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Box and ball system with numbered boxes and balls

By

Yusaku Yamamoto∗, Akiko Fukuda∗∗, Emiko Ishiwata∗∗∗

and Masashi Iwasaki†

Abstract

Box and ball systems (BBSs) are known as discrete dynamical systems in which motions

of balls among successive infinite boxes are governed by an ultradiscrete integrable system.

The equation of motion in the simplest BBS is the ultradiscrete version of the discrete Toda

equation, which is one of famous discrete integrable systems. The discrete Toda equation is

extended to two types of discrete hungry Toda (dhToda) equations, and their ultradiscretiza-

tions are shown to be the equations of motion in the BBSs in which either boxes or balls are

numbered. In this paper, we propose a new box-ball system in which both boxes and balls

are numbered, and show that its equation of motion is the ultradiscretization of a variant of

the dhToda equations. With the help of a combinatorial technique, we describe conserved

quantities of our new numbered BBS (nBBS). We also clarify its relationship to the hungry

ε-BBS, which is derived from the ultradiscretization of another extension of the discrete Toda

equation.

§ 1. Introduction

The box and ball system (BBS) that was first proposed by Takahashi and Satsuma

[8] is a cellular automaton in which each ball, in order from left, moves to the nearest
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empty box on the right among an infinite number of boxes arranged in a straight line.

The interactions of groups of successive balls can be regarded as those of the simplified

solitons. Under discrete time evolution from n to n+ 1, the motion of m ball groups is

described using the equation:
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where Q
(n)
k and E

(n)
k respectively correspond to the number of successive balls in the

kth ball group from the left and of successive boxes in the box array between the

kth and (k + 1)th ball groups at discrete time n. Equation (1.1) is derived from the

ultradiscretization of the famous discrete Toda (dToda) equation:


q
(n+1)
k + e

(n+1)
k−1 = q

(n)
k + e

(n)
k , k = 1, 2, . . . ,m,

q
(n+1)
k e

(n+1)
k = q

(n)
k+1e

(n)
k , k = 1, 2, . . . ,m− 1,

e
(n)
0 ≡ 0, e

(0)
m ≡ 0.

(1.2)

Thus, (1.1) is called the ultradiscrete Toda (udToda) equation. By the way, the dToda

equation (1.2) can generate LR transformations of tridiagonal matrices where one step

first decomposes a tridiagonal matrix into the product of lower and upper bidiagonal

matrices, and next inverse the product. In fact, the dToda equation (1.2) is just equal

to the recursion formula of the well-known quotient-difference (qd) algorithm for com-

puting tridiagonal eigenvalues [7].

As an extension of the simple BBS, Tokihiro et al. [9] proposed a numbered BBS

(nBBS) in which each ball is given one of the numbers 1, 2, . . . ,M where M is a positive

integer. Concerning the order of ball motion, the assigned number has priority over

the ball position. In this case, the equation of motion is given by an extension of the

udToda equation (1.1) as:
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(1.3)

The inverse ultradiscretization of (1.3) leads to the discrete hungry Toda (dhToda)
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equation: 
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In [3], we related the dhToda equation (1.4) to LR transformations of totally nonnegative

(TN) Hessenberg matrices, and proposed its application to computing the eigenvalues

of TN Hessenberg matrices. Moreover, we developed similar studies on a variant of the

dhToda equation given as:
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and then designed another nBBS in which boxes are numbered, where the value of N

corresponds to the number of box types [4]. For simplicity, in this paper, we call the

nBBSs with numbered balls and with numbered boxes nBBS-I and nBBS-II, respec-

tively. We also distinguish (1.4) and (1.5) by referring to them as the dhToda-I and

dhToda-II equations, respectively. The motion of nBBS-II is expressed by using the

ultradiscretization of the dhToda-II (1.5) given as:
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The dhToda-I equation (1.4) and the dhToda-II equation (1.5) can be unified as

the following equation [1].
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Here, there are M sets of q variables, {qi,k}mk=1 for i = 0, 1, . . . ,M − 1 and N sets of e

variables, {ej,k}m−1
k=1 for j = 0, 1, . . . , N − 1. The discrete time index of qi,k (resp. ej,k)

consists of the main index n and the sub index j (resp. i), which takes the value between

