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Contraction Analysis of Discrete-Time
Stochastic Systems

Yu Kawano , Member, IEEE, and Yohei Hosoe , Member, IEEE

Abstract—In this article, we develop a novel contraction
framework for the stability analysis of discrete-time non-
linear systems with parameters following stochastic pro-
cesses. For general stochastic processes, we first provide
a sufficient condition for uniform incremental exponential
stability (UIES) in the first moment with respect to a Rie-
mannian metric. Then, focusing on the Euclidean distance,
we present a necessary and sufficient condition for UIES in
the second moment. By virtue of studying general stochas-
tic processes, we can readily derive UIES conditions for
special classes of processes, e.g., independent and iden-
tically distributed processes and Markov processes, which
are demonstrated as selected applications of our results.

Index Terms—Contraction, discrete-time systems, incre-
mental stability, nonlinear systems, stochastic systems.

I. INTRODUCTION

S TARTING with a seminal paper [1], contraction theory
draws attention from the systems and control community as

a new differential geometric framework for the stability analysis
of nonlinear systems. Differently from the standard Lyapunov
analysis of an equilibrium point (e.g., [2] and [3]), incremental
stability (i.e., stability of a pair of trajectories) [4] is studied
by lifting the Lyapunov function to the tangent bundle [5].
Revisiting nonlinear control theory from this new angle has
resulted in so-called differential approaches to, for instance,
control design [6], [7], [8], [9], [10], observer design [11], [12],
[13], dissipativity theory [14], [15], [16], [17], and balancing
theory [18], [19]. Along with them, contraction (stability) anal-
ysis itself is in the middle of development in various problem
settings; see, e.g., [20], [21], [22], and [23] for monotone sys-
tems, e.g., [24] and [25] for switched systems, e.g., [26] and
[27] for systems under stochastic input noise, and, e.g., [28] for
stochastic switched impulsive systems, a kind of Markov jump
systems.

Manuscript received 24 August 2022; revised 7 May 2023; accepted
27 May 2023. Date of publication 7 June 2023; date of current version
30 January 2024. The work of Yu Kawano was supported in part by the
JSPS KAKENHI under Grant JP21K14185 and Grant JP21H04875. The
work of Yohei Hosoe was supported in part by the JST PRESTO under
Grant JPMJPR2127 and in part by the JSPS KAKENHI under Grant
JP20K04546 and Grant JP23H01433. Recommended by Associate Ed-
itor P. G. Mehta. (Corresponding author: Yu Kawano.)

Yu Kawano is with the Graduate School of Advanced Science and
Engineering, Hiroshima University, Higashi-Hiroshima 739-0046, Japan
(e-mail: ykawano@hiroshima-u.ac.jp).

Yohei Hosoe is with the Department of Electrical Engineering, Kyoto
University, Kyoto 615-8510, Japan (e-mail: hosoe@kuee.kyoto-u.ac.jp).

Digital Object Identifier 10.1109/TAC.2023.3283678

In this article, we aim at newly developing contraction theory
for discrete-time nonlinear systems with parameters following
stochastic processes. None of the aforementioned papers deals
with this class of systems; most of them focus on continuous-
time deterministic systems. The aforementioned papers [26],
[27], [28] studying stochastic systems are also for continuous-
time systems. In the discrete-time case, the authors in [1],
[29], [30], and [31] have studied deterministic systems and
systems under stochastic input noise, respectively. Other than
input noise, randomness is not incorporated in the contraction
analysis of discrete-time systems. In other words, there is no
contraction framework to analyze discrete-time systems with
random parameters, such as the systems with white parame-
ters [32] and Markov jump systems [33]. This is in contrast to a
massive amount of researches on discrete-time Markov jump
linear/nonlinear systems in the history, e.g., [33], [34], [35],
[36] and recent rapid increase in the number of researches for
machine learning to construct stochastic models from discrete-
time empirical data, e.g., [37], [38], [39], [40]. When studying
stochastic systems, typically, we specify the class of stochastic
processes into, for instance, independent and identically dis-
tributed (i.i.d.) and Markovian, which can be viewed as ad hoc
approaches because depending on processes, different stabil-
ity conditions are obtained. For developing unified theory to
deal with each process simultaneously, recently, the paper [41]
gives second moment stability conditions for general stochastic
processes in the discrete-time linear case, which contains the
existing conditions for i.i.d. [42], [43] and Markovian [33], [44]
as special cases.

Inspired by [41], in this article, we deal with general stochastic
processes. To begin with contraction analysis of discrete-time
nonlinear stochastic systems, we introduce a new stability no-
tion, uniform incremental exponential stability (UIES), in the
pth moment with respect to the Riemannian metric, which
reduces to the standard pth moment stability [45], [46] when the
distance is Euclidean, and a trajectory is fixed on an equilibrium
point. As the first main result of this article, we provide a
sufficient condition for UIES in the first moment. Then, as the
second main contribution, focusing on the Euclidean distance,
we present a necessary and sufficient condition for UIES in
the second moment; second moment stability is stronger than
first moment stability. By virtue of developing unified the-
ory for general stochastic processes, we show that specifying
processes readily yields UIES conditions for i.i.d. processes
or Markov processes. Even UIES conditions in each special-
ized case are new contributions of this article on their own,
due to lack of contraction theory for discrete-time stochastic
systems.
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The rest of this article is organized as follows. To explain main
ideas of this article, we start with analysis of scalar systems
in Section II. Then, we consider n-dimensional systems with
general stochastic processes and present UIES conditions in
Section III. A proposed condition is tailored to i.i.d. processes
and Markov processes as special applications in Section IV.
Finally, Section V concludes this article.

Notations: The sets of real numbers and integers are denoted
by R and Z, respectively. Also, define R̄ := R ∪ {−∞,∞}.
Subsets of Z are defined by Zk0+ := Z ∩ [k0,∞) and Zk0− :=
Z ∩ (−∞, k0] for k0 ∈ Z. Also, Z[k0,k] := Z ∩ [k0, k] for k0 ∈
Z and k ∈ Zk0+, where Z[k0,k0] := {k0}. The n× n identity
matrix is denoted by In. The set of n× n symmetric matrices
is denoted by S

n×n, and that of symmetric and positive (re-
spectively, semi) definite matrices is denoted by S

n×n
�0 (respec-

tively, Sn×n
�0 ). For P,Q ∈ R

n×n, P � Q (respectively, P � Q)
means P −Q ∈ S

n×n
�0 (respectively, P −Q ∈ S

n×n
�0 ). The Eu-

clidean norm of a vector x ∈ R
n is denoted by |x|. A function

d : Rn × R
n → R is said to be a distance if the following

holds:
1) d(x, x′) ≥ 0 for all x, x′ ∈ R

n;
2) d(x, x′) = 0 if and only if x = x′ for all x, x′ ∈ R

n;
3) d(x, x′′) ≤ d(x, x′) + d(x′, x′′) for all x, x′, x′′ ∈ R

n.
An example of a distance is the Euclidean distance d(x, x′) =
|x− x′|.

Let (Ω,F ,P) be a complete probability space, where Ω, F ,
and P denote a sample space, a σ-algebra, and a probabil-
ity measure, respectively. For the sake of notational simplic-
ity, an X -valued random variable ξ0 : (Ω,F) → (X ,B(X )) is
described by ξ0 : Ω → X , where B(X ) denotes the Borel σ-
algebra onX . AnXT -valued stochastic process ξ := (ξk)k∈T on
T ⊂ Z is defined as a mapping ξ : Ω(×F) → XT (×B(XT )).
For some k0 ∈ Z, subsequences of a stochastic process ξ :
Ω → X Z are denoted by ξk0+ = (ξk)k∈Zk0+

: Ω → X Zk0+ and
ξk0− = (ξk)k∈Zk0− : Ω → X Zk0− . The support of ξ(k0−1)− is

denoted by Ξ̂(k0−1)−. Let Fk be the σ-algebra generated by
a subsequence ξk0

, ξk0+1, . . . , ξk of a stochastic process ξ un-
der the initial condition ξ(k0−1)− = ξ̂(k0−1)− ∈ Ξ̂(k0−1)−. Then,
(Fk)k∈Zk0+

is a filtration on (Ω,F ,P) for each ξ̂(k0−1)− ∈
Ξ̂(k0−1)−, namely, an increasing family (Fk)k∈Zk0+

of sub-σ-
algebras of F . For a stochastic process ξ, the time-shift op-
erator Sk : X Zk+ → X Z0+ such that ζ0+ = Skξ

k+ is defined
by ζ0 = ξk and ζ1 = ξk+1, . . . , where ζ0 is Fk-measurable.
Let ξ(k0−1)− = ξ̂(k0−1)− ∈ Ξ̂(k0−1)−. Then, the conditional ex-
pectation of a function of ξk0+ given ξ(k0−1)− is denoted
by E0[(·)] := E[(·)|ξ(k0−1)− = ξ̂(k0−1)−], which is also called
the first moment of a function. Accordingly, its pth mo-
ment is defined by E0[(·)p]. The conditional expectation of
a function of ξk0+ given Fk is denoted by E0[(·)|Fk]. Since
(Fk)k∈Zk0+

is a filtration, the conditional expectation satis-
fies E0[E0[(·)|Fk2

]|Fk1
] = E0[(·)|Fk1

] for each k1 ∈ Zk0+ and
every k2 ∈ Zk1+.

II. SCALAR CASES FOR BRINGING MAIN IDEAS

A. System Description

In this section, we explain the main ideas of this article
through analysis of scalar systems. Let ξ = (ξk)k∈Z : Ω → R

Z

be a stochastic process. Consider the following system:

xk+1 = f(xk, ξk), k ∈ Zk0+ (1)

where f(x, η) and ∂f(x, η)/∂x are continuous with respect to
x ∈ R at each η ∈ R, and f(x, ξk) and ∂f(x, ξk)/∂x are Fk-
measurable at each x ∈ R.

In this article, the initial time k0 ∈ Z and the initial state
xk0

∈ R are both deterministic. Note that (k0, xk0
) ∈ Z× R

is not enough information to describe the behavior of the sys-
tem when dealing with a general stochastic process ξ. The
behavior of ξ itself depends on its initial condition ξ(k0−1)− =

ξ̂(k0−1)− ∈ Ξ̂(k0−1)−, which is the observation of an infinite past
sequence up to k0 − 1 of ξ. In summary, the deterministic triplet
(k0, xk0

, ξ̂(k0−1)−) ∈ Z× R× Ξ̂(k0−1)− is the initial condition
of the system (1).

Various stochastic systems can be described in the form of (1).
For instance, we can deal with a system under an i.i.d. noise
by specifying ξk into i.i.d. Another example is a Markov jump
system by specifying ξk in a Markovian switching signal. These
are main subclasses of stochastic systems studied in systems
and control. Stability theory for each class has been developed
separately, mostly under the linearity assumption. In this ar-
ticle, we take a different approach for developing stochastic
contraction theory. We first derive contraction conditions for
a general stochastic system and then specify problem structures
in order to obtain conditions tailored to each problem. Taking
this approach, we can avoid developing contraction theory for
each case separately.

B. Stability Notion

In this article, we study stability of a pair of trajectories.
To make the considered property clearer, we use the auxiliary
system consisting of copies of the system (1){

x′
k+1 = f(x′

k, ξk)
x′′
k+1 = f(x′′

k, ξk)
k ∈ Zk0+ (2)

where the initial condition (k0, (x
′
k0
, x′′

k0
), ξ̂(k0−1)−) ∈ Z×

(R× R)× Ξ̂(k0−1)− is again deterministic. For the auxiliary
system, the initial states x′

k0
and x′′

k0
are allowed to be different,

but the others, including system vector field f and stochastic
process ξ, are the same.

