α = −κ̃1ε
−1 +O(1), β = O(ε), γ = O(1), δ = O(ε), G1 = O(1), G2 = O(ε2).

We set

(4.13) β̃ := lim
ε→0

β

ε
, γ̃ := lim

ε→0
γ, δ̃ := lim

ε→0

δ

ε
, G̃1 := lim

ε→0
G1, G̃2 := lim

ε→0

G2

ε2
.

Then it is easy to see that

Ã(x̃) := lim
ε→0

ε−1A(x) =

(
W̃ K̃{κ̃1(x̃Im − F̃ ) + G̃1}K̃−1W̃−1 W̃ K̃(x̃Im − F̃ )

(γ̃x̃+ δ̃)W̃−1 K̃(x̃Im − β̃)(x̃Im − F̃ ) + K̃G̃2

)
.

(4.14)
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Remark. The multiplication of A(x) by ε−1 can be realized by a simple gauge

transformation of the linear system. For example, consider the transformation Y =

xlog ε/ log qỸ or use the ratio of theta functions (5.12) instead of xlog ε/ log q. Then we

have Ỹ (qx) = ε−1A(x)Ỹ (x).

Thus we obtain (by omitting the tilde)

A(x) =

(
WK{κ1(xIm − F ) +G1}K−1W−1 WK(xIm − F )

(γx+ δ)W−1 K(xIm − β)(xIm − F ) +KG2

)
=: A0 +A1x+A2x

2,(4.15)

where

β = K−1{(θ1 + θ2)tF
−1 − F−1G1 −KG2F

−1 + κ1},(4.16)

γ = K{G1 − κ1(F + β +GFG−1 − (a1 + a2)t+ a3)}K−1,(4.17)

δ = F−1(G1 − κ1F − θ1t)(G1 − κ1F − θ2t)K
−1.(4.18)

From the determinant of (4.15) we have

(4.19) κ1
mκ2

m−1κ3

3∏
i=1

ai
m = θ1

mθ2
m.

The matrices G1 and G2 are given by

(4.20) G1 = q−1(F − a1t)(F − a2t)G
−1, G2 = qκ1G(F + a3)

and satisfy

(4.21) G1G2 = κ1(F − a1t)(F − a2t)(F + a3).

The matrices F and G satisfy the following commutation relation:

(4.22) F−1GFG−1 = ρK, ρ =
a1a2a3κ1

θ1θ2
.

The system in t-direction (3.16) can also be degenerated in the same manner. As

a result, we have (by omitting the tilde)

B(x, t) =
x(xI2m +B0)

(x− qa1t)(x− qa2t)
, B0 =

(
B11 B12

B21 B22

)
(4.23)



14 Hiroshi Kawakami

where Bij ’s are m×m matrices given by

B11 = qWK(Im −GK)−1
{
F − (a1 + a2)t+GKβ

}
K−1W−1,(4.24)

B12 = qWK(Im −GK)−1G,(4.25)

B21 =
{
(F − qa2t)G

−1 − qκ1

}(
F − a2t− a1tGK +GKβ

)
K−1W−1(4.26)

=
{
(F − qa1t)G

−1 − qκ1

}(
F − a1t− a2tGK +GKβ

)
K−1W−1,(4.27)

B22 = F − q(a1 + a2)t− qκ1G.(4.28)

We obtain the following theorem by a direct calculation.

Theorem 4.1. The compatibility condition A(x, qt)B(x, t) = B(qx, t)A(x, t) with

(4.15) and (4.23) is equivalent to

GKG =
1

qκ1
(F − a1t)(F − a2t)(F + a3)

−1,(4.29)

FKF = −q
θ1θ2
a1a2

(
G− t

a1a2
θ1

)(
G− t

a1a2
θ2

)(
G− ρ

)−1
,(4.30)

W−1W = −(KG− Im)−1.(4.31)

We call the system (4.29) and (4.30) (with (4.22)) the q-matrix fifth Painlevé system

(q-matrix PV). Although this system appears to have seven parameters (θi’s, κi’s, and

ai’s with a single relation (4.19)), the number of parameters can be reduced to four by

rescaling F , G, and t.