0 and N − 1 (resp. M − 1). At the beginning of step n, j (resp. i) is set to zero and

it is incremented by one when q
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(n,i)
j,k ) “interacts” with e
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and j (resp. i) is set to zero. Thus, we have{
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To see that (1.7) with (1.8) is a generalization of (1.4) and (1.5), let us rewrite q
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Note that this is consistent with (1.8). Now, consider the case of N = 1. Substituting

(1.9) into (1.7) and letting N = 1 and j = 0 gives
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By rewriting Mn + i as n, we recover (1.4). Equation (1.5) can also be obtained by

letting M = 1. Note that (1.7) (written in the so-called differential form) is referred to

as the multiple dqd algorithm in [10]. It can also be derived from a reduction of the

two-dimensional discrete Toda equation [5].

Equation (1.7) is similar to the two dhToda equations (1.4) and (1.5), however

(1.7) differs from them in that it involves two types of arbitrary parameters instead

of one. Obviously, (1.7) with N = 1 and with M = 1 are respectively equal to the

dhToda-I equation (1.4) and the dhToda-II equation (1.5). Thus, we can regard (1.7)

as a generalization of the two dhToda equations (1.4) and (1.5). We hereinafter call (1.7)

the dhToda-III equation to distinguish it from the two dhToda equations (1.4) and (1.5).

Note here that the first equation of the dhToda-III equation (1.7) can be rewritten using

the second equation repeatedly as q
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k /ε), respectively, taking the

logarithm of both sides, multiplying them by ε, and taking the limit ε → +0, we obtain

the ultra-discretization of the dhToda-III (udhToda-III) equation:
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(1.11)

In this paper, we propose a new nBBS associated with the udhToda-III equation (1.11),

and then derive the conserved quantities of the resulting nBBS. Moreover, we clarify
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the relationship of the resulting nBBS to the hungry ε-BBS presented in Kobayashi and

Tsujimoto [6].

The remainder of this paper is organized as follows. In Section 2, we first design a

new nBBS with numbered both boxes and balls, and then associate it with the udhToda-

III equation (1.11). In Section 3, based on the relationship to eigenvalue problem and

the correspondence to combinatorial representation, we next derive conserved quantities

of the resulting nBBS. In Section 4, we show that discrete-time evolutions and conserved

quantities of the hungry ε-BBS can be grasped from the viewpoint of the resulting nBBS.

Finally, we give concluding remarks.

§ 2. Box and ball system with numbered both boxes and balls

In this section, we propose a box-ball system with numbered boxes and balls that

has the udhToda-III equation (1.11) as its equation of motion. As in the basic BBS,

we assume that an infinite number of boxes are arranged in a straight line. We assume

that only one ball can be put in one box, and the number of balls is finite. The types of

balls and boxes are distinguished by identification numbers, which take a value between

0 and M − 1 for balls and between 0 and N − 1 for boxes. We here emphasize that

M and N are arbitrary parameters corresponding to those in the udhToda-III equation

(1.11). In the following, we refer to a set of balls in consecutive boxes as a ball group

and a set of consecutive empty boxes between two ball groups as a box array.

At discrete time n, we assign identification numbers to boxes and balls so that the

following four conditions hold:

(a) Every ball has an identification number, which is one of 0, 1, . . . ,M − 1.

(b) For each i, 0 ≤ i ≤ M − 1, each ball group contains one or more balls with

identification number i, and the balls in each ball group are lined up so that their

identification numbers are in ascending order from the left.

(c) Every box between ball groups has an identification number, which is one of 0, 1,

. . . , N−1. Only boxes between the leftmost and rightmost ball groups are numbered.