We are interested in the following stability property. Given
p ∈ Z1+, there exist a > 0 and λ ∈ (0, 1) such that

E0[d
p(x′

k, x
′′
k)] ≤ apλp(k−k0)dp(x′

k0
, x′′

k0
) ∀k ∈ Zk0+ (3)

for all (k0, (x
′
k0
, x′′

k0
), ξ̂(k0−1)−) ∈ Z× (R× R)× Ξ̂(k0−1)−,

where d is a distance function mentioned in the notation part.
Note that the initial condition (x′

k0
, x′′

k0
) is deterministic, and

thus, the right-hand side is deterministic.
We call (3) UIES in the pth moment (with respect to d). This is

an integrated concept of 1) moment stability for stochastic sys-
tems and 2) UIES (with respect to d) for the contraction analysis
of nonlinear deterministic systems. For stochastic systems, mo-
ment stability is defined with respect to the Euclidean distance
by assuming that the origin is an equilibrium point. Specifying
d(x′, x′′) = |x′ − x′′| and (x′

k, x
′′
k) = (xk, 0), k ∈ Zk0+, in (3)

yields

E0[|xk|p] ≤ apλp(k−k0)|xk0
|p ∀k ∈ Zk0+. (4)
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The left-hand side is nothing but the pth moment of |xk|, and
thus, this property is called exponential stability (ES) in the pth
moment. When p = 2, this property is also referred to as mean
square (exponential) stability [45], [46]. A similar concept is
mean stability [46], which studies E0[xk] (without taking the
Euclidean norm) instead of the first moment E0[|xk|].

Next, we consider the deterministic case, i.e., f is independent
of ξk. Then, dp(x′

k, x
′′
k) in the left-hand side becomes determin-

istic. Taking the pth roots of both sides yields

d(x′
k, x

′′
k) ≤ aλk−k0d(x′

k0
, x′′

k0
) ∀k ∈ Zk0+. (5)

This is a discrete-time version of UIES (with respect to d); see,
e.g., [5, Def. 1] for the definition in the continuous-time case.

In contraction analysis, it is standard to employ the distance
function d induced by a Riemannian metric (or more generally
Finsler metric [5]). Let Γ(x′, x′′) denote the collection of class
C1 paths γ : [0, 1] → R such that γ(0) = x′ and γ(1) = x′′.
Then, the following function induced by a class C1 Riemannian
metric r(x) > 0, x ∈ R, is a distance function:

dr(x
′, x′′) = inf

γ∈Γ(x′,x′′)

∫ 1

0

√
r(γ(s))

(
dγ(s)

ds

)2

ds. (6)

An intuitive interpretation is that we consider a kind of the
weighted Euclidean distance with a weight r(x) depending
on x. When r is constant, this becomes a weighted Euclidean
distance, dr(x′, x′′) =

√
r|x′ − x′′|. As found in the Appendix,

the essence of the proof is the same for the general Riemannian
metric and the Euclidean distance, and thus, we consider the
distance (6).

C. Main Ideas for Stochastic Contraction Analysis

The main idea of contraction analysis is to study the time-
evolutions of a path γ(s) and its derivative dγ(s)/ds. This can
be proceeded via analysis of the prolongation of the system (1){

xk+1 = f(xk, ξk)

δxk+1 = ∂f(xk,ξk)
∂x δxk

k ∈ Zk0+ (7)

where the second system is called a variational system whose
state is δxk. Again, the initial condition (k0, (xk0

, δxk0
),

ξ̂(k0−1)−) ∈ Z× (R× R)× Ξ̂(k0−1)− is deterministic.
Let (φk(ξ

(k−1)−;k0,xk0
, ξ̂(k0−1)−))k∈Zk0+

, or simply
(φk(ξ

(k−1)−;xk0
))k∈Zk0+

denote a stochastic process
(xk)k∈Zk0+

generated by the system (1) under the initial

condition (k0, xk0
, ξ̂(k0−1)−) ∈ Z× R× Ξ̂(k0−1)−. Then, it

follows that

φk0
(ξ(k0−1)−;xk0

) = xk0

φk0+1(ξ
k0−;xk0

) = f(xk0
, ξk0

), . . . .

We consider the time-evolution of a path γ ∈ Γ(x′
k0
, x′′

k0
),

namely, φk(ξ
(k−1)−; γ(s)). This is a class C1 path connecting

two stochastic processes, as confirmed by

x′
k = φk(ξ

(k−1)−;x′
k0
) = φk(ξ

(k−1)−; γ(0)) (8a)

x′′
k = φk(ξ

(k−1)−;x′′
k0
) = φk(ξ

(k−1)−; γ(1)). (8b)

To evaluate the distance (6), we also consider the partial
derivative of φk(ξ

(k−1)−; γ(s)) with respect to s, namely,
∂φk(ξ

(k−1)−; γ(s))/∂s. This satisfies, from the chain rule

∂φk+1(ξ
k−; γ(s))

∂s

=
∂f(φk(ξ

(k−1)−; γ(s)), ξk)

∂s

=
∂f(φk(ξ

(k−1)−; γ(s)), ξk)

∂φk

∂φk(ξ
(k−1)−; γ(s))

∂s
(9)

where

∂f(φk(ξ
(k−1)−; γ(s)), ξk)

∂φk
:=

∂f(xk, ξk)

∂x

∣∣∣∣
xk=φk(ξ(k−1)−;γ(s))

.

Throughout this article, we use this kind of notations for partial
derivatives. Equation (9) implies that

(xk, δxk) =

(
φk(ξ

(k−1)−; γ(s)),
∂φk(ξ

(k−1)−; γ(s))

∂s

)

k ∈ Zk0+, s ∈ [0, 1] (10)

satisfies the dynamics of the prolonged system (7) for each
γ ∈ Γ(x′

k0
, x′′

k0
) and every initial condition (k0, (x

′
k0
, x′′

k0
),

ξ̂(k0−1)−) ∈ Z× (R× R)× Ξ̂(k0−1)−.
Therefore, it is expected that if the prolonged system (7)

satisfies r(xk)(δxk)
2 → 0 as k → 0 in some sense, then for any

γ ∈ Γ(x′
k0
, x′′

k0
) and s ∈ [0, 1]

r(φk(ξ
(k−1)−; γ(s)))

(
∂φk(ξ

(k−1)−; γ(s))

∂s

)2

→ 0. (11)

Thus, dr(x′
k, x

′′
k) → 0 as k → 0 is further expected from (6).

This interpretation can be formalized as follows.
Proposition 2.1: A scalar system (1) is UIES in the first mo-

ment [i.e., (3) for p = 1] if there exist λ ∈ (0, 1) and r : R → R

of class C1 such that r(xk0
) > 0 and

E0

[
r(f(xk0

, ξk0
))

(
∂f(xk0

, ξk0
)

∂x

)2
]
≤ λ2r(xk0

) (12)

for all (k0, xk0
, ξ̂(k0−1)−) ∈ Z× R× Ξ̂(k0−1)−. �

Sketch of the proof: The main idea of the proof is to study
the time evolution of the left-hand side of (11) utilizing the
prolonged system (7).

It follows from (7) and (12) that

E0[r(xk0+1)(δxk0+1)
2]

= E0

[
r(f(xk0

, ξk0
))

(
∂f(xk0

, ξk0
)

∂x
δxk0

)2
]

≤ λ2r(xk0
)(δxk0

)2. (13)

Note that (xk0
, δxk0

) is deterministic. The time-shift k0 �→ k
leads to

E0[r(xk+1)(δxk+1)
2|Fk−1] ≤ λ2r(xk)(δxk)

2 a.s.

where recall thatE0[·|Fk−1] is the conditional expectation given
Fk−1, andE0[·] = E0[·|Fk0−1]. Since (Fk)k∈Zk0+

is a filtration,
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it follows thatE0[E0[·|Fk−1]] = E0[·] for eachk ∈ Zk0+. There-
fore, taking the conditional expectationE0[·] of both sides yields
E0[r(xk+1)(δxk+1)

2] ≤ λ2
E0[r(xk)(δxk)

2].
Recursively utilizing this inequality from k to k0 leads to

E0[r(xk)(δxk)
2] ≤ λ2(k−k0)r(xk0

)(δxk0
)2.

Again note that (xk0
, δxk0

) is deterministic. Taking the square
roots of both sides and applying the Cauchy–Schwarz inequal-
ity [47, Corollary 3.1.12] yield

E0

[√
r(xk)(δxk)2

]
≤

√
E0[r(xk)(δxk)2]

≤ λk−k0
√

r(xk0
)(δxk0

)2. (14)

Now, we connect the analysis of the prolonged sys-
tem (7) with (14). As shown in (10), (xk+1, δxk+1) =
(φk(ξ

(k−1)−; γ(s)), ∂φk(ξ
(k−1)−; γ(s))/∂s) satisfies (7). Thus,

substituting this into (14) and taking the integration with respect
to s lead to∫ 1

0

E0

⎡
⎣
√

r(φk(ξ(k−1)−; γ(s)))

(
∂φk(ξ(k−1)−; γ(s))

∂s

)2
⎤
⎦ ds

≤ λk−k0

∫ 1

0

√
r(γ(s))

(
dγ(s)

ds

)2

ds. (15)

As shown in Appendix A, taking the conditional expectation and
the integral with respect to s is commutative. Also, recall that
φk(ξ

(k−1)−; γ(s)) is a class C1 path connecting between x′
k and

x′′
k. Therefore, it follows from (6) that

E0[d(x
′
k, x

′′
k)] ≤ λk−k0

∫ 1

0

√
r(γ(s))

(
dγ(s)

ds

)2

ds

for any γ ∈ Γ(x′
k0
, x′′

k0
). Finally, we have (3) by taking the

infimum of γ as in (6). �
Remark 2.2: In this article, we focus on UIES with respect

to the deterministic pair of initial states (x′
k0
, x′′

k0
). For random

(x′
k0
, x′′

k0
) being independent of ξ, our results are still applica-

ble because we guarantee (3) for all (x′
k0
, x′′

k0
) and, thus, can

take its conditional expectation with respect to (x′
k0
, x′′

k0
). For

obtaining less conservative conditions, one may expect to take
a conditional expectation of (12) with respect to xk0

, but this
does not directly yield that of (13) because (xk, δxk) are not
independent by (10). �

Example 2.3: We apply Proposition 2.1 to an affine system
with respect to a random variable

xk+1 = g(xk) + h(xk)ξk, k ∈ Zk0+

where g, h : R → R are of class C1, and E0[ξk] = 0 for all k ∈
Zk0+. We select a metric r as a constant. Namely, we consider the
Euclidean distance. According to Proposition 2.1, this system is
UIES in the first moment with respect to the Euclidean distance
if there exists λ ∈ (0, 1) such that

E0

[(
∂g(xk0

)

∂x
+

∂h(xk0
)

∂x
ξk0

)2
]

=

(
∂g(xk0

)

∂x

)2

+ E0[ξ
2
k0
]

(
∂h(xk0

)

∂x

)2

� λ2

for all (k0, xk0
, ξ̂(k0−1)−) ∈ Z× R

n × Ξ̂(k0−1)−, where we
used E0[ξk0

] = 0. If ξk is i.i.d. Gaussian noise with variance
σ2 > 0, then the condition becomes

(
∂g(xk0

)

∂x

)2

+ σ2

(
∂h(xk0

)

∂x

)2

≤ λ2 ∀xk0
∈ R.

Therefore, by our results, one can study UIES in the first
moment under i.i.d. Gaussian noise. In fact, utilizing a non-
constant r(xk0

) leads to a necessary and sufficient condition
for UIES in the second moment; see Corollary 4.4 in the
following. �

D. Metrics Depending on Stochastic Processes

In Proposition 2.1, we employ r(x), which is independent of a
stochastic process (ξk)k∈Z. In fact, using such an r(x) restricts
the class of applications. To see this, we start this section by
reviewing stability analysis of a Markov jump linear system.