§ 4.2. Characterization of the linear system

The matrix (4.15) satisfies

(C1): A0 is similar to θ1tIm ⊕ θ2tIm.

(C2): The formal normal form of A(x) at x = ∞ is

(4.32)

(
x2K O

O x(κ1Im)

)
.

(C3): The Smith normal form of A(x) is

(4.33)

(
Im O

O
∏3

j=1(x− αj)Im

)
(α1 = a1t, α2 = a2t, α3 = −a3).

Conversely, it can be shown that a polynomial matrix A(x) satisfying the above three

conditions can be written (generically) in the form (4.15). Thus the linear system

associated with the q-matrix PV is characterized by the conditions (C1), (C2), and (C3).
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From the definition given in Section 2.3, the spectral type of the system is written as

[m,m; m− 1, 1, (m); m,m,m].

§ 5. Continuous limit of q-matrix PV

The system (4.29) and (4.30) can be viewed as a q-analogue of the matrix PV

(Appendix A.6). That is, taking the limit q → 1, one can obtain (Appendix A.6) from

(4.29) and (4.30). In fact, let us define the parameter ε by q = 1− ε. We set

(5.1)
θi = 1− σiε (i = 1, 2), κ1 = −1− µ1ε, κi = ε(1 + µiε) (i = 2, 3),

ai = 1 + ζiε (i = 1, 2), a3 = ε−1,

and M = diag(

m−1︷ ︸︸ ︷
µ2, . . . , µ2, µ3). Moreover, we introduce new dependent variables Q and

P which are related to F and G by

F = −(P̃ + ε−1t)(ϕ1 − ϕ2Q̃)−1Q̃, G = (P̃ + ε−1t)(ϕ1 − ϕ2Q̃)−1,(5.2)

ϕ1 = ε−1 − 1− ζ1 − ζ2 −
σ1 + σ2

2
, ϕ2 = ε−1 − ζ1 + ζ2

2
,(5.3)

Q̃ = Im − Q̂−1, P̃ = t

{
(Q̂− Im)P̂ Q̂+

ζ2 − ζ1 + σ1 − σ2

2
Q̂+

ζ1 − ζ2
2

}
,(5.4)

Q̂ = g−1Qg, P̂ = g−1Pg.(5.5)

Here g = tM , which is a solution to dg
dt g

−1 = 1
tM .

Then, taking the limit ε → 0, we find that Q and P satisfy the following equations:

t
dQ

dt
= Q(Q− 1)(P + t) + P (Q− 1)Q− (ζ1 − ζ2)(Q− 1) + (σ1 − σ2)Q,

(5.6)

t
dP

dt
= −(Q− 1)P (P + t)− (P + t)PQ− (ζ2 − ζ1 + σ1 − σ2)P − (ζ2 + ζ4 + σ1)t.

(5.7)

These equations coincide with (Appendix A.6) by the following correspondence of the

parameters:

σ1 − σ2 = θ0, ζ1 − ζ2 = θ1, µi + ζ2 + σ2 = θ∞i (i = 1, 2, 3).(5.8)

Expanding (4.22) with respect to the small parameter ε and taking the coefficient

of ε1, we have the commutation relation between P and Q:

(5.9) PQ−QP = (µ1 + ζ1 + ζ2 + σ1 + σ2)Im +M.
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The linear system (4.15) also admits the continuous limit in a similar way. To see

this, we first change the dependent variable Y to Z: Y (x) = f(x)Z(x), where f(x) is a

solution of the following q-difference equation

(5.10) f(qx) = −(x− t)f(x).

For example, we can take

(5.11) f(x) =
ϑq(x/t)

(x/t; q)∞ϑq(x)
,

where

(5.12) (a; q)∞ =
∞∏

n=0

(1− aqn), ϑq(x) =
∞∏

n=0

(1− qn+1)(1 + xqn)(1 + x−1qn+1).

Then we have

Z(x)− Z(qx)

(1− q)x
=

1

εx

{
I2m − 1

−(x− t)
A(x)

}
Z(x).(5.13)

Set W = tU−1. Define matrices A0, A1, and A∞ by

(5.14) lim
ε→0

1

εx

{
I2m − 1

−(x− t)
A(x)

}
=

A0

x
+

A1

x− t
+ A∞.