(d) For each j, 0 ≤ j ≤ N−1, each box array between ball groups contains one or more

boxes with identification number j, and the boxes in each box array are lined up so

that their numbers are in ascending order from the left.

We hereinafter omit “from the left” in describing the order of each box array and each

ball group from the left. Now, we define the rules for discrete time evolution of our new

nBBS with numbered balls and boxes. The time evolution of the nBBS from n to n+1

consists of MN substeps. At the (jM + i)th substep (0 ≤ i ≤ M − 1, 0 ≤ j ≤ N − 1),

we move the boxes and balls as follows:
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Figure 1. An example of discrete time evolution from n = 0 to n = 1 in the case where

M = 3 and N = 2.

(i) Starting from the leftmost ball with number i, move each ball with number i, one

by one, to the nearest right empty box numbered j or without an identification

number.

(ii) After moving the balls numbered i, delete identification number j from boxes newly

filled with a ball. Moreover, assign the identification number j to boxes that become

empty, except for boxes to the left of the leftmost ball group. (Boxes to the left of

the leftmost ball group do not have a box identification number.)

(iii) If i < M − 1, in each box array, gather all boxes with number j to the left end of

the box array. If i = M − 1, in each box array, gather all boxes with number j to

the right end of the box array.

We refer to the nBBS defined by the conditions (a)–(d) and the rules (i)–(iii) as nBBS-

III. Figure 1 shows an example of discrete time evolution from n = 0 to n = 1 of

nBBS-III. Now, we show a lemma concerning discrete time evolution of nBBS-III. To

this end, we define new conditions (b)i and (d)j , which are slight generalizations of the

conditions (b) and (d), respectively.
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(b)i For each p, 0 ≤ p ≤ M − 1, each ball group contains one or more balls with

identification number p, and the balls in each ball group are lined up so that their

identification numbers are in the order of i, i+ 1, . . . ,M − 1, 0, 1, . . . , i− 1.

(d)j For each q, 0 ≤ q ≤ N − 1, each box array between ball groups contains one or

more boxes with identification number q, and the boxes in each box array are lined

up so that their numbers are in the order of j, j + 1, . . . , N − 1, 0, 1, . . . , j − 1.

Lemma 2.1. Consider the (jM + i)th substep during discrete time evolution

from n to n + 1, where 0 ≤ i ≤ M − 1 and 0 ≤ j ≤ N − 1. Let i′ = mod(i + 1,M)

and j′ = ⌊(jM + i+1)/M⌋ where ⌊·⌋ denotes the greatest integer part of a real number.

If the conditions (a), (b)i, (c) and (d)j hold and the number of ball groups is m at the

beginning of the substep, then the conditions (a), (b)i′ , (c) and (d)j′ hold at the end of

the substep and the number of ball groups remains unchanged.

Proof. It is clear that (a) holds because the identification number of each ball does

not change throughout discrete time evolution. It is also clear that (c) holds because the

boxes that become empty are given number j unless it lies to the left of the leftmost ball

group, the boxes newly filled with a ball are deprived of the numbers, and the numbers

of other boxes are unchanged.

Now, we show that m remains unchanged by induction. By assumption, the balls

to be moved, those with number i, are at the left end of each group. Among them, the

leftmost one is moved first, the second leftmost one next, and so on. The boxes that

become empty due to these movements are not filled with another ball at this substep.

Also, balls with numbers other than j exist in each group and they are not moved. From

these facts, it is clear that no ball groups vanish nor split into two or more groups due

to the removal of the balls. On the other hand, the removed balls are then attached

at the right end of some ball group, because the boxes with number j lie there. Thus,

the number of ball groups does not increase. Also, since there are boxes with numbers

other than j between any two ball groups and they remain empty at this substep, it

does not occur that two ball groups merge due to this attachment. From these facts,

we can conclude that the number of ball groups remains unchanged after the substep.