Example 2.4: Let ξk be stationary (its characteristic does not
depend on k ∈ Z) and takes a value only in M := {1, . . . ,M}.
Let us denote the transition probability from mode i ∈ M to
j ∈ M by πj,i := P(ξk+1 = j|ξk = i) ≥ 0 for each k ∈ Z. Ac-
cording to [33, Eq. (3.15)], a scalar Markov jump linear system
xk+1 = a(i)xk is ES in the second moment if and only if there
exist λ ∈ (0, 1) and r̂0,i > 0, i ∈ M, such that

∑
j∈M

πj,ir̂0,ja
2(j) ≤ λ2r̂0,i ∀i ∈ M. (16)

Therefore, even for Markov jump linear systems, we need
mode-dependent r̂0,i to describe a necessary and sufficient
condition. �

As observed previously, we can derive a less conservative sta-
bility condition by taking r as a function of a stochastic process
(ξk)k∈Z in addition to xk0

. When dealing with such r, its domain
needs to be considered carefully. For instance, let us consider
r− : ξk0+ �→ ξk0

and r+ : ξk0+ �→ ξk0+1. Then, one may expect
r−(ξ

(k0+1)+) = r+(ξ
k0+). However, the left-hand side is not

well defined, since the domain of r− is RZk0+ , and ξ(k0+1)+ be-
longs toRZ(k0+1)+ . To resolve this issue, we utilize the time-shift
operator Sk0

: ξk0+ �→ ζ0+ mentioned in the notation part. For
mappings r̂− : ζ0+ �→ ζ0 and r̂+ : ζ0+ �→ ζ1, the compositions
of mappings are r̂− ◦ Sk0

: ξk0+ �→ ζ0 and r̂+ ◦ Sk0
: ξk0+ �→

ζ1, respectively. Then, r̂−(Sk0
ξ(k0+1)+) = ζ1 is well defined

and satisfies r̂−(Sk0
ξ(k0+1)+) = r̂+(Sk0

ξk0+).
Now, we use r(xk0

, Sk0
ξk0+) for contraction analysis. Since

Sk0
ξk0+ is a subsequence of a stochastic process, we uti-

lize its conditional expectation E0[r(xk0
, Sk0

ξk0+)], and its
forward time-shift E0[r(x(k0+1), S(k0+1)ξ

(k0+1)+)|Fk0
] to de-

scribe conditions. In our analysis, to induces a distance function,
we require that the conditional expectation E0[r(xk0

, Sk0
ξk0+)]

is lower and upper bounded on a metric r̃(xk0
) > 0 depend-

ing on only xk0
. Note that even if E0[r(xk0

, Sk0
ξk0+)] is

bounded, r(xk0
, Sk0

ξk0+) can be nonpositive or infinite at some
(xk0

, Sk0
ξk0+) (with measure zero). In fact, in the converse

analysis proceeded later, we only show the boundedness of
E0[r(xk0

, Sk0
ξk0+)]. Therefore, the range of r is taken as
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R̄ = R ∪ {−∞,∞} for the sake of formality. Noting this, we
generalize Proposition 2.1 as follows.

Proposition 2.5: A scalar system (1) is UIES in the first mo-
ment if there exist c1, c2 > 0, λ ∈ (0, 1), r̃ : R → R of classC1,
and r : R× R

Z0+ → R̄ such that r̃(xk0
) > 0 and

c1r̃(xk0
) ≤ E0[r(xk0

, Sk0
ξk0+)] ≤ c2r̃(xk0

) (17a)

E0

[
E0[r(f(xk0

, ξk0
), Sk0+1ξ

(k0+1)+)|Fk0
]

(
∂f(xk0

, ξk0
)

∂x

)2
]
≤ λ2

E0[r(xk0
, Sk0

ξk0+)] (17b)

for all (k0, xk0
, ξ̂(k0−1)−) ∈ Z× R× Ξ̂(k0−1)−. �

Example 2.6: Before mentioning the sketch of the proof, we
consider understanding the condition (17) by applying it to a
Markov jump linear system xk+1 = a(i)xk in Example 2.4.
Since ξk0

(respectively, ξk0+1) only depends on ξk0−1 (respec-
tively, ξk0

), it follows that

E0[r(xk0
, Sk0

ξk0+)] = E[r(xk0
, Sk0

ξk0
)|ξk0−1 = i] =: r̂0,i

E0[r(f(xk0
, ξk0

), Sk0+1ξ
(k0+1)+)|Fk0

]

= E[r(a(j)xk0
, Sk0+1ξk0+1)|ξk0

= j] = r̂0,j .

Then, (17) reduces to r̂0,i > 0, i ∈ M, and

E[r̂0,ja
2(j)|ξk0−1 = i] ≤ λ2r̂0,i ∀i ∈ M.

Since the transition probability is given by πj,i, the above-
mentioned inequality is equivalent to (16). Therefore, using
r(xk0

, Sk0
ξk0+), we can handle a Markov jump system. �

Sketch of the proof of Proposition 2.5: The proof procedure
is similar to that of Proposition 2.1. It follows from (7) and (17b)
that

E0[E0[r(xk0+1, Sk0+1ξ
(k0+1)+)|Fk0

](δxk0+1)
2]

≤ λ2
E0[r(xk0

, Sk0
ξk0+)](δxk0

)2.

The time-shift k0 �→ k yields

E0[E0[r(xk+1, Sk+1ξ
(k+1)+)|Fk](δxk+1)

2|Fk−1]

≤ λ2
E0[r(xk, Skξ

k+)|Fk−1](δxk)
2 a.s.

Thus, by taking the conditional expectation E0[·] of both sides,
we have

E0[E0[r(xk+1, Sk+1ξ
(k+1)+)|Fk](δxk+1)

2]

≤ λ2
E0[E0[r(xk, Skξ

k+)|Fk−1](δxk)
2].

Recursively utilizing this inequality from k to k0 leads to

E0[E0[r(xk, Skξ
k+)|Fk−1](δxk)

2]

≤ λ2(k−k0)E0[r(xk0
, Sk0

ξk0+)](δxk0
)2.

From (17a), we have

E0[r̃(xk)(δxk)
2] ≤ c2

c1
λ2(k−k0)r̃(xk0

)(δxk0
)2.

The rest is similar to the proof of Proposition 2.1. �
Remark 2.7: In our analysis, the partial differentiability re-

quirement of f with respect to x can slightly be weakened. Let
D ⊂ Rbe a Lebesgure measurable set with the Lebesgue density
1. Also, let f : R× R → R be both continuous and continuously
differentiable with respect toxonD × R. Then, Propositions 2.1
and 2.5 can be generalized by replacing (∂f(xk0

, ξk0
)/∂x)2

with

∂f2
x(xk0

, ξk0
)

:= lim sup
v∈R,h→0+

(
f(xk0

+ vh, ξk0
)− f(xk0

, ξk0
)

h

)2

.

On D × R, we have ∂f2
x(xk0

, ξk0
) = (∂f(xk0

, ξk0
)/∂x)2.

Therefore, the difference is analysis onR \D with the Lebesgue
density 0. �

III. MAIN RESULTS

In this section, we develop stochastic contraction theory for
n-dimensional stochastic systems, which can be viewed as gen-
eralizations of the scalar case. First, we mention the considered
class of systems and define UIES in the pth moment. Then,
we derive UIES conditions. After that, we revisit the linear
stochastic case [41] and the nonlinear deterministic case [1],
[29] to show that our results contain results for these cases.

A. Incremental Stability in Moments

Let ξ := (ξk)k∈Z : Ω → (Rm)Z be a general stochastic pro-
cess. In the scalar case, f is assumed to be time invariant.
As a further generalization, we consider the time-varying case.
Namely, we consider a discrete-time nonlinear stochastic sys-
tem, described by

xk+1 = fk(xk, ξk), k ∈ Zk0+ (18)

where fk(x, η) and ∂fk(x, η)/∂x are continuous with re-
spect to x ∈ R

n at each (k, η) ∈ Z× R
m, and fk(x, ξk)

and ∂fk(x, ξk)/∂x are Fk-measurable at each (k, x) ∈ Z×
R

n. As mentioned in Remark 2.7 for the scalar case, fk
and ∂fk/∂x are allowed to be piecewise continuous, which
will be explained in Remark 3.5 later. The initial condi-
tion (k0, xk0

, ξ̂(k0−1)−) ∈ Z× R
n × Ξ̂(k0−1)− is deterministic,

where k0, xk0
, and ξ̂(k0−1)−, respectively, denote the initial

time, the initial state, and the initial condition of the stochastic
process ξ := (ξk)k∈Z : Ω → (Rm)Z, namely, ξ̂(k0−1)− is the
observation of an infinite past sequence up to k0 − 1 of ξ.

Recalling the distance function d in the notation part, we
extend the concept of UIES (3) in the pth moment to the
n-dimensional case. The difference from the scalar case is only
the dimensions of the variables (x′

k, x
′′
k) and ξk.

Definition 3.1: The system (18) is said to be UIES in the pth
moment (with respect to distance d) if there exist a > 0 and
λ ∈ (0, 1) such that

E0[d
p(x′

k, x
′′
k)] ≤ apλp(k−k0)dp(x′

k0
, x′′

k0
) ∀k ∈ Zk0+ (19)

for each (k0, (x
′
k0
, x′′

k0
), ξ̂(k0−1)−) ∈ Z× (Rn × R

n)×
Ξ̂(k0−1)−. �
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As mentioned in the scalar case, UIES in the pth moment is an
integrated concept of 1) ES in the pth moment (4) for stochastic
systems and 2) UIES (5) for contraction analysis of nonlinear
deterministic systems. On the other hand, our results provide
sufficient conditions even if (x′

k0
, x′′

k0
) is random being inde-

pendent of ξ because (19) is preserved by taking its conditional
expectation with respect to (x′

k0
, x′′

k0
) in such a case.

In the n-dimensional case, a Riemannian metric is a class C1

matrix-valued function P̃ : Rn → S
n×n
�0 . Let Γ(x′, x′′) denote

the collection of classC1 paths γ : [0, 1] → R
n such that γ(0) =

x′ and γ(1) = x′′. Then, the distance function induced by a
Riemannian metric P̃ (x) is

dP̃ (x
′, x′′) := inf

γ∈Γ(x′,x′′)

∫ 1

0

√
d�γ(s)

ds
P̃ (γ(s))

dγ(s)

ds
ds.

(20)

We study UIES in the pth moment with respect to this distance.
If P̃ is a constant matrix (that is symmetric and positive definite),
then this is a weighted Euclidean distance. Applying the Hopf–
Rinow theorem [48], [49], it is mentioned in [5] that for any given
ε > 0 and (x′, x′′) ∈ R

n × R
n, there exists γ∗ ∈ Γ(x′, x′′) such

that∫ 1

0

√
d�γ∗(s)

ds
P̃ (γ∗(s))

dγ∗(s)

ds
ds ≤ (1 + ε)dP̃ (x

′, x′′).

(21)

We use this path γ∗ for our analysis.

B. Incremental Stability Conditions

In this section, we present UIES conditions forn-dimensional
nonlinear stochastic systems. First, we state a condition with re-
spect to the Riemannian metric, which is a natural generalization
of Proposition 2.5 for the scalar system.

Theorem 3.2: A system (18) is UIES [with respect to dP̃
defined by (20)] in the first moment if there exist c1, c2 > 0,
λ ∈ (0, 1), P̃ : Rn → S

n×n
�0 of class C1, and P : Z× R

n ×
(Rm)Z0+ → R̄

n×n such that

c21P̃ (xk0
) � E0[P (k0, xk0

, Sk0
ξk0+)] � c22P̃ (xk0

) (22a)

E0

[
∂�fk0

(xk0
, ξk0

)

∂x

E0[P (k0 + 1, fk0
(xk0

, ξk0
), Sk0+1ξ

(k0+1)+)|Fk0
]

∂fk0
(xk0

, ξk0
)

∂x

]
� λ2

E0[P (k0, xk0
, Sk0

ξk0+)] (22b)

for all (k0, xk0
, ξ̂(k0−1)−) ∈ Z× R

n × Ξ̂(k0−1)−, where Sk is
the time-shift operator introduced in the notation part. �

Proof: The proof is provided in Appendix A. �
Next, we focus on the Euclidean distance, which corresponds

to specifying P̃ in Theorem 3.2 into the identity matrix. In this
case, it is possible to obtain a UIES condition for second moment
stability, stronger than first moment stability because we can
avoid to apply the Cauchy–Schwarz inequality in contrast to the
general Rimmanian metric case; for more details, see the proof

in Appendix B. Moreover, we have the converse proof, stated in
the following.

