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Abstract
Cellular functions are realized through the dynamics of chemical reaction networks formed by thousands of chemical reactions. 
Numerical studies have empirically demonstrated that small differences in network structures among species or tissues can cause 
substantial changes in dynamics. However, a general principle for behavior changes in response to network structure modifications is 
not known. The chemical reaction system possesses substructures called buffering structures, which are characterized by a certain 
topological index being zero. It was proven that the steady-state response to modulation of reaction parameters inside a buffering 
structure is localized in the buffering structure. In this study, we developed a method to systematically identify the loss or creation of 
buffering structures induced by the addition of a single degradation reaction from network structure alone. This makes it possible to 
predict the qualitative and macroscopic changes in regulation that will be caused by the network modification. This method was 
applied to two reaction systems: the central metabolic system and the mitogen-activated protein kinases signal transduction system. 
Our method enables identification of reactions that are important for biological functions in living systems.
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Significance Statement

Dynamics of complex biological systems have been understood using mathematical models; however, various assumptions are ne
cessary to construct models for large networks such as those seen in the life sciences, and discussing the relation between the network 
structure and its behavior is difficult. Our study using structural sensitivity analysis shows that directly discussing changes in the 
structure and behavior of a reaction network without making assumptions about kinetics is possible. This enabled the prediction 
of changes in behavior depending on whether a reaction is present or not and identify reactions that are essentially important for bio
logical behavior.

Introduction
Differences in network structure induce 
differences in cellular functions
Within cells, a large number of enzymes catalyze their specific re
actions simultaneously, and these reactions form complex reac

tion networks, such as metabolic systems or signal transduction 
pathways. Cellular functions arise from the dynamics of such 
complex networks, and cells regulate network dynamics by 

modulating the activity or expression level of enzymes (1, 2). In 
the history of biosciences, structures of reaction networks respon

sible for various cellular functions have been experimentally 
identified. For example, cells obtain chemical energy via a series 

of reactions in the tricarboxylic acid cycle (TCA) or regulate gene 
expression via signal transduction networks such as the 
mitogen-activated protein kinase (MAPK) pathway when they re

ceive extracellular signals (3–6). Revealing the mechanism for 

controlling the dynamics of those networks will lead to under
standing how cells adapt to their environments by altering cellu
lar functions.

During the course of evolution, species have acquired different 
networks that serve distinct cellular functions. Cancer cells are 
also known to have reaction networks with a different structure 
from normal cells (1, 7, 8). Those structural differences may alter 
cellular functions derived from network dynamics, and such alter
ations can be advantageous for the survival of organisms or cancer 
cells (1, 7, 8). However, it is not clear how these structural differen
ces influence the dynamics of reaction systems and biological func
tions of organisms (9). Databases of biological networks provide 
information regarding the network structures of different cell 
types; however, they do not provide insight into the differences in 
dynamics of these networks (10–12). Therefore, to date, no general 
rules have been obtained regarding how structural differences in 
reaction networks affect cellular functions.
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Structural sensitivity analysis: a mathematical 
method to determine the sensitivity of the system
Structural sensitivity analysis (SSA), which we previously devel
oped, is a mathematical method for determining the response of 
a steady state to a change in enzyme activity based on the struc
ture of a reaction network (13, 14) (see the “Mathematical back
ground of the structural sensitivity analysis” in the Methods 
section for the summary of the method). In general, the dynamics 
of reaction systems are quantitatively determined only when we 
have full knowledge of reactions (15–18), but experimentally de
termining the rate functions of those reactions is difficult when 
the system is large and complicated. SSA is a model-free method 
by which the steady-state response to changes in reaction param
eters is determined without assuming reaction functions or par
ameter values.