Next, we show that (b)i′ holds at the end of the substep. Consider the kth ball

group. The empty box with number j just at the right of this ball group is filled

with a ball with number i, which comes either from this ball group or from one of the

preceding ball groups. Since the balls with number other than i do not move, the kth

ball group still has one or more balls with number p for 0 ≤ p ≤ M − 1. Also, it is

clear that the balls are lined up so that their identification numbers are in the order of

i+ 1, i+ 2, . . . ,M − 1, 0, 1, . . . , i. This shows that (b)i′ holds.
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Finally, we show (d)j′ . Let 2 ≤ k ≤ m. When the balls with number i belonging

to the kth ball group are moved, the boxes that stored them become empty, are given

number j, and become part of the (k − 1)th box array. Since the boxes with numbers

other than j remain unchanged, the (k − 1)th box array still has one or more boxes

with number q for 0 ≤ q ≤ N − 1. Also, due to rule (iii), the boxes are lined up so that

their identification numbers are in the order of j, j + 1, . . . , N − 1, 0, 1, . . . , j − 1 when

0 ≤ i ≤ M − 2 and in the order of j + 1, j + 2, . . . , N − 1, 0, 1, . . . , j when i = M − 1.

Thus, (d)j′ holds.

By using Lemma 2.1 repeatedly, we obtain the following theorem.

Theorem 2.2. Suppose that the conditions (a)–(d) hold at discrete time n and

the number of ball groups is m. Then, these conditions hold also at discrete time n+ 1

and the number of ball groups remains unchanged.

Since the number of ball groups (and therefore that of box arrays) stays constant, we

can describe the state of nBBS-III by specifying the number of balls of each identification

number in each ball group and the number of boxes of each identification number in

each box array. Noting that the number of balls with identification number i changes

only at the ith, (M + i)th, . . ., ((N − 1)M + i)th substeps, we denote the number of

balls with number i in the kth ball group at the beginning of the (jM + i)th substep

the transition under discrete time evolution from n to n+1 by Q
(n,j)
i,k . Similarly, noting

that the number of boxes with identification number j changes only at the (Mj)th,

(Mj+1)th, . . ., (Mj+M −1)th substeps, we denote the number of boxes with number

j in the kth box array at the beginning of the (jM+i)th substep of the transition under

discrete time evolution from n to n+ 1 by E
(n,i)
j,k .

Now, let us consider the (jM + i)th substep. In this substep, only balls with

number i and boxes with number j are used. If we focus on these balls and boxes,

their movements are exactly the same as those of balls and boxes in the standard BBS

in which neither balls nor boxes are numbered. Thus, the numbers of the balls and

boxes before and after the (jM + i)th substep, that is, {Q(n,j)
i,k }mk=1, {E

(n,i)
j,k }m−1

k=1 and

{Q(n,j+1)
i,k }mk=1, {E

(n,i+1)
j,k }m−1

k=1 , should satisfy the same equation of motion as that of

the standard BBS. The equation is exactly (1.11). Therefore, we arrive at the following

theorem.

Theorem 2.3. The equation of motion of nBBS-III is the udhToda-III equation

(1.11).



Box and ball system with numbered boxes and balls 29

§ 3. Conserved quantity

Fukuda [2] derived a conserved quantity of nBBS-I with the help of a combinatorial

technique. In this section, along the same line, we derive combinatorial representation

of a conserved quantity of nBBS-III.

§ 3.1. Conserved quantity of nBBS-I

We begin by reviewing the main result of [2]. Let us consider nBBS-I in which

each ball has an identification number (color) between 0 and M − 1. We assign index

0 to one of the boxes and then assign indices 1, 2, . . . to the boxes to the right of it,

starting from the nearest box. Also, assign indices −1,−2, . . . to the boxes to the left

of it, staring from the nearest box. These indices denote the position of each box and

do not change over time. They should not be confused with the identification numbers

of the boxes defined in nBBS-III, which change during time evolution.

Now, consider the status of this nBBS-I at discrete time n. Let L =
∑M−1

i=0 Q(n+i)

be the total number of balls and let the indices of boxes storing a ball be denoted by

i1, i2, . . . , iL. Also, let the color (identification number) of the ball stored in a box with

index ij be aj . Then, we can uniquely represent the status of the nBBS-I using the

so-called bi-word:

w =

(
i1 i2 · · · iL
a1 a2 · · · aL

)
.