Theorem 3.3: A system (18) is UIES in the second moment
with respect to the Euclidean distance if and only if there ex-
ist c1, c2 > 0, λ ∈ (0, 1), andP : Z× R

n × (Rm)Z0+ → R̄
n×n

such that

c21In � E0[P (k0, xk0
, Sk0

ξk0+)] � c22In (22c)

and (22b) holds for all (k0, xk0
, ξ̂(k0−1)−) ∈ Z× R

n ×
Ξ̂(k0−1)−.

Proof: The proof is provided in Appendix B. �
In the converse proof, we show that the conditional expec-

tation E0[P (k0, xk0
, Sk0

ξk0+)] is lower and upper bounded as
in (22c). This holds even if an element of P is infinite at some
(k0, xk0

, Sk0
ξk0+) (with measure zero). Therefore, the range of

P is taken as R̄
n×n in Theorems 3.2 and 3.3 for the sake of

formality.
Main ideas of the proofs of Theorems 3.2 and 3.3 are similar

to the scalar case. Namely, by using the inequality (22b), we
study the stability of the prolongation of the system (18){

xk+1 = fk(xk, ξk)

δxk+1 = ∂fk(xk,ξk)
∂x δxk

k ∈ Zk0+. (23)

Then, we utilize (10) to connect analysis of the prolongation with
the time evolutions of a path and its partial derivative. Finally,
we take the integration of the obtained inequality with respect
to s as done in (15) to conclude UIES.

It is not always easy to verify the conditions in Theorems 3.2
and 3.3, since we need to deal with an infinite sequence of ran-
dom variables. These theorems are provided as a stepping stone
for developing stochastic contraction theory. Their usage is to
derive UIES conditions tailored to subclasses of the system (18)
by utilizing special structures of the subclasses. This is illustrated
in Section IV.

Remark 3.4: From the proofs of Theorems 3.2 and 3.3 in
Appendices A and B, one notices that a (nonuniform) incre-
mental exponential stability (IES) condition in the first or second
moment can readily be obtained by replacing c1, c2, λ, and P̃
with those depending onk0. By IES in the pth moment atk0 ∈ Z,
we mean that there exist a(k0) > 0 and λ(k0) ∈ (0, 1) such that

E0[d
p(x′

k, x
′′
k)]≤ap(k0)λ

p(k−k0)(k0)d
p(x′

k0
, x′′

k0
) ∀k ∈ Zk0+

for each ((x′
k0
, x′′

k0
), ξ̂(k0−1)−) ∈ (Rn × R

n)× Ξ̂(k0−1)−.
On the other hand, Theorems 3.2 and 3.3 can be generalized

to incremental stability analysis on a convex subset D ⊂ R
n

when fk : D × R
m → D, k ∈ Z, because D is a (robustly)

positively invariant set for such fk. �
Remark 3.5: Remark 2.7 for the partial differentiability of fk

in the scalar case can be generalized to the n-dimensional case.

C. Linear Stochastic Cases

In this section, we show that our results contain results for
linear stochastic systems [41]. In the linear case, the system (18)
becomes

xk+1 = A(ξk)xk, k ∈ Zk0+ (24)
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under the deterministic initial condition (k0, xk0
, ξ̂(k0−1)−) ∈

Z× R
n × Ξ̂(k0−1)−, whereA : Rm → R

n×n. Note that the sys-
tem (24) is general in the sense of that this covers the linear
system xk+1 = Ãkxk with random (Ãk)k∈Z : Ω → (Rn×n)Z

because another representation of Ãk is

Ãk =

⎡
⎢⎢⎣

ξk,1 · · · ξk,n
...

. . .
...

ξk,n(n−1) · · · ξk,n2

⎤
⎥⎥⎦ =: A(ξk).

A similar discussion holds in the nonlinear case. For instance, a
polynomial system with random coefficients can be represented
by (18). Since fk is time-varying, we can handle more wider
classes of systems.

In the linear case, ∂fk(xk, ξk)/∂x = A(ξk) is independent of
xk. Thus, P and P̃ in Theorems 3.2 and 3.3 can be chosen to be
independent of xk. Then, the conditions of these two theorems
become the same, and thus, we only apply Theorem 3.3. Next,
for the linear system (24), UIES in the pth moment reduces to ES
in the pth moment (4) as mentioned in the scalar case. Therefore,
applying Theorem 3.3 to the linear system (24) recovers [41, Th.
3]. In other words, our results can be viewed as natural extensions
of the result for linear stochastic systems to nonlinear stochastic
systems.

Corollary 3.6: A linear stochastic system (24) is ES in the
second moment (i.e., (4) for p = 2) if and only if there exist
c1, c2 > 0, λ ∈ (0, 1), and P : (Rm)Z0+ → R̄

n×n such that

c21In � E0[P (Sk0
ξk0+)] � c22In

E0

[
A�(ξk0

)E0[P (Sk0+1ξ
(k0+1)+)|Fk0

]A(ξk0
)− λ2P (Sk0

ξk0+)
]
� 0

for all (k0, ξ̂(k0−1)−) ∈ Z× Ξ̂(k0−1)−. �

D. Nonlinear Deterministic Cases

In this section, we apply our results to nonlinear deterministic
systems, described by

xk+1 = gk(xk), k ∈ Zk0+ (25)

under the initial condition (k0, xk0
) ∈ Z× R

n, where gk :
R

n → R
n is of class C1 for each k ∈ Z.

In the deterministic case, P in Theorems 3.2 and 3.3 can be
chosen to be independent of ξk as in the following corollaries.

Corollary 3.7: A nonlinear deterministic system is UIES (5)
[with respect to dP̃ defined by (20)] if there exist c1, c2 > 0, λ ∈
(0, 1), P̃ : Rn → S

n×n
�0 of class C1, and P : Z× R

n → S
n×n
�0

such that

c21P̃ (xk0
) � P (k0, xk0

) � c22P̃ (xk0
)

∂�gk0
(xk0

)

∂x
P (k0 + 1, gk0

(xk0
))
∂gk0

(xk0
)

∂x
� λ2P (k0, xk0

)

(26)

for all (k0, xk0
) ∈ Z× R

n. �
Corollary 3.8: A nonlinear deterministic system is UIES

with respect to the Euclidean distance if and only if there
exist c1, c2 > 0, λ ∈ (0, 1), and P : Z× R

n → S
n×n
�0 such that

c21In � P (k0, xk0
) � c22In and (26) hold for all (k0, xk0

) ∈
Z× R

n. �

Corollary 3.8 is equivalent to [29, Th. 15]. Corollary 3.7
is a new result of this article, which can be understood as a
discrete-time version of the UIES condition for continuous-time
systems; see, e.g., [5, Th. 1]. Therefore, our results can be viewed
as natural extensions of the results for nonlinear deterministic
systems to stochastic systems.

IV. APPLICATIONS

In the previous section, we have presented UIES conditions
for general stochastic systems (18). In this section, we illustrate
the utility of the obtained conditions by tailoring them to specific
classes of processes. In particular, we study cases where ξ
follows temporally independent processes or Markov processes.
In most of the literature of stochastic control, e.g., [35], [36],
[42], [44], stability conditions have been separately developed
for each special class of processes. By virtue of studying the
general stochastic process ξ, conditions for each special case
are provided simply by restricting the class of ξ as in [41]
about linear systems. Due to the lack of contraction analysis for
stochastic systems, the obtained conditions in each special case
are new contribution of this article on their own. In this section,
we only tailor Theorem 3.3, but similar results corresponding to
Theorem 3.2 can readily be obtained.

A. Temporally Independent Processes

In this section, we consider ξ satisfying the following assump-
tion. Such ξ is called a temporally independent process.

Assumption 4.1: For ξ = (ξk)k∈Z, the random vectors ξk, k ∈
Z, are independently distributed. �

Under Assumption 4.1, conditions (22b) and (22c) in Theo-
rem 3.3 are independent of ξ̂(k0−1)− for each k0 ∈ Z. Hence, the
conditional expectation can be replaced with the (standard) ex-
pectation. Then, we have the following corollary of Theorem 3.3
by defining:

P̂ (k0, xk0
) := E[P (k0, xk0

, Sk0
ξk0+)], (k0, xk0

) ∈ Z× R
n.

(27)

Corollary 4.2: Suppose that Assumption 4.1 holds. A sys-
tem (18) is UIES in the second moment with respect to the Eu-
clidean distance if and only if there exist c1, c2 > 0, λ ∈ (0, 1),
and P̂ : Z× R

n → S
n×n
�0 such that

c21In � P̂ (k0, xk0
) � c22In

E

[
∂�fk0

(xk0
, ξk0

)

∂x
P̂ (k0 + 1, fk0

(xk0
, ξk0

))

∂fk0
(xk0

, ξk0
)

∂x

]
� λ2P̂ (k0, xk0

)

for all (k0, xk0
) ∈ Z× R

n. �
Proof: Substituting (27) into (22c) yields the first inequalities.

Next, substituting (27) into (22b) leads to

E0

[
∂�fk0

(xk0
, ξk0

)

∂x
E0[P̂ (k0 + 1, fk0

(xk0
, ξk0

))|Fk0
]

∂fk0
(xk0

, ξk0
)

∂x

]
� λ2P̂ (k0, xk0

).
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Since E0[·|Fk0
] is the conditional expectation given Fk0

, it
follows that

E0[P̂ (k0 + 1, fk0
(xk0

, ξk0
))|Fk0

] = P̂ (k0 + 1, fk0
(xk0

, ξk0
)).

Therefore, we obtain the last inequality. �
We further consider a stationary case, i.e., ξk and fk are

independent of k.
Assumption 4.3: The stochastic process ξ is stationary (in the

strict sense), i.e., none of the characteristics of ξk changes with
time k. Moreover, none of fk changes with time k, i.e., fk = f̂0
for all k ∈ Z. �

Note that the stochastic process satisfying Assumptions 4.1
and 4.3 is an i.i.d. process. Under Assumptions 4.1 and 4.3, P̂
in (27) can be chosen as a k0-independent function. Namely, we
have the following corollary without the proof.

Corollary 4.4: Suppose that Assumptions 4.1 and 4.3 hold.
A system (18) is UIES in the second moment with respect to
the Euclidean distance if and only if there exist c1, c2 > 0, λ ∈
(0, 1), and P̂0 : Rn → S

n×n
�0 such that

c21In � P̂0(x0) � c22In

E

[
∂�f̂0(x0, ξ0)

∂x
P̂0(f̂0(x0, ξ0))

∂f̂0(x0, ξ0)

∂x

]
� λ2P̂0(x0)

for all x0 ∈ R
n. �

Remark 4.5: In Corollary 4.4, we consider the stationary case.
As a more general case, Corollary 4.2 can be specialized to
the periodic case where there exists a positive integer N such
that fκN+i = fκ+i, i = 0, 1, . . . , N − 1, κ ∈ Z, and none of the
characteristics of ξκN+i, i = 0, 1, . . . , N − 1 changes with κ ∈
Z. The generalized condition is described by using periodic P̂i,
i = 0, 1, . . . , N − 1; for more details, see a similar discussion
in the linear case [41, Corollary 3]. �

Example 4.6: We apply Corollary 4.4 to a linear system (24)
with i.i.d. ξ. It is ES in the second moment if and only if there
exist λ ∈ (0, 1) and P̂0 ∈ S

n×n
�0 such that E[A�(ξ0)P̂0A(ξ0)] �

λ2P̂0. This condition is found in [43, Th. 2]. �

B. General Markov Processes

In this section, we consider the case where ξ is a general
Markov process.

Assumption 4.7: For each Θj ⊂ R
m, every j ∈ Z(i+1)+

and i ∈ Z, it follows that

P(ξj ∈ Θj |ξi, ξi−1, . . . ) = P(ξj ∈ Θj |ξi)
where P(·|·) denotes the conditional probability. �

Assumption 4.7 implies that the conditional expectation E0

can be simplified as

E0[·] = E[·|ξk0−1 = ξ̂k0−1] (28a)

E0[·|Fk] = E[·|ξk], k ∈ Zk0+ (28b)

for each (k0, ξ̂k0−1) ∈ Z×Θk0−1, where note that Θk0−1 is the
support of ξk0−1. Then, for P in Theorem 3.3, there exists P̂ :
Z× R

n × R
m → S

n×n
�0 such that

E0[P (k0, xk0
, Sk0

ξk0+)]

= E[P (k0, xk0
, Sk0

ξk0+)|ξk0−1 = ξ̂k0−1]

= P̂ (k0, xk0
, ξ̂k0−1) (29)

for each (k0, xk0
, ξ̂k0−1) ∈ Z× R

n ×Θk0−1. Now, we have the
following corollary of Theorem 3.3 for Markov processes.