The concept of a “buffering structure,” derived from SSA, is cru
cial in understanding the responses of a system to a parameter 
change based on the network structure. A substructure in a reac
tion network, which consists of a subset of chemicals and reac
tions, is called a buffering structure when it satisfies the 
following two conditions (i) The substructure contains all reac
tions whose rate depends on the concentration of chemicals with
in it. (ii) The index defined from the numbers of elements in the 
substructure (later defined in Eq. 1) takes zero value. Condition 
(i) is referred to as the “output-completeness.” See (14, 19) or 
“Mathematical definition of the buffering structure” in the 
Methods section for the precise definitions for the index. It is 
mathematically proven that the steady-state response to the acti
vation or inhibition of reactions within a buffering structure is 
confined to the substructure. From a biological perspective, a buf
fering structure is understood as the origin of modularity in the 
regulation of cellular functions generated from reaction systems 
because ranges of influences of modulation to the activity or ex
pression level of enzymes are restricted in buffering structures. 
As a result, buffering structures can be independently regulated 
from other parts in the network through the activation or inhib
ition of reactions inside them.

For example, in the network shown in Fig. 1A, the substructure 
({D}, {6}) is a buffering structure because it satisfies output- 
completeness, and its index is zero. This means that the activation 
of reaction 6 affects only the concentration of D at a steady state, 
which is confirmed by the numerical simulation shown in 
Fig. 1C. In this simulation, we assumed mass-action kinetics, 
where each rate function is given by the product of a parameter 
ki and substrate concentrations powered by stoichiometric coeffi
cients. In contrast, the new network shown in Fig. 1B has a differ
ent sensitivity from that of the original network when a 
degradation reaction of D is added to the network. The activation 
of reaction 6 in turn affects the concentration of all chemicals in 
the network, as shown in Fig. 1D. This is because the index of the 
output-complete substructure ({D}, {6, outflow-of-D}) is − 1, and 
it is not a buffering structure. Although the index of the 
substructure ({D}, {6}) in the new network is 0, it is not a 
buffering structure because the substructure does not satisfy 
the output-completeness. In the new network, the smallest 
buffering structure containing reaction 6 is the substructure 
({A, B, C, D},{2, 3, 4, 5, 6, outflow-of-D}). This result illustrates that 
a structural alteration of a reaction network can cause a qualita
tive change in the sensitivity of the system, and it can be captured 
by the loss or creation of buffering structures.

In this study, we investigated how the sensitivity of a reaction 
network is affected by structural modification. Specifically, we 
considered the addition of an “outflow” reaction (i.e. a reaction 

for which substrates exist and products do not explicitly exist in 
the network) and proved that such addition can lead to the loss 
of existing buffering structures or the creation of new buffering 
structures in the system. The effects of modulation to reaction pa
rameters inside the substructure extend to the outside when a 
substructure that used to be a buffering structure no longer satis
fies the conditions for being a buffering structure. The creation of 
a new buffering structure indicates that the effects of modulation 
to reaction parameters inside the substructure are confined inside 
itself in the new network. In other words, such a small difference 
in network structure can result in qualitative and macroscopic 
changes in the regulations of the reaction system.

Since buffering structures are output-complete substructures 
with zero index, by examining the index change for each of all 
output-complete substructures in the system, it is possible to 
identify all the loss or creation of buffering structures. This idea 
allows us to predict the qualitative and macroscopic changes in 
regulation that will occur in the system when an outflow reaction 
is added to the reaction network. We utilized this result in reverse 
to identify structural modifications (i.e. the addition of a new reac
tion) that bring qualitative and macroscopic changes in the regu
lation of the system. By applying this method to the central 
metabolic system and MAPK signal transduction system, we eval
uated the effect of specific structural modifications on the energy 
metabolism and signal transduction. We also identified reactions 
important for the TCA cycle to be a buffering structure. The rule 
we obtained has significant implications for understanding the 
dynamics of living systems.

Results
Changes in the index of output-complete 
substructures caused by the addition  
of an outflow
We investigated how the sensitivity of a reaction network is af
fected by the structural modification of the network. A reaction 
system before a modification is called an “original system” de
noted by Γ. M(Γ) and R(Γ) are the sets of chemicals and reactions 
in Γ, respectively. Among possible network alterations, in this 
study, we considered the addition of a reaction whose substrate 
exists and products do not exist in the original system and as
sessed the effect of the structural modification on the sensitivity. 
This reaction can be graphically represented as an edge from a 
single node with no target nodes; we called it an “outflow.”