Using the Robinson-Schensted-Knuth correspondence, we can construct one-to-one cor-

respondence between w and a pair (P,Q) of the semi-standard Young tableaux. To

construct the P symbol, we start from an empty Young tableaux and repeat, for

j = 1, 2, . . . , L, adding a new box with element aj at the right end of the top row and

reconstructing the whole Young tableaux according to an algorithm called row bumping.

To construct the Q symbol, we prepare another empty Young tableau and repeat adding

a new box at the same position where a new box of the P symbol appeared as a result

of row bumping and inserting ij into the box. Thus, P and Q become Young tableaux

of the same shape. It is important to note that the P symbol can be constructed solely

from the bottom row of w, whereas construction of the Q symbol requires both the top

and bottom rows of w.

The P and Q symbols are defined for each discrete time n. Here, we consider

discrete time evolution from n to n+M , because this is a period during which all the

balls are moved exactly once. Then, the following theorem holds.

Theorem 3.1 (Fukuda [2]). Consider discrete time evolution of P and Q con-

structed from that of nBBS-I. Then, the following two holds:
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(i) The P symbol remains unchanged.

(ii) The Q symbol evolves independently of the P symbol.

Thus, the P symbol constructed from the bi-word w gives a conserved quantity

of nBBS-I. It is to be noted that the bi-word w is determined uniquely if {Q(n)
k }mk=1,

{Q(n+1)
k }mk=1, . . ., {Q

(n+M−1)
k }mk=1, {E

(n)
k }m−1

k=1 and the index i1 of the box containing

the leftmost ball at discrete time n are given. But, {E(n)
k }m−1

k=1 and i1 are used only to

determine the top row of w. Thus, the bottom row of w, and hence the P symbol, are

determined solely by {Q(n)
k }mk=1, {Q

(n+1)
k }mk=1, . . ., {Q

(n+M−1)
k }mk=1.

§ 3.2. Conserved quantity of nBBS-III

We now turn to the case of the nBBS-III. Consider the (jM)th, (jM + 1)th, . . .,

(jM + M − 1)th substeps of the transition under discrete time evolution from n to

n + 1, where 0 ≤ j ≤ N − 1. At these substeps, balls with identification numbers

0, 1, . . . ,M − 1 are moved using only boxes with identification number j. Thus, if we

focus only on these balls and boxes, the dynamics of the system is exactly the same as

that of nBBS-I with M kinds of balls. Then, it follows from Theorem 3.1 that the P

symbol determined by {Q(n,j)
1,k }mk=1, {Q

(n,j)
2,k }mk=1, . . ., {Q

(n,j)
M,k }mk=1 and that determined

by {Q(n,j+1)
1,k }mk=1, {Q

(n,j+1)
2,k }mk=1, . . ., {Q

(n,j+1)
M,k }mk=1 are the same. Since this holds for

j = 0, 1, . . . , N − 1 and for any n, we obtain the following theorem concerning the P

symbol in nBBS-III.

Theorem 3.2. The P symbol determined by the variables {Q(n,j)
1,k }mk=1, {Q

(n,j)
2,k }mk=1,

. . . , {Q(n,j)
M,k }mk=1 of nBBS-III remains the same regardless of the value of j and n.

This gives a combinatorial conserved quantity of nBBS-III. In the example shown in

Figure 1, the bi-words at discrete time n = 0 and at discrete time n = 1 are respectively

given as: (
1 2 3 4 5 6 7 15 16 17 18 19 27 28 29

0 0 0 1 1 2 2 0 0 1 1 2 0 1 2

)
,(

14 15 16 17 18 19 26 27 28 29 33 34 35 36 37

0 0 1 1 2 2 0 0 1 2 0 0 1 1 2

)
.