Corollary 4.8: Suppose that Assumption 4.7 holds. A sys-
tem (18) is UIES in the second moment with respect to the Eu-
clidean distance if and only if there exist c1, c2 > 0, λ ∈ (0, 1),
and P̂ : Z× R

n × R
m → S

n×n
�0 such that

c21In � P̂ (k0, xk0
, ξ̂k0−1) � c22In

E

[
∂�fk0

(xk0
, ξk0

)

∂x
P̂ (k0 + 1, fk0

(xk0
, ξk0

), ξk0
)

∂fk0
(xk0

, ξk0
)

∂x

∣∣∣∣ξk0−1 = ξ̂k0−1

]
� λ2P̂ (k0, xk0

, ξ̂k0−1)

for all (k0, xk0
, ξ̂k0−1) ∈ Z× R

n ×Θk0−1. �
Proof: Substituting (29) into (22c) yields the first inequalities.

Next, substituting (29) into (22b) leads to

E0

[
∂�fk0

(xk0
, ξk0

)

∂x
E0[P̂ (k0 + 1, fk0

(xk0
, ξk0

), ξk0
)|Fk0

]

∂fk0
(xk0

, ξk0
)

∂x

]
� λ2P̂ (k0, xk0

, ξ̂k0−1). (30)

Since E0[·|Fk0
] is the conditional expectation given Fk0

, it
follows that

E0[P̂ (k0 + 1, fk0
(xk0

, ξk0
), ξk0

)|Fk0
]

= P̂ (k0 + 1, fk0
(xk0

, ξk0
), ξk0

).

Substituting this into (30) and applying (28a) leads to the last
inequality. �

In the stationary case, again P̂ can be chosen as a k0-
independent function. Namely, we have the following corollary
without the proof.

Corollary 4.9: Suppose that Assumptions 4.3 and 4.7 hold.
A system (18) is UIES in the second moment with respect to
the Euclidean distance if and only if there exist c1, c2 > 0, λ ∈
(0, 1), and P̂0 : Rn × R

m → S
n×n
�0 such that

c21In � P̂0(x0, ξ̂−1) � c22In

E

[
∂�f̂0(x0, ξ0)

∂x
P̂0(f̂0(x0, ξ0), ξ0)

∂f̂0(x0, ξ0)

∂x

∣∣∣∣ξ−1 = ξ̂−1

]

� λ2P̂0(x0, ξ̂−1)

for all (x0, ξ̂−1) ∈ R
n ×Θ−1. �

Remark 4.10: Again Corollary 4.8 can be specialized to the
periodic case by using periodic P̂i, i = 0, 1, . . . , N − 1. �



990 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 2, FEBRUARY 2024

C. Finite-Mode Markov Chains

In this section, we further consider the case where ξ is a
finite-mode Markov chain, which is nonstationary (i.e., nonho-
mogeneous) unless the transition probability is time invariant.

Assumption 4.11: The process ξ is given by a finite-mode
Markov chain defined on the mode set M := {1, . . .,M}, i.e.,
ξk can take a value only in M at each k ∈ Z. �

The process ξ satisfying this assumption is a special case of the
general Markov process in Assumption 4.7, and the correspond-
ing system (18) can be seen as a stochastic switched nonlinear
system with the switching signal ξ given by a finite-mode
Markov chain. Such a system is nothing but a standard Markov
jump nonlinear system, e.g., [35], [36]; also see, e.g., [34] for
Markov jump linear systems. This exemplifies the generality of
the system class dealt with in this article.

Let us denote the transition probability from mode i to j by

πk
j,i := P(ξk+1 = j|ξk = i) ≥ 0

for each k ∈ Z. By the definition, it satisfies∑
j∈M

πk
j,i = 1, k ∈ Z

for all i ∈ M. Then, by using the mode dependent function P̂i,
i ∈ M, Corollaries 4.8 and 4.9 are further simplified as stated
in the following, where the latter is about the stationary (i.e.,
homogeneous) Markov chain.

Corollary 4.12: Suppose that Assumption 4.11 holds. A sys-
tem (18) is UIES in the second moment with respect to the Eu-
clidean distance if and only if there exist c1, c2 > 0, λ ∈ (0, 1),
and P̂i : Z× R

n → S
n×n
�0 , i ∈ M, such that

c21In � P̂i(k0, xk0
) � c22In∑

j∈M
πk0
j,i

∂�fk0
(xk0

, j)

∂x
P̂j(k0 + 1, fk0

(xk0
, j))

∂fk0
(xk0

, j)

∂x
� λ2P̂i(k0, xk0

)

for all (k0, xk0
, i) ∈ Z× R

n ×M. �
Corollary 4.13: Suppose that Assumptions 4.3 and 4.11 hold.

A system (18) is UIES in the second moment with respect to
the Euclidean distance if and only if there exist c1, c2 > 0, λ ∈
(0, 1), and P̂0,i : R

n → S
n×n
�0 , i ∈ M, such that

c21In � P̂0,i(x0) � c22In∑
j∈M

πj,i
∂�f̂0(x0, j)

∂x
P̂0,j(f̂0(x0, j))

∂f̂0(x0, j)

∂x

� λ2P̂0,i(x0) (31)

for all (x0, i) ∈ R
n ×M. �

Remark 4.14: Again Corollary 4.12 can be specialized to the
periodic case by using periodic P̂k,i, k = 0, 1, . . . , N − 1. �

Example 4.15: As a generalization of Examples 2.4 and 2.6,
we apply Corollary 4.13 to a linear system (24) when ξ is given
by a finite-mode Markov chain. This system can be represented

by xk+1 = A(j)xk, and thus, (31) becomes P̂0,i � 0 and∑
j∈M

πj,iA
�(j)P̂0,jA(j) � λ2P̂0,i ∀i ∈ M.

This is equivalent to [33, Eq. (3.15)]. By restricting classes of
the processes and systems, we finally establish the connection
between our results and the well-known condition for Markov
jump linear systems. �

D. Observer Design for Markov Jump Systems

In this section, we apply Corollary 4.13 to the observer design
of Markov jump systems, which is further utilized for the state
estimation of an epidemic model.

Consider the following Markov jump system:{
xk+1 = g(xk, i), i ∈ M
yk = Cxk

P(ξk+1 = j|ξk = i) = πj,i (32)

where the initial state at initial time k0 = 0 is x0 ∈ R
n. As

observer dynamics, we consider the following system:

x̂k+1 = g(x̂k, i) +Hi(Cx̂k − y) (33)

where the initial state at initial time k0 = 0 is x̂0 ∈ R
n. Note that

if x̂0 = x0, then x̂k = xk for all k ∈ Z0+. In other words, the set
of solutions x̂k = x̂k(x̂0, y, i) to (33) contains a solution xk =
xk(x0, i) to (32) as a special case where x̂0 = x0. Therefore,
the system (33) becomes an observer of (32) if (33) is IES in the
second moment with respect to the Euclidean distance uniformly
in x, i.e., if there exist a, λ > 0 such that

E[|x̂k − x̂′
k|2] ≤ a2λ2k|x̂0 − x̂′

0|2 ∀k ∈ Z0+

for each ((x̂0, x̂
′
0), x0) ∈ (Rn × R

n)× R
n. In fact, for x̂′

0 = x0,
IES implies that E[|x̂k − xk|2] → 0 as t → ∞. Note that, in
this discussion, the system (32) is not assumed to be IES. IES
uniformly in x can be verified by applying Corollary 4.13. In
general, Corollary 4.13 consists of an infinite family of linear
matrix inequalities (LMIs), which can be relaxed to a finite one
if ∂g(x̂, i)/∂x, i ∈ M, is bounded. If ∂g(x̂, i)/∂x is bounded,
there exist A(�)

i ∈ R
n×n and θ

(�)
i (x̂) ≥ 0, i ∈ M, � = 1, . . . , L,

such that

∂g(x̂, i)

∂x
=

L∑
�=1

θ
(�)
i (x̂)A

(�)
i and

L∑
�=1

θ
(�)
i (x̂) = 1 (34)

for each x̂ ∈ R
n and every i ∈ M. Based on this, we have the

following corollary without the proof.
Corollary 4.16: There exist Hi, i ∈ M such that a sys-

tem (33) with bounded ∂g0(x̂, i)/∂x, i ∈ M, is IES in the
second moment with respect to the Euclidean distance uniformly
in x if there exist λ ∈ (0, 1), P̂0,i ∈ S

n×n
�0 , and Ĥi, i ∈ M, such

that⎡
⎢⎢⎢⎢⎣

λ2P̂0,i ∗ ∗ ∗
√
π1,i(P̂0,1A

(�1)
1 + Ĥ1 C) P̂0,1 ∗ ∗
... 0

. . . ∗
√
πm,i(P̂0,mA

(�m)
m + ĤmC) 0 0 P̂0,m

⎤
⎥⎥⎥⎥⎦ � 0 (35)
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for all i ∈ M and �1, . . . , �m ∈ {1, . . . , L}. Moreover, such Hi,
i ∈ M, can be designed as Hi = P̂−1

0,i Ĥi. �
In Corollary 4.16, we specify P̂0,i, i ∈ M, in constants in

order to obtain an LMI condition. This approach can be applied
other stochastic processes and may be generalized to polynomial
P̂ (k0, xk0

, ξ̂k0−1) with respect to xk0
and ξ̂k0−1 based on the

sum-of-squares. In the polynomial case, E0[P̂ (k0, xk0
, ξ̂k0−1)]

is not a bounded function of xk0
, and thus we need to apply

Theorem 3.2 instead of Theorem 3.3.
Example 4.17: We consider the observer design of a network

susceptible-infected-susceptible (SIS) model with two popula-
tions. Let β > 0 and γ > 0 be the infection rate and recovery
rate, respectively. Then, population l’s fraction of infected indi-
viduals xl,k is described by⎧⎨
⎩
x1,k+1 = x1,k − γx1,k + βξk(1− x1,k)x2,k

x2,k+1 = x2,k − γx2,k + βξk(1− x2,k)x1,k

yk = x1,k

k ∈ Z0+

where ξk = i ∈ {0, 1} represents an edge-Markovian dynamic
graph [50], which represents the existence of the contact between
the populations. Since xl,k = 0 and xl,k = 1, respectively, mean
disease free and all infected, D = [0, 1]2 is positively invariant
in practice.

We consider a scenario where population 1 estimates the
fraction of infected individuals in population 2, i.e., x2,k. This is
an observer design problem, and we can apply Corollary 4.16.
OnD, there exist θ(�)i (x̂) ≥ 0, i ∈ {0, 1}, � = 1, . . . , 4, such that
(34) holds for

A
(�)
1 = A := (1− γ)I2, � = 1, . . . , 4

A
(1)
2 = A+ αβ

[
0 1

1 0

]
, A

(2)
2 = A+ αβ

[
−1 1

0 0

]

A
(3)
2 = A+ αβ

[
0 0

1 −1

]
, A

(4)
2 = A+ αβ

[
−1 0

0 −1

]
.

Then, (35) becomes⎡
⎢⎣ λ2P̂0,i ∗ ∗

√
π1,i(P̂0,1A+ Ĥ1 C) P̂0,1 ∗

√
π2,i(P̂0,2A

(�)
2 + Ĥ2 C) 0 P̂0,2

⎤
⎥⎦ � 0

i = 1, 2, � = 1, . . . , 4 (36)

where C =
[
1 0

]
. Let α = 1, β = 0.01, γ = 0.001, π1,1 =

1/3, π2,1 = 2/3, π1,2 = 1/4, π2,2 = 3/4, and λ =
√
0.9. Using

a set of solutions to (36) with P̂0,i � 0, i = 1, 2, an observer gain
at each mode can be designed as

H1 = P̂−1
0,1Ĥ1 =

[
−0.940

0

]
, H2 = P̂−1

0,2Ĥ2 =

[
2.02

1.29

]
.