The biological interpretation of an outflow may be the degrad
ation of a substrate, transport of a substrate from the system to 
the outside, or a reaction from a substrate in the original system 
into another chemical excluded from the system. The presence/ 
absence of outflows may not be explicitly stated in databases 
and tends to be subjectively modeled by theoretical researchers. 
Depending on the time scale of interest, outflows may be appro
priately interpreted as present or absent. Conversely, the pres
ence/absence of outflows has a large effect on the behavior of a 
reaction system. Although we will focus on the effects of adding 
outflows, other types of network alternation will be briefly dis
cussed in the Discussion section. While inflows are also biologic
ally important and necessary, their effects are usually 
understandable in an intuitive way (e.g. see (13) for sensitivity as
sociated with inflows). We compared the sensitivity of Γ and that 
of the new system Γ′ (i.e. the network obtained by adding the out
flow from chemical m∗ to Γ).

We analyzed the effect of adding an outflow of m∗ to the origin
al system from the viewpoint of changes in buffering structures in 
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the system. The existence of an outflow may induce the creation 
of new buffering structures or the loss of existing buffering struc
tures, which should cause a large change in the sensitivity. Such 
large changes can be captured by focusing on index change of 
“output-complete” substructures.

For an output-complete substructure γ, the index of the sub
structure is defined as

χ(γ) := M(γ)
􏼌
􏼌

􏼌
􏼌 − R(γ)

􏼌
􏼌

􏼌
􏼌+Ncyc(γ) − Ncons(γ), (1) 

where M(γ)
􏼌
􏼌

􏼌
􏼌, R(γ)
􏼌
􏼌

􏼌
􏼌, Ncyc(γ), and Ncons(γ) represent the numbers of 

chemicals, reactions, cycles, and conserved quantities, respective
ly. We define the number of cycles as the number of independent 
steady-state fluxes flowing inside the substructure. An output- 
complete substructure γ is a buffering structure if χ(γ) = 0 holds 
(see (14, 19) or Eqs. 4 and 5 for the precise definitions of Ncyc(γ) 
and Ncons(γ)).

For each of output-complete substructures, we studied the in
dex change by the addition of outflow of m∗. For an output- 

A
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Index: 1 - 1 + 0 - 0 = 0
Index: 4 - 5 + 1 - 0 = 0

1 2 3 4

6 5
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Index: 1 - 2 + 0 - 0 = -1
Index: 4 - 6 + 2 - 0 = 0

1 2 3 4
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D

Fig. 1. A) Reaction network constructed from four chemicals A, B, C, and D, and six reactions. Solid lines indicate chemical reactions. The substructures 
enclosed by rectangles are buffering structures. The reaction 6, indicated by the triangle, is activated in the numerical simulation shown in (C). B) A 
reaction network with the outflow of D added to (A). The smaller rectangle is not a buffering structure. C) The result of numerical simulation in the 
network (A). In this simulation, we assumed mass-action kinetics; r1 = k1, r2 = k2xA, r3 = k3xB, r4 = k4xC, r5 = k5xC, r6 = k6xD. All reaction parameters are 
set to 2.5. The dynamics reached a steady state at t = 100, and then the parameter of reaction 6 was increased from 2.5 to 8.0. The horizontal dotted lines 
indicate concentration values at the steady state before and after the perturbation. The frame of the numerical simulation result is thickened if the 
steady-state value differs before and after the perturbation to the reaction parameter. D) The result of numerical simulation in the network (B) based on 
mass-action kinetics. All reaction parameters are set to 2.5. At t = 100, the parameter of reaction 6 was increased from 2.5 to 8.0. The horizontal dotted 
lines indicate concentration values at the steady state before and after the perturbation. The frame of the numerical simulation result is thickened if the 
steady state value differs before and after the perturbation to the reaction parameter.
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complete substructure γ in the original system Γ constructed by a 
set of chemicals M(γ) and a set of reactions R(γ), the corresponding 
output-complete substructure in the new system Γ′, denoted as γ′

with chemicals M(γ′) and reactions R(γ′), is defined as follows. The 
set of chemicals M(γ′) is identical to M(γ). If M(γ) (or M(γ′)) does not 

contain the target chemical m∗, then the reaction set R(γ′) is equal 
to R(γ). If M(γ) contains m∗, then R(γ′) includes the new outflow of m∗

in addition to R(γ). Because γ satisfies output-completeness, γ′ also 
does.