Thus, we can easily check that the P symbols at discrete time n = 0 and at discrete

time n = 1 are the same, and are both expressed as:

0 0 0 0 0 0 1 1 2

1 1 1 2 2

2
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§ 4. Relationship to the hungry ϵ-BBS

In this section, we relate the hungry ε-BBS to the nBBS-III, and then derive a

conserved quantity of the hungry ε-BBS from the viewpoint of the nBBS-III.

According to Kobayashi-Tsujimoto [6], the hungry ε-BBS is designed based on

ultra-discretization of a discrete integrable system which can be represented in matrix

form as:

(L(n+1)
1 )−1L(n+1)

2 R(n+M) = R(n)(L(n)
1 )−1L(n)

2 ,(4.1)

L(n)
1 :=



1

−e
(n)
ε,1 1

−e
(n)
ε,2 1

. . .
. . .

−e
(n)
ε,m−1 1


, L(n)

2 :=



1

ē
(n)
ε,1 1

ē
(n)
ε,2 1

. . .
. . .

ē
(n)
ε,m−1 1


,(4.2)

R(n) :=



q
(n)
1 1

q
(n)
2 1

q
(n)
3

. . .

. . . 1

q
(n)
m


,(4.3)

where e
(n)
ε,ℓ := εℓe

(n)
ℓ , ē

(n)
ε,ℓ := (1 − εℓ)e

(n)
ℓ , and εℓ is a constant whose value is 0 or 1.

Let L(n)
1,ℓ be a lower bidiagonal matrix whose subdiagonal entries are 0 except for the

(ℓ+ 1, ℓ) entry:

L(n)
1,ℓ =



1
. . .

1

e
(n)
ε,ℓ 1

. . .

1


.

Then, we can decompose the inverse matrix (L(n)
1 )−1 in product form as:

(L(n)
1 )−1 =



1

−e
(n)
ε,1 1

−e
(n)
ε,2 1

. . .
. . .

−e
(n)
ε,m−1 1



−1
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=


1

1
. . .

1

−e
(n)
ε,m−1 1



−1
1

. . .

1

−e
(n)
ε,m−2 1

1



−1

× · · · ×


1

−e
(n)
ε,1 1

. . .

1

1



−1

= L(n)
1,m−1L

(n)
1,m−2 · · · L

(n)
1,1 .(4.4)

We now assume that εℓ = 1 for ℓ = ℓK , ℓK−1, . . . , ℓ1, where ℓK > ℓK−1 > · · · > ℓ1, and

εℓ = 0 otherwise. Then, L(n)
1,ℓ with ℓ ̸= ℓK , ℓK−1, . . . , ℓ1 are the identity matrices. Thus,

using (4.4), we can simplify (4.1) to a tractable form that does not involve the inverse

as:

L(n+1)
1,ℓK

L(n+1)
1,ℓK−1

· · · L(n+1)
1,ℓ1

L(n+1)
2 R(n+M) = R(n)L(n)

1,ℓK
L(n)
1,ℓK−1

· · · L(n)
1,ℓ1

L(n)
2 .(4.5)

By defining R(n,0) = R(n) and introducing intermediate variables R(n,1), . . . ,R(n,K),

we can rewrite the LR transformation (4.5) as a sequence of LR transformations of

bidiagonal matrices: 

L(n+1)
1,ℓK

R(n,1) = R(n,0)L(n)
1,ℓK

,

L(n+1)
1,ℓK−1

R(n,2) = R(n,1)L(n)
1,ℓK−1

,
...

L(n+1)
1,ℓ1

R(n,K) = R(n,K−1)L(n)
1,ℓ1

,

L(n+1)
2 R(n+M,0) = R(n,K)L(n)

2 .