V. CONCLUSION

In this article, we have studied moment UIES for discrete-time
nonlinear stochastic systems in the contraction framework. In
particular, we have presented a sufficient condition for UIES
in the first moment with respect to the Riemannian metric and

a necessary and sufficient condition for UIES in the second
moment with respect to the Euclidean distance. Then, the second
moment UIES condition has been tailored to i.i.d. processes
and Markov processes as specialized applications. The proposed
approach can also be applied to hidden Markov models. Tai-
loring the proposed UIES conditions to different subclasses of
stochastic systems is included in future work.

As mentioned in this article, our results can be understood
as a generalization of the results for linear stochastic systems.
The results of the linear case have been applied to networked
control systems with randomly time-varying communication
delays [51]. Furthermore, their practical usefulness has already
been validated by remote control experiments of actual vehi-
cles [52]. Due to the linearity assumption, the vehicle velocities
have been assumed to be constants. Applying the results of this
article, we are interested in remote control experiments of actual
vehicles including their velocity control.

From theoretical viewpoints, other possible research direc-
tions are to deal with random initial conditions and to study
incremental versions of different stability properties, such as
almost sure convergence, stochastic convergence, convergence
in law, and recurrence; a Lyapunov framework for recurrence
analysis is referred to as Foster–Lyapunov analysis [53], [54].
The proposed framework can be expected as a first step for
enlarging applications of contraction theory to various problems
involving randomness.

APPENDIX A
PROOF OF THEOREM 3.2

Before providing the proof, we proceed with auxiliary
analysis for the prolonged system (23). To emphasize that
(xk)k∈Zk0+

: Ω → (Rn)Zk0+ is a stochastic process under the

initial condition (k0, xk0
, ξ̂(k0−1)−) ∈ Z× R

n × Ξ̂(k0−1)−, this
is also denoted by (φk(ξ

(k−1)−; k0, xk0
, ξ̂(k0−1)−))k∈Zk0+

or
simply (φk(ξ

(k−1)−))k∈Zk0+
. Namely, it follows that

xk = φk(ξ
(k−1)−) (37)

φk+1(ξ
k−) = fk(φk(ξ

(k−1)−), ξk), k ∈ Zk0+ (38)

for each (k0, xk0
, ξ̂(k0−1)−) ∈ Z×R

n×Ξ̂(k0−1)−, where φk0
=

xk0
.

Then, the solution to the variational system can be described
as

δxk = Φk(ξ
(k−1)−; k0, xk0

, ξ̂(k0−1)−)δxk0
, k ∈ Zk0+ (39)

or simply δxk = Φk(ξ
(k−1)−)δxk0

, k ∈ Zk0+, for each (k0,

(xk0
, δxk0

), ξ̂(k0−1)−) ∈ Z× (Rn × R
n)× Ξ̂(k0−1)−, where

using the solution φk(ξ
(k−1)−) to the system (18), Φk is defined

and computed by

Φk0
:=

∂φk0

∂xk0

= In (40)

Φk(ξ
(k−1)−; k0, xk0

, ξ̂(k0−1)−)

:=
∂fk−1(φk−1(ξ

(k−2)−), ξk−1)

∂φk−1
· · ·
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∂fk0+1(φk0+1(ξk0
), ξk0+1)

∂φk0+1

∂fk0
(φk0

, ξk0
)

∂φk0

∂φk0

∂xk0

=
∂φk(ξ

(k−1)−; k0, xk0
, ξ̂(k0−1)−)

∂xk0

, k ∈ Z(k0+1)+ (41)

where φk0
= xk0

, (38), and the chain rule is used.
Remark 1.1: Note that φk, k ∈ Zk0+, is a composition

function of fi, i = k0, . . . , k − 1. From the assumption for
fk, both φk(ξ

(k−1)−) and δxk = Φk(ξ
(k−1)−)δxk0

are Fk−1-
measurable functions for each (k0, (xk0

, δxk0
), ξ̂(k0−1)−) ∈

Z× (Rn × R
n)× Ξ̂(k0−1)−. �

Remark 1.2: The notations φk(ξ
(k−1)−; k0, xk0

, ξ̂(k0−1)−)

and Φk(ξ
(k−1)−; k0, xk0

, ξ̂(k0−1)−) (or φk(ξ
(k−1)−) and

Φk(ξ
(k−1)−) in shorthand) are used to emphasize that

they are stochastic processes. When they are considered
as mappings φk : Rn × (Rm)Z[k0,k−1] → R

n and Φk : Rn ×
(Rm)Z[k0,k−1] → R

n×n, the notations φk(xk0
, η(k−1)−; k0)

and Φk(xk0
, η(k−1)−; k0) with η (or φk and Φk in shorthand)

are used, respectively. Note that as the mappings φk and Φk

satisfy the counterparts of (38), (39), and (41), i.e.,

φk+1(xk0
, ηk−; k0) = fk(φk(xk0

, η(k−1)−; k0), ηk) (42)

δxk = Φk(xk0
, η(k−1)−; k0)δxk0

, k ∈ Zk0+ (43)

Φk(xk0
, η(k−1)−; k0) =

∂φk(xk0
, η(k−1)−; k0)

∂xk0

k ∈ Z(k0+1)+ (44)

for each (k0, (xk0
, δxk0

), ηk−) ∈ Z× (Rn × R
n)×

(Rm)Z[k0,k] , respectively. �
Now, we are ready to prove Theorem 3.2.
Proof: (Step 1) The quadratic forms of both sides in (22a)

with respect to (the deterministic) δxk0
∈ R

n satisfy

c21δx
�
k0
P̃ (xk0

)δxk0
≤ δx�

k0
E0[P (k0, xk0

, Sk0
ξk0+)]δxk0

≤ c22δx
�
k0
P̃ (xk0

)δxk0
(45)

for each (k0,(xk0
,δxk0

),ξ̂(k0−1)−)∈Z×(Rn×R
n)×Ξ̂(k0−1)−.

Since (k0, (xk0
, δxk0

), ξ̂(k0−1)−) is arbitrary in (45), and both
φk(ξ

(k−1)−) and δxk = Φk(ξ
(k−1)−)δxk0

areFk−1-measurable
as mentioned in Remark 1.1, the time-shift k0 �→ k, k ∈ Zk0+,
of the first inequality yields

c21δx
�
k P̃ (φk(ξ

(k−1)−))δxk

≤ δx�
kE0[P (k, φk(ξ

(k−1)−), Skξ
k+)|Fk−1]δxk a.s.

∀k ∈ Zk0+

for each (k0,(xk0
,δxk0

),ξ̂(k0−1)−)∈Z×(Rn×R
n)×Ξ̂(k0−1)−.

Taking the conditional expectations E0[·] of both sides leads to

c21E0[δx
�
k P̃ (φk(ξ

(k−1)−))δxk]

≤ E0[δx
�
kE0[P (k, φk(ξ

(k−1)−), Skξ
k+)|Fk−1]δxk]

∀k ∈ Zk0+ (46)

for each (k0,(xk0
,δxk0

),ξ̂(k0−1)−)∈Z×(Rn×R
n)×Ξ̂(k0−1)−.

(Step 2) The quadratic forms of both sides in (22b) with
respect to (the deterministic) δxk0

∈ R
n satisfy

E0

[
δx�

k0

∂�fk0
(xk0

, ξk0
)

∂xk0

E0[P (k0 + 1, fk0
(xk0

, ξk0
), Sk0+1ξ

(k0+1)+)|Fk0
]

∂fk0
(xk0

, ξk0
)

∂xk0

δxk0

]

≤ λ2δx�
k0
E0[P (k0, xk0

, Sk0
ξk0+)]δxk0

for each (k0,(xk0
,δxk0

),ξ̂(k0−1)−)∈Z×(Rn×R
n)×Ξ̂(k0−1)−.

The time-shift k0 �→ k, k ∈ Zk0+, yields

E0

[
δx�

k

∂�fk(φk(ξ
(k−1)−), ξk)

∂φk

E0[P (k + 1, fk(φk(ξ
(k−1)−), ξk), Sk+1ξ

(k+1)+)|Fk]

∂fk(φk(ξ
(k−1)−), ξk)

∂φk
δxk

∣∣∣∣∣Fk−1

]

≤ λ2δx�
kE0[P (k, φk(ξ

(k−1)−), Skξ
k+)|Fk−1]δxk a.s.

∀k ∈ Zk0+

or equivalently, from (23) and (38),

E0[δx
�
k+1E0[P (k + 1, φk+1(ξ

k−), Sk+1ξ
(k+1)+)|Fk]

δxk+1|Fk−1]

≤ λ2δx�
kE0[P (k, φk(ξ

(k−1)−), Skξ
k+)|Fk−1]δxk a.s.

∀k ∈ Zk0+

for each (k0,(xk0
,δxk0

),ξ̂(k0−1)−)∈Z×(Rn×R
n)×Ξ̂(k0−1)−.

Recall that (Fk)k∈Zk0+
is a filtration on (Ω,F ,P) for

each ξ̂(k0−1)− ∈ Ξ̂(k0−1)−. Then, taking the conditional expecta-
tionsE0[·] of both sides of the abovementioned inequality yields

E0[δx
�
k+1E0[P (k + 1, φk+1(ξ

k−), Sk+1ξ
(k+1)+)|Fk]δxk+1]

≤ λ2
E0[δx

�
kE0[P (k, φk(ξ

(k−1)−), Skξ
k+)|Fk−1]δxk]

∀k ∈ Zk0+

for each (k0, (xk0
, δxk0

), ξ̂(k0−1)−) ∈ Z× (Rn × R
n)×

Ξ̂(k0−1)−. A recursive use of this from k to k0 leads to

E0[δx
�
kE0[P (k, φk(ξ

(k−1)−), Skξ
k+)|Fk−1]δxk]

≤ λ2(k−k0)δx�
k0
E0[P (k0, xk0

, Sk0
ξk0+)]δxk0

∀k ∈ Zk0+

(47)

for each (k0, (xk0
, δxk0

), ξ̂(k0−1)−) ∈ Z× (Rn × R
n)×

Ξ̂(k0−1)−.
In summary, the second inequality of (45)–(47) leads to

E0[δx
�
k P̃ (φk(ξ

(k−1)−))δxk]
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≤ c22
c21

λ2(k−k0)δx�
k0
P̃ (xk0

)δxk0
∀k ∈ Zk0+ (48)

for each (k0,(xk0
,δxk0

),ξ̂(k0−1)−)∈Z×(Rn×R
n)×Ξ̂(k0−1)−.

Taking the square roots of both sides and applying the Cauchy–
Schwarz inequality [47, Corollary 3.1.12] (with P(Ω) = 1) to
the left-hand side yield

E0

[√
δx�

k P̃ (φk(ξ(k−1)−))δxk

]

≤ c2
c1

λk−k0

√
δx�

k0
P̃ (xk0

)δxk0
∀k ∈ Zk0+ (49)

for each (k0,(xk0
,δxk0

),ξ̂(k0−1)−)∈Z×(Rn×R
n)×Ξ̂(k0−1)−.

(Step 3) Here, we consider φk and Φk as the map-
pings φk(xk0

, η(k−1)−; k0) and Φk(xk0
, η(k−1)−; k0); recall

Remark 1.2. For each pair (x′
k0
, x′′

k0
) ∈ R

n × R
n, let γ∗ ∈

Γ(x′
k0
, x′′

k0
) be the geodesic with respect to P̃ , i.e., a path

satisfying (21); note that γ∗ is independent of k0 and η(k−1)−.
Let (xk0

, δxk0
) = (γ∗(s), dγ∗(s)/ds), s ∈ [0, 1], be the initial

states of φk(xk0
, η(k−1)−; k0) and Φk(xk0

, η(k−1)−; k0). Then,
it follows from (42) and the chain rule that

∂φk+1(γ
∗(s), ηk−; k0)

∂s

=
∂fk(φk(γ

∗(s), η(k−1)−; k0), ηk)

∂s

=
∂fk(φk(γ

∗(s), η(k−1)−; k0), ηk)

∂φk

∂φk(γ
∗(s), η(k−1)−; k0)

∂s

∀k ∈ Zk0+ (50)

for each (k0,(x
′
k0
,x′′

k0
),ηk−)∈Z×(Rn×R

n)×(Rm)Z[k0,k] and
every s ∈ [0, 1]. This implies that ∂φk(γ

∗(s), η(k−1)−; k0)/∂s
satisfies (44) for (xk0

, δxk0
) = (γ∗(s), dγ∗(s)/ds), s ∈ [0, 1].