It can be shown that the matrices A0, A1, and A∞ (almost) coincide with (Appendix A.2).

More precisely, performing suitable scalar gauge transformations (in other words, adding

suitable scalar matrices to A0, A1, and A∞), performing the gauge transformation by

(5.15) h =

(
O Im

Im O

)
,

and setting x = tx̃, we have

h−1(A0 − σ2I2m)h = A0, h−1(A1 − ζ2I2m)h = A1, h−1(tA∞ − tI2m)h = A∞.

(5.16)

Thus the resulting system of linear differential equations

dZ̃

dx̃
=

(
A0

x̃
+

A1

x̃− 1
+A∞

)
Z̃(5.17)

coincides with the x-direction of (Appendix A.1).
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§Appendix A. The matrix fifth Painlevé system

In this appendix, we review the matrix fifth Painlevé system (matrix PV) [8, 11].

The matrix PV is derived from the isomonodromic deformation of a certain linear dif-

ferential system. There are several Lax pairs for the matrix PV, one of them is the

following:

(Appendix A.1)


∂Y

∂x
=

(
A0

x
+

A1

x− 1
+A∞

)
Y,

∂Y

∂t
= (−E2 ⊗ Imx+ B1)Y,

where

(Appendix A.2)

Aξ = (Im ⊕ U)−1Âξ(Im ⊕ U) (ξ = 0, 1),

Â0 =

(
QP + θ0 + θ∞1

tIm

)(
Im −Q,

1

t
{(Q− Im)QP + (θ0 + θ∞1 )Q− θ∞1 }

)
,

Â1 =

(
(Q− Im)PQ+ (θ0 + θ∞1 )Q+ θ1

tQ

)(
Im,

1

t
{(Im −Q)P − θ0 − θ∞1 }

)
,

A∞ =

(
Om Om

Om −tIm

)
, E2 =

(
0 0

0 1

)
, Θ =

(
θ∞2 Im−1

θ∞3

)
.

Furthermore, the matrix B1 is given by

B1 = (Im ⊕ U)−1

(
Om

[Â0+Â1]12
t

[Â0+Â1]21
t Om

)
(Im ⊕ U),(Appendix A.3)

where [Â0 + Â1]ij is the (i, j)-block of the matrix Â0 + Â1. The Fuchs-Hukuhara

relation is written as m(θ0 + θ1 + θ∞1 )+ (m− 1)θ∞2 + θ∞3 = 0. P and Q satisfy [P,Q] =

(θ0+ θ1+ θ∞1 )Im+Θ. The system in x-direction of (Appendix A.1) is characterized by

the spectral type (m)(m− 1 1),mm,mm.

The compatibility condition (in other words, isomonodromic deformation equation)

for (Appendix A.1) has two descriptions, which are mutually equivalent. One is the

Hamiltonian form and the other is the “non-abelian” form. The Hamiltonian is given

by

tHMat,m
V

(
−θ0 − θ1 − θ∞1 , θ0 − θ1

θ1, θ0 + θ1 + θ∞1 + θ∞2
; t;Q,P

)
(Appendix A.4)

= tr[P (P + t)Q(Q− 1) + (θ0 − θ1)PQ+ θ1P + (θ0 + θ∞1 )tQ].

Then the compatibility condition can be written as follows:

dqij
dt

=
∂HMat,m

V

∂pji
,

dpij
dt

= −
∂HMat,m

V

∂qji
.(Appendix A.5)
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On the other hand, the non-abelian description is given as follows [11]:

(Appendix A.6)
t
dQ

dt
= Q(Q− 1)(P + t) + PQ(Q− 1) + (θ0 − θ1)Q+ θ1,

t
dP

dt
= −(Q− 1)P (P + t)− P (P + t)Q− (θ0 − θ1)P − (θ0 + θ∞1 )t.
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tions, MSJ Memoirs 37 (2018).

[5] C. Hardouin, J. Sauloy, and M. F. Singer, Galois theories of linear difference equations:

an introduction, Mathematical Surveys and Monographs Volume 211, American Mathe-

matical Society (2016).

[6] M. Jimbo and H. Sakai, A q-analog of the sixth Painlevé equation, Lett. Math. Phys. 38
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