(4.6)

Let n be a multiple of M and consider (4.6) for n, n+1, . . . , n+M−1. These constitute

one period of the hungry ε-BBS, in which all M kinds of balls are moved once. Now,

we write n = n′M and apply subscript-superscript swapping as follows:
L
(n′,i)
j := L(n+i)

1,ℓK−j
, i = 0, 1, . . . ,M − 1, j = 0, 1, . . . ,K − 1,

L
(n′,i)
K := L(n+i)

2 , i = 0, 1, . . . ,M − 1,

R
(n′,j)
i := R(n+i,j), i = 0, 1, . . . ,M − 1, j = 0, 1, . . . ,K.

Using these variables, (4.6) for n, n+ 1, . . . , n+M − 1 can be written succinctly as:

L
(n′,i+1)
j R

(n′,j+1)
i = R

(n′,j)
i L

(n′,i)
j , i = 0, 1, . . . ,M − 1, j = 0, 1, . . . ,K,(4.7)
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with the conditions:{
L
(n′,M)
j = L

(n′+1,0)
j , j = 0, 1, . . . ,K,

R
(n′,K+1)
i = R

(n′+1,0)
i , i = 0, 1, . . . ,M − 1.

(4.8)

By writing (4.7) and (4.8) entry-by-entry, we obtain (1.7) and (1.8) with M = K + 1

and n = n′. Note that (4.7) (or (1.7)) constitutes a doubly nested loop over i and

j, and in the original ε-BBS, the loop over j was the inner loop, as can be seen from

(4.5). But the order of computation of (4.7) is arbitrary as long as L
(n′,i)
j and R

(n′,j)
i

are computed before L
(n′,i+1)
j and R

(n′,j+1)
i for all i and j. Thus, we can exchange the

loops and make the loop over i (ball identification numbers) the inner one. This allows

us to regard the hungry ε-BBS, which is derived from the matrix representation (4.1),

as a special case of the nBBS-III with K + 1 kinds of boxes and M kinds of balls.

Below, we rewrite n′ as n. Note that each L
(n,i)
j (i = 0, 1, . . . ,M − 1, j =

0, 1, . . . ,K − 1) has a nonzero entry only in the (ℓK−j + 1, ℓK−j) entry on the sub-

diagonal. From the viewpoint of the nBBS-III, we see that, for each j = 0, 1, . . . ,K−1,

there are a finite number of boxes numbered j in the ℓK−jth box array and an in-

finite number of boxes numbered j in other box arrays. This means that when the

balls are moved using boxes numbered j, the ball groups other than the ℓK−jth and

(ℓK−j +1)th ones simply move to the empty boxes to the right of them, without chang-

ing their lengths. Thus, effectively, we only need to consider the interaction between

the ℓK−jth ball group and the ℓK−jth box array numbered j, which results in changes

in the lengths of the ℓK−jth and (ℓK−j + 1)th ball groups and the ℓK−jth box array.

On the other hand, there are a finite number of boxes numbered K in the ℓth box array

when ℓ ̸= ℓK−j , j = 0, 1, . . . ,K − 1 and an infinite number of boxes numbered K in the

ℓth box array otherwise. Let {ℓ̄1, ℓ̄2, . . . , ℓ̄m−1−K} = {1, 2, . . . ,m − 1}\{ℓ1, ℓ2, . . . , ℓK}
and ℓ̄1 < ℓ̄2 < · · · < ℓ̄m−1−K . Then, when the balls are moved using boxes numbered

K, we need to care about only the interactions between the ℓth ball group and the ℓth

box array for ℓ = ℓ̄1, ℓ̄2, . . . , ℓ̄m−1−K .

Until now, we have assumed that there are K + 1 kinds of boxes. However, as is

clear from the explanation above, for each j, 0 ≤ j ≤ K− 1, there is only one box array

such that the number of boxes numbered j in it is finite. Hence, for 0 ≤ j ≤ K − 1,

instead of saying “use boxes numbered j”, we can say “use the finite number of boxes

in the ℓK−jth box array”. After this has been done for 0 ≤ j ≤ K − 1, we use the

finite number of boxes in the ℓth box array for ℓ = ℓ̄1, ℓ̄2, . . . , ℓ̄m−1−K in this order.