In this case, (43) becomes

∂φk(γ
∗(s), η(k−1)−; k0)

∂s

= Φk(γ
∗(s), η(k−1)−; k0)

dγ∗(s)

ds
∀k ∈ Zk0+ (51)

for each (k0,(x
′
k0
,x′′

k0
),η(k−1)−)∈Z×(Rn×R

n)×(Rm)Z[k0,k−1]

and every s ∈ [0, 1].
(Step 4) Now, we consider stochastic processes. The equal-

ity (50) implies that ∂φk(ξ
(k−1)−; k0, γ

∗(s), ξ̂(k0−1)−)/∂s, k ∈
Zk0+, is a solution to the variational system (23) and satisfies
the counterpart of (51), i.e.,

∂φk(ξ
(k−1)−; k0, γ

∗(s), ξ̂(k0−1)−)

∂s

= Φk(ξ
(k−1)−; k0, γ

∗(s), ξ̂(k0−1)−)
dγ∗(s)

ds
∀k ∈ Zk0+

(52)

under the initial state (xk0
, δxk0

) = (γ∗(s), dγ∗(s)/ds) for
each (k0, (x

′
k0
, x′′

k0
), ξ̂(k0−1)−) ∈ Z× (Rn × R

n)× Ξ̂(k0−1)−

and every s ∈ [0, 1].

Substituting (xk0
, δxk0

) = (γ∗(s), dγ∗(s)/ds), s ∈ [0, 1],
into (49) and applying (52) lead to

E0

[(
d�γ∗(s)

ds
Φ�

k (ξ
(k−1)−)

P̃ (φk(ξ
(k−1)−))Φk(ξ

(k−1)−)
dγ∗(s)

ds

)1/2
]

≤ c2
c1

λk−k0

√
d�γ∗(s)

ds
P̃ (γ∗(s))

dγ∗(s)

ds
∀k ∈ Zk0+ (53)

for each (k0,(x
′
k0
,x′′

k0
),ξ̂(k0−1)−)∈Z×(Rn×R

n)×Ξ̂(k0−1)−

and every s ∈ [0, 1], where in the left-hand side, the argu-
ment (k0, γ

∗(s), ξ̂(k0−1)−) is dropped from φk(ξ
(k−1)−) and

Φk(ξ
(k−1)−).

(Step 5) We consider integrating both sides of (53) with
respect to s in [0, 1]. In (20) and (21), the Riemann integrals are
used. For the sake of formality, they need to be replaced with the
Lebesgue integrals. To this end, we introduce a measurable space
corresponding to s. Let (R,B(R), μ) be the measurable space,
where μ is the Lebesgue measure. Note that both (R,B(R), μ)
and (Ω,F ,P) are complete and σ-finite. Then, the product mea-
surable space naturally induced by the Cartesian productR× Ω,
denoted by (R× Ω,L, λ), is complete andσ-finite [47, Th. 5.1.2
and Remark 5.1.2].

To take the Lebesgue integrals for (53), we introduce the
following functions:

(γ(s), ∂γ(s)) :=

{
(γ∗(s), dγ∗(s)/ds), s ∈ [0, 1]

(0, 0), s ∈ R \ [0, 1].
(54)

Since γ∗ is of class C1 on [0,1], (γ, ∂γ) is piecewise contin-
uous on R. In (53), (γ∗(s), dγ∗(s)/ds) can be replaced with
(γ(s), ∂γ(s)), and the corresponding inequality holds for all s ∈
R instead of s ∈ [0, 1]. That is, we have

E0

[(
∂γ

�
(s)Φ�

k (ξ
(k−1)−)

P̃ (φk(ξ
(k−1)−))Φk(ξ

(k−1)−)∂γ(s)
)1/2

]

≤ c2
c1

λk−k0

√
∂γ

�
(s)P̃ (γ(s))∂γ(s) ∀k ∈ Zk0+ (55)

for each (k0,(x
′
k0
,x′′

k0
),ξ̂(k0−1)−)∈Z×(Rn×R

n)×Ξ̂(k0−1)−

and every s ∈ R, where in the left-hand side, the argu-
ment (k0, γ(s), ξ̂

(k0−1)−) is dropped from φk(ξ
(k−1)−) and

Φk(ξ
(k−1)−).

Now, we consider the left-hand side of (55). A
piecewise continuous function is measurable, and the
composition of measurable functions is again measur-
able [47, Prop. 2.1.1]. Then, according to Remark 1.1
and the continuity of fk(x, η) and ∂fk(x, η)/∂x with
respect to x ∈ R

n at each (k, η) ∈ Z× R
m, the function

(∂γ
�
(s)Φ�

k (ξ
(k−1)−)P̃ (φk(ξ

(k−1)−))Φk(ξ
(k−1)−)∂γ(s))1/2,

k ∈ Zk0+, is L-measurable at each (k0, (xk0
, x′

k0
)) ∈

Z× (Rn × R
n).
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Taking the μ-integrations for both sides of (55) yield∫
R

E0

[(
∂γ

�
(s)Φ�

k (ξ
(k−1)−)

P̃ (φk(ξ
(k−1)−))Φk(ξ

(k−1)−)∂γ(s)
)1/2

]
dμ

≤ c2
c1

λk−k0

∫
R

√
∂γ

�
(s)P̃ (γ(s))∂γ(s)dμ

=
c2
c1

λk−k0

∫ 1

0

√
d�γ∗(s)

ds
P̃ (γ∗(s))

dγ∗(s)

ds
ds

=
c2(1 + ε)

c1
λk−k0dP̃ (x

′
k0
, x′′

k0
) ∀k ∈ Zk0+ (56)

for each (k0,(x
′
k0
,x′′

k0
),ξ̂(k0−1)−)∈Z×(Rn×R

n)×Ξ̂(k0−1)−,
where the first equality follows from (54) and the fact that the
Lebesgue and Riemann integrals coincide with each other when√

d�γ∗(s)
ds P̃ (γ∗(s))dγ

∗(s)
ds is bounded and Riemann integrable

with respect to s on [0, 1] at each (x′
k0
, x′′

k0
) ∈ R

n × R
n (see,

e.g., [47, Th. 2.4.1]); the last equality follows from (21).
In (56), the most right-hand side is bounded for

each (k0, (x
′
k0
, x′′

k0
)) ∈ Z× (Rn × R

n). This im-
plies that the most left-hand side is μ-integrable at
each (k0, (x

′
k0
, x′′

k0
), ξ̂(k0−1)−) ∈ Z× (Rn × R

n)× Ξ̂(k0−1)−.
Therefore, form the Fubini-Tonelli theorem [47, Sec. 5.2], the
order of the integrals in the most left-hand side is commutative;
recall that (R× Ω,L, λ) is complete and σ-finite. Namely, it
follows that∫

R

E0

[(
∂γ

�
(s)Φ�

k (ξ
(k−1)−)

P̃ (φk(ξ
(k−1)−))Φk(ξ

(k−1)−)∂γ(s)
)1/2

]
dμ

= E0

[∫
R

(
∂γ

�
(s)Φ�

k (ξ
(k−1)−)

P̃ (φk(ξ
(k−1)−))Φk(ξ

(k−1)−)∂γ(s)
)1/2

dμ

]

= E0

[∫ 1

0

(
∂�φk(ξ

(k−1)−)

∂s

P̃ (φk(ξ
(k−1)−))

∂�φk(ξ
(k−1)−)

∂s

)1/2

ds

]

≥ E0[dP̃ (φk(ξ
(k−1)−; k0, x

′
k0
, ξ̂(k0−1)−),

φk(ξ
(k−1)−; k0, x

′′
k0
, ξ̂(k0−1)−))] ∀k ∈ Zk0+

(57)

for each (k0,(x
′
k0
,x′′

k0
),ξ̂(k0−1)−)∈Z×(Rn×R

n)×Ξ̂(k0−1)−,
where the first equality follows from the Fubini–Tonelli theorem;
the second one follows from (52), (54), and the fact that the
Lebesgue and Riemann integrals coincide with each other by a
similar reasoning as mentioned for (56); the last inequality fol-
lows from (20) and the fact thatφk(ξ

(k−1)−; k0, γ
∗(s), ξ̂(k0−1)−)

is a path connecting φk(ξ
(k−1)−; k0, γ

∗(0), ξ̂(k0−1)−), γ∗(0) =

x′
k0

, to φk(ξ
(k−1)−; k0, γ

∗(1), ξ̂(k0−1)−), γ∗(1) = x′′
k0

.
From (56) and (57), we obtain

E0[dP̃ (φk(ξ
(k−1)−; k0, x

′
k0
, ξ̂(k0−1)−),

φk(ξ
(k−1)−; k0, x

′′
k0
, ξ̂(k0−1)−))]

≤ c2(1 + ε)

c1
λk−k0dP̃ (x

′
k0
, x′′

k0
) ∀k ∈ Zk0+

for each (k0, (x
′
k0
, x′′

k0
)) ∈ Z× (Rn × R

n). This implies that
the system is UIES in the first moment. �

APPENDIX B
PROOF OF THEOREM 3.3

When P̃ = I , solving the corresponding Euler–Lagrange
equation [48, Eq. (5.3.2)] gives

|x′ − x′′|2 = inf
γ∈Γ(x′,x′′)

∫ 1

0

∣∣∣∣dγ(s)ds

∣∣∣∣
2

ds (58)

and the geodesic is the line segment γ∗(s) = (1− s)x′
k0

+

sx′′
k0

. That is, when P̃ = I , we can directly use (48) for the

sufficiency proof, but this is not true for general P̃ . Utilizing (58),
we prove Theorem 3.3 in the following.

Proof: (Sufficiency) If P̃ is identity, (48) reduces to

E0

[
|δxk|2

]
≤ c22

c21
λ2(k−k0)|δxk0

|2 ∀k ∈ Zk0+

for each (k0,(xk0
,δxk0

),ξ̂(k0−1)−) ∈Z×(Rn×R
n)×Ξ̂(k0−1)−.

Substituting (xk0
, δxk0

) = (γ∗(s), dγ∗(s)/ds) with γ∗(s) =
(1− s)x′

k0
+ sx′′

k0
(and consequently dγ∗(s)/ds = x′′

k0
− x′

k0
)

into this and taking the μ-integration as in the proof of Theo-
rem 3.2 yield

E0

⎡
⎣∫ 1

0

∣∣∣∣∣∂φk(ξ
k−; k0, γ

∗(s), ξ̂(k0−1)−)

∂s

∣∣∣∣∣
2

ds

⎤
⎦

= E0

⎡
⎣∫

R

∣∣∣∣∣∂φk(ξ
k−; k0, γ(s), ξ̂

(k0−1)−)

∂s

∣∣∣∣∣
2

dμ

⎤
⎦

=

∫
R

E0

⎡
⎣
∣∣∣∣∣∂φk(ξ

k−; k0, γ(s), ξ̂
(k0−1)−)

∂s

∣∣∣∣∣
2
⎤
⎦ dμ

≤ c22
c21

λ2(k−k0)|x′
k0

− x′′
k0
|2 ∀k ∈ Zk0+

for each (k0,(x
′
k0
,x′′

k0
),ξ̂(k0−1)−)∈Z×(Rn×R

n)×Ξ̂(k0−1)−,
where γ is defined in (54). From (58) and the fact
that φk(ξ

(k−1)−; k0, γ
∗(s), ξ̂(k0−1)−) is a path connect-

ing φk(ξ
(k−1)−; k0, γ

∗(0), ξ̂(k0−1)−), γ∗(0) = x′
k0

to

φk(ξ
(k−1)−; k0, γ

∗(1), ξ̂(k0−1)−), γ∗(1) = x′′
k0

, the system
is UIES in the second moment with respect to the Euclidean
distance.