We identified changes in the sensitivity of the system by com
paring the values of χ(γ) and χ(γ′), particularly focusing on whether 
either of them takes the zero value. If any output-complete sub
structures satisfy χ(γ) − χ(γ′) ≠ 0, the addition of the outflow can 
qualitatively change the sensitivity.

We proved that the change in the index of each output- 
complete substructure in an original system Γ is categorized 
into five cases depending on three conditions: (i) whether the sub
structure includes m∗, (ii) whether it contains a conserved quan
tity composed of m∗, and (iii) whether a new cycle is generated 
in it by the addition of the outflow (Fig. 2A and B). See 
“Classification of the index change” in the Methods section for 
the proof. An example of each case is shown in Fig. 2C.

According to the table, when γ does not include a conserved 
quantity constructed from m∗, cases 1, 2, or 3 can occur and the 
index of γ decreases by one or does not change. If γ contains chem
icals that construct a conserved quantity with m∗, then case 4 or 5 
occurs, and the value of index χ(γ) increases or does not change. 
There are more than 2 M| | − 1 output-complete substructures in 
the network, and this result enables us to determine the change 
in the index of those substructures caused by the addition of an 
outflow from the structure of the network.

Cases 1, 2, and 3 can arise when the output-complete sub
structure γ does not contain conserved quantities constructed 
from m∗ and other chemicals. In case 1, the substructure γ con
tains neither m∗ nor conserved quantities constructed from m∗. 
Under this condition, no new cycles are created in γ because 
the new outflow is not present in γ′. Therefore, all terms in the in
dex χ(γ) are not affected by the modification, and χ(γ) − χ(γ′) = 0 
holds. For example, the substructure ({A}, {2}) in the network 
shown in Fig. 2C remains a buffering structure before and after 
the addition of the outflow of B.

Case 2 is induced when γ includes m∗, no conserved quantity, 
including m∗, exists in the substructure, and the addition of the 
outflow does not create a new cycle in γ′. In this case, since the 
number of reactions increases by one, while the number of chem
icals, cycles, and conserved quantities remain unchanged, the 
change in the index is −1. For example, in the network shown in 
Fig. 2C, the subnetwork ({B}, {3}) is a buffering structure in the ori
ginal network, but ({B}, {3, outflow-of-B}) is not a buffering struc
ture in the new network with the outflow of B, and the 
modification causes a drastic change in the sensitivity.

In case 3, γ contains m∗, no conserved quantity, including m∗, ex
ists in the substructure, and the addition of the outflow creates a 
new cycle within γ′. In this case, the number of reactions and cycles 
both increase by one, resulting in no change in the index. In case 3 
network of Fig. 2C, the substructure ({B, C}, {3, 4}) is a buffering 
structure in the original network, and ({B, C}, {3, 4, outflow-of-B}) 
is also a buffering structure in the new network with the out
flow of B.

Cases 4 and 5 can occur when γ contains a conserved quantity 
constructed from m∗ and other chemicals. In both cases, the con
served quantity constructed from m∗ changes in time after the 
addition of the outflow of m∗, and the number of conserved quan
tities decreases by one. Since the number of conserved quantities 
and cycles do not change simultaneously by the addition of the 
outflow (for the proof, see “Classification of the index change” in 
the Methods section), the number of cycles is not affected in those 
cases.

A
CycleReaction

Conserved
QuantityChemical

Index 
Change

Case 1

Case 2

Case 3

Case 4

Case 5

0

0

0

0

0

0

+1

+1

0

0

0

+1

0

0

0

0

0

-1

-1

0

-1

0

0

+1

+1

B

YesNo

0 -1 0 0 +1
Case: 1 2 3 4 5

CQ with      is in

new cycle is in 

      is in       is in

Index change of   :