Thus, we can do without the box identification numbers and instead consider a variant

of nBBS-I in which the order of box arrays to be used is changed from the natural order.

In summary, we arrive at the following alternative discrete-time evolution rule of the

hungry ε-BBS.
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Algorithm 1 Alternative discrete-time evolution rule of the hungry ε-BBS.

1: for i = 0,M − 1 do

2: for j = 0,K − 1 do

3: Move the balls numbered i according to the standard BBS rule assuming that

only the ℓK−jth box array has finite length and the other box arrays have infinite

lengths.

4: end for

5: Move the balls numbered i according to the standard BBS rule assuming that

only the ℓ̄1th, ℓ̄2th, . . . , ℓ̄m−1−Kth box arrays have finite length and the other box

arrays have infinite lengths.

6: end for

Note that the loops over i and j can be interchanged, so that when a box iden-

tification number is specified, all M kinds of balls are moved successively using those

boxes.

Since the hungry ε-BBS can be interpreted as a special case of nBBS-III, we im-

mediately obtain its conserved quantity from Theorem 3.2 as follows.

Theorem 4.1. Under discrete-time evolution according to Algorithm 1, the P

symbol computed from ball sequences before discrete-time evolution coincides with that

computed from ball sequences after discrete-time evolution.

Theorem 4.1 is equivalent to Proposition 4.1 in Kobayashi and Tsujimoto [6]. Our

proof above is an alternative one based on the results of [2] and an interpretation of the

hungry ε-BBS as a special case of nBBS-III.

Example To show that the discrete-time evolution rule given as Algorithm 1 is

equivalent to the rule given in [6], we show an example of time evolution below. Here,

there are three kinds of balls and four ball groups (M = 3,m = 4) and ε1 = 0, ε2 = 1,

ε3 = 0. These settings, as well as the initial state of the system, are the same as those

of the first example of Example 3.2 in [6]. In this example, we use a modified version of

Algorithm 1 in which the loops over i and j are interchanged. Since only ε2 is nonzero,

we have K = 1 and ℓ1 = 2 and therefore ℓ̄1 = 1 and ℓ̄2 = 3. In the transition from n

to n + 1/2, the three kinds of balls are moved using the 2nd box array. The 1st and

3rd box arrays are treated as having infinite lengths (denoted by double line) and their

original lengths do not change after the transition. In the transition from n + 1/2 to

n+1, the three kinds of balls are moved using the 1st and 3rd box arrays. The 2nd box

array is treated as having an infinite length (denoted by double line) and its original

length does not change after the transition. By comparing the states at n = 1, 2 and 3

with those of [6], we see that our rule gives identical results.
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n=0: 1111222 112233 133 11223

n=1/2: 1111222 11223 1333 11223

n=1: 11122 1112223 1333 11223

n=1+1/2: 11122 112 11223333 11223

n=2: 11122 112 11223333 11223

n=2+1/2: 11122 112 11223333 11223

n=3: 122 11112 1122333 112233

§ 5. Concluding remarks

In this paper, we proposed a new numbered box and ball system (nBBS) in which

both boxes and balls are numbered. We first designed rules of discrete time evolutions

of the new nBBS, and showed that its dynamics is described by an extension of the

ultradiscrete hungry Toda (udhToda) equations corresponding to the nBBSs in which

either boxes or balls are numbered. We next focused on a pair of semi-standard Young

tableaux which represent the status of our nBBS, and showed that one of the tableaux

constitutes a conserved quantity of our nBBS under discrete-time evolutions, by slightly

extending the approach for the simplest nBBS. We also showed that the matrix LR

transformation associated with the hungry ε-BBS is a specialization of that associated

with our nBBS, and thereby derived an already known conserved quantity of the hungry

ε-BBS from the viewpoint of our nBBS.

In fact, there is another version of nBBS with numbered boxes and balls, and we

have described its elementary properties in our previous paper. Our future work is thus

to enrich the study of this nBBS by, for example, deriving its conserved quantities using

the Young tableaux approach, and finding its relationships to other BBSs.
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