(Necessity) (Step 1) In fact, (52) holds for an arbi-
trary path γ ∈ Γ(xk0

, x′
k0
). As for the sufficiency proof,
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we choose γ(s) = (1− s)xk0
+ sx′

k0
(and, thus, dγ(s)/ds =

x′
k0

− xk0
). Then, it follows from fundamental theorem of cal-

culus, (37), and (52) that

x′
k − xk

= φk(ξ
(k−1)−; k0, x

′
k0
, ξ̂(k0−1)−)

− φk(ξ
(k−1)−; k0, xk0

, ξ̂(k0−1)−)

=

∫ 1

0

∂φk(ξ
(k−1)−; k0, (1− s)xk0

+ sx′
k0
, ξ̂(k0−1)−)

∂s
ds

=

∫ 1

0

Φk(ξ
(k−1)−; k0, (1− s)xk0

+ sx′
k0
, ξ̂(k0−1)−)

(x′
k0

− xk0
)ds ∀k ∈ Zk0+

for each (k0,(xk0
,x′

k0
),ξ̂(k0−1)−)∈Z×(Rn×R

n)×Ξ̂(k0−1)−.
Substituting this into the definition (19) of the UIES in the second
moment with respect to the Euclidean distance yields

E0

[∣∣∣∣
∫ 1

0

Φk(ξ
(k−1)−; k0, (1− s)xk0

+ sx′
k0
, ξ̂(k0−1)−)

(x′
k0

− xk0
)ds

∣∣∣∣
2
]
≤ a2λ2(k−k0)|x′

k0
− xk0

|2

∀k ∈ Zk0+

for each (k0,(xk0
,x′

k0
),ξ̂(k0−1)−)∈Z×(Rn×R

n)×Ξ̂(k0−1)−.
Since x′

k0
∈ R

n is arbitrary, we choose x′
k0

= xk0
+ hv with

h ∈ R and v ∈ R
n. Substituting this yields

E0

[∣∣∣∣
∫ 1

0

Φk(ξ
(k−1)−; k0, xk0

+ shv, ξ̂(k0−1)−)vds

∣∣∣∣
2
]

≤ a2λ2(k−k0)|v|2 ∀k ∈ Zk0+.

The change of the variables s̄ = sh leads to

E0

[∣∣∣∣ 1h
∫ h

0

Φk(ξ
(k−1)−; k0, xk0

+ s̄v, ξ̂(k0−1)−)vds̄

∣∣∣∣
2
]

≤ a2λ2(k−k0)|v|2 ∀k ∈ Zk0+

for each (k0,(xk0
,x′

k0
),ξ̂(k0−1)−)∈Z×(Rn×R

n)×Ξ̂(k0−1)−.
Note that this holds for an arbitrary h ∈ R, which implies

lim inf
h→0

E0

[∣∣∣∣ 1h
∫ h

0

Φk(ξ
(k−1)−; k0, xk0

+ s̄v, ξ̂(k0−1)−)vds̄

∣∣∣∣
2
]

≤ a2λ2(k−k0)|v|2 ∀k ∈ Zk0+ (59)

for each (k0,(xk0
,v),ξ̂(k0−1)−)∈Z×(Rn×R

n)×Ξ̂(k0−1)−. Ap-
plying Fatou’s lemma [47, Th. 2.3.7] to the left-hand side yields

E0

[
lim inf
h→0

∣∣∣∣ 1h
∫ h

0

Φk(ξ
(k−1)−)vds̄

∣∣∣∣
2
]

≤ lim inf
h→0

E0

[∣∣∣∣ 1h
∫ h

0

Φk(ξ
(k−1)−)vds̄

∣∣∣∣
2
]

∀k ∈ Zk0+

(60)

for each (k0,(xk0
,v),ξ̂(k0−1)−)∈Z×(Rn×R

n)×Ξ̂(k0−1)−.
We consider the left-hand side of (60). Here, we

take φk and Φk as the mappings φk(xk0
, η(k−1)−; k0)

and Φk(xk0
, η(k−1)−; k0); recall Remark 1.2. Applying product

and sum rules of the limit and fundamental theorem of calculus
in order lead to

lim
h→0

∣∣∣∣ 1h
∫ h

0

Φk(xk0
+ s̄v, η(k−1)−; k0)vds̄

∣∣∣∣
2

=

∣∣∣∣ limh→0

1

h

∫ h

0

Φk(xk0
+ s̄v, η(k−1)−; k0)vds̄

∣∣∣∣
2

=
∣∣∣Φk(xk0

, η(k−1)−; k0)v
∣∣∣2 ∀k ∈ Zk0+ (61)

for each (k0,(xk0
,v),η(k−1)−)∈Z×(Rn×R

n)×(Rm)Z[k0,k−1] .
These equalities imply the existence of the limit in the most
left-hand side. Therefore, the limit inferior of the left-hand side
of (60) is equivalent to the limit. Combining (59)–(61) leads to,
for stochastic processes,

E0

[∣∣∣Φk(ξ
(k−1)−; k0, xk0

, ξ̂(k0−1)−)v
∣∣∣2] ≤ a2λ2(k−k0)|v|2

∀k ∈ Zk0+

for each (k0, xk0
, ξ̂(k0−1)−) ∈ Z× R

n × Ξ̂(k0−1)− and v ∈ R
n.

Since v ∈ R
n is arbitrary, it holds that

E0

[
σ2

(
Φk(ξ

(k−1)−; k0, xk0
, ξ̂(k0−1)−)

)]
≤ a2λ2(k−k0)

∀k ∈ Zk0+ (62)

for each (k0, xk0
, ξ̂(k0−1)−) ∈ Z× R

n × Ξ̂(k0−1)−, where σ(·)
denotes the largest singular value (more precisely, valued func-
tion).

(Step 2) Here, we again consider φk and Φk as the map-
pings φk(xk0

, η(k−1)−; k0) andΦk(xk0
, η(k−1)−; k0); recall Re-

mark 1.2. Let us take λ1 such that λ < λ1 < 1, and de-
fine the K-dependent matrix-valued mapping PK : Z× R

n ×
(Rm)Zk0+ → S

n×n
�0 , K ∈ Zk0+, such that

PK(k0, xk0
, Sk0

ηk0+)

:=
1

λ2
1

K∑
k=k0

1

λ
2(k−k0)
1

Φ�
k (xk0

, η(k−1)−; k0)

Φk(xk0
, η(k−1)−; k0), K ∈ Zk0+ (63)

for each (k0, xk0
, ηk0+) ∈ Z× R

n × (Rm)Zk0+ . Note that
(PK(k0, xk0

, Sk0
ηk0+))K∈Zk0+

is an increasing sequence with
respect to the relation � for each (k0, xk0

, ηk0+) ∈ Z× R
n ×

(Rm)Zk0+ , and thus, PK(k0, xk0
, Sk0

ηk0+) has the (pointwise
convergence) limit

P (k0, xk0
, Sk0

ηk0+)
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:= lim
K→∞

PK(k0, xk0
, Sk0

ηk0+) ∈ R̄
n×n (64)

for each (k0, xk0
, ηk0+) ∈ Z× R

n × (Rm)Zk0+ .
Now, we consider stochastic processes. According to Re-

mark 1.1, φk(ξ
(k−1)−), k ∈ Zk0+, and Φk(ξ

(k−1)−), k ∈ Zk0+,
are both Fk−1-measurable for each (k0, xk0

, ξ̂(k0−1)−) ∈ Z×
R

n × Ξ̂(k0−1)−, and thus, PK(k0, xk0
, Sk0

ξk0+), K ∈ Zk0+,
is F-measurable for each (k0, xk0

, ξ̂(k0−1)−) ∈ Z× R
n ×

Ξ̂(k0−1)−. Since the limit of a sequence of measurable functions
is again measurable [47, Prop. 2.1.5],P (k0, xk0

, Sk0
ξk0+) isF-

measurable for each (k0, xk0
, ξ̂(k0−1)−) ∈ Z× R

n × Ξ̂(k0−1)−.
Therefore, the monotone convergence theorem [47, Th. 2.3.4]
is applicable for P (k0, xk0

, Sk0
ξk0+), namely

E0

[
P (k0, xk0

, Sk0
ξk0+)

]
= lim

K→∞
E0

[
PK(k0, xk0

, Sk0
ξk0+)

]
(65)

for each (k0, xk0
, ξ̂(k0−1)−) ∈ Z× R

n × Ξ̂(k0−1)−. Note that
these conditional expectations are not necessarily to be finite.

(Step 3) From (40) and (63), it follows that

1

λ2
1

In � PK(k0, xk0
, Sk0

ξk0+) a.s.∀K ∈ Zk0+

for each (k0, xk0
, ξ̂(k0−1)−) ∈ Z× R

n × Ξ̂(k0−1)−. This in-
equality is preserved under taking the conditional expecta-
tions E0[·] of both sides. From (62) and (63), the conditional
expectation E0[PK(k0, xk0

, Sk0
ξk0+)] is also upper bounded.

That is, it holds that

c21In ≤ E0[PK(k0, xk0
, Sk0

ξk0+)] ≤ c22In ∀K ∈ Zk0+ (66)

for each (k0, xk0
, ξ̂(k0−1)−)∈Z×R

n×Ξ̂(k0−1)−, where c1 :=
1/λ1 and

c2 :=
a

λ1
lim

K→∞

K∑
k=k0

(
λ

λ1

)k−k0

> 0.

Note that c2 is ak0-independent positive constant because of λ <
λ1. Since (66) holds for an arbitrary K ∈ Zk0+, taking K → ∞
and using (65) yield

c21In ≤ E0

[
P (k0, xk0

, Sk0
ξk0+)

]
≤ c22In ∀K ∈ Zk0+

for each (k0, xk0
, ξ̂(k0−1)−) ∈ Z× R

n × Ξ̂(k0−1)−. This is
nothing but (22c).

(Step 4) Here, we again consider φk and Φk as the map-
pings φk(xk0

, η(k−1)−; k0) andΦk(xk0
, η(k−1)−; k0); recall Re-

mark 1.2. From (63), PK(k0, xk0
, Sk0

ηk0+) satisfies

λ2
1PK(k0, xk0

, Sk0
ηk0+)

− ∂�fk0
(xk0

, ηk0
)

∂xk0

PK(k0 + 1, fk0
(xk0

, ηk0
), Sk0+1η

(k0+1)+; ηk0
)

∂fk0
(xk0

, ηk0
)

∂xk0

= In ∀K ∈ Zk0+ (67)

for each (k0, xk0
, ηk0+) ∈ Z× R

n × (Rm)Zk0+ , where the
equality

Φk0+1(xk0
, ηk0

; k0) =
∂fk0

(xk0
, ηk0

)

∂xk0

following from (42), (44), and φk0
= xk0

is used. Note that PK

in the second term of the left-hand side of (67) depends on ηk0
.

From (67), the corresponding stochastic processes satisfy

∂�fk0
(xk0

, ξk0
)

∂xk0

PK(k0 + 1, fk0
(xk0

, ξk0
), Sk0+1ξ

(k0+1)+)

∂fk0
(xk0

, ξk0
)

∂xk0

� λ2
1PK(k0, xk0

, Sk0
ξk0+) a.s.∀K ∈ Zk0+

for each (k0, xk0
, ξ̂(k0−1)−) ∈ Z× R

n × Ξ̂(k0−1)−. Taking the
conditional expectations of E0[·|Fk0

] and E0[·] in order for
both sides and using the fact that (Fk)k∈Zk0+

is a filtration on

(Ω,F ,P) for each ξ̂(k0−1)− ∈ Ξ̂(k0−1)− for the right-hand side,
it follows that

E0

[
∂�fk0

(xk0
, ξk0

)

∂xk0

E0[PK(k0 + 1, fk0
(xk0

, ξk0
), Sk0+1ξ

(k0+1)+)|Fk0
]

∂fk0
(xk0

, ξk0
)

∂xk0

]
� λ2

1E0[PK(k0, xk0
, Sk0

ξk0+)]

∀K ∈ Zk0+

for each (k0, xk0
, ξ̂(k0−1)−) ∈ Z× R

n × Ξ̂(k0−1)−. Finally, tak-
ing K → ∞ with (65) yields (22b). �
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