C
Case 1 Case 2 Case 3 Case 4 Case 5

Fig. 2. A) Change in the index of an output-complete substructure γ under 
the addition of an outflow is classified into five patterns, and the amount 
of change is limited only to − 1, 0, and +1. Which pattern the index change 
of γ follows can be determined by three conditions:whether γ contains the 
substrate of the outflow, whether the outflow creates a new cycle with 
reactions in R(γ), and whether M(γ) contains a chemical that constructs a 
conserved quantity of Γ with m∗. B) Example network and substructure of 
each case. The substructure enclosed by a rectangle indicates a 
substructure γ, and the dotted arrow indicates an outflow of m∗ added to 
Γ. In cases 2, 3, and 4, the new outflow is included in γ′, whose index is 
compared to γ, to satisfy the output-completeness. In cases 1, 2, and 3, 
there is a new cycle constructed by {3, 4, outflow-of-B} in the network after 
the addition of the outflow of B, and it is counted in the substructure of 
only case 3. In cases 4 and 5, the sum of concentrations of A, B, and C is 
conserved in time before the addition of the outflow of C, and it is counted 
in both substructures of cases 4 and 5. See “Mathematical definition of the 
buffering structure” in the Methods section for the detailed definition of 
the number of cycles and conserved quantities.
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Case 4 occurs when γ contains m∗, and m∗ constructs a con
served quantity. In this case, the number of reactions increases 
by one and the number of conserved quantities decreases by 
one, resulting in no change in the index χ(γ). In case 4 network in 
Fig. 2C, the index of the substructure ({C}, {3, 4}) is − 1 before the 
addition of the outflow of C, and the index of the substructure 
({C}, {3, 4, outflow-of-C}) is − 1.

Case 5 is induced when m∗ does not exist in γ, and other chem
icals that construct a conserved quantity with m∗ are included in γ. 
If the condition is satisfied, the number of conserved quantities 
decreases by one, and the index χ(γ) increases by one. In case 5 net
work of Fig. 2C, the index of the substructure ({A}, {1, 2}) is −1 be
fore the addition of the outflow of C, but after the addition, the 
index is 0 and the substructure is a buffering structure.

The above classification allows us to predict the change in buf
fering structures in the focal system caused by the addition of out
flows from the original network as follows. First, list all 
substructures with index 0 or −1 in the original network. Next, 
for each substructure, calculate which of the five cases follows. 
The substructures whose indices change from 0 to −1 are buffer
ing structures that are lost by the structural modification, and the 
substructures whose indices change from −1 to 0 are new buffer
ing structures.

Analysis of central metabolic system
Using the above result, we examined how structural alterations to 
the central metabolic system affect cellular metabolism. To cre
ate an original system, we integrated KEGG mouse pathways: gly
colysis (mmu00010), TCA cycle (mmu00020), and pentose 
phosphate pathway (mmu00030). We also added inflows and out
flows of several metabolites to guarantee the existence of a posi
tive steady state of the system (Fig. 3A and Table S1). The 
network contained 48 chemicals, 102 reactions, and 54 cycles, 
and there were no conserved quantities in the system. In the fol
lowing, we first explain the sensitivity of this network system 
based on buffering structures and demonstrate that the effect of 
network alternation on the sensitivity could be captured by the 
changes in the indices of output-complete subnetworks, particu
larly the loss or creation of buffering structures.

We identified 47 buffering structures within the system by per
forming the SSA on this system, as shown in Table S2 and by rec
tangles in Fig. 3A. They were found based on the sensitivity 
obtained by the numerical implementation of the SSA in 
“Numerical calculation of the S-matrix” in the Methods section. 
Some of these structures correspond to functional pathways in 
databases. Specifically, the output-complete substructure α and 
β in Fig. 3A correspond to pathways referred to as the TCA cycle 
and the pentose phosphate pathway, respectively (10). Because 
the TCA cycle is a buffering structure, the effect of modulation 
to reaction parameters within the TCA cycle (e.g. Oxa → PEP) is ex
pected to be limited to the steady-state chemical concentrations 
and reaction rates within the TCA cycle. We conducted numerical 
simulations of dynamics with assumed reaction functions to con
firm the expectations from the SSA (Figs. 3B–D and S1). Our simu
lations showed that modulating the parameter of a reaction in the 
TCA cycle (Oxa → PEP) affects only the concentration of chemicals 
inside the TCA cycle, such as Fumalate and 2-oxoglutarate, and 
not the concentration of chemicals outside the TCA cycle, such 
as deoxyribose and PEP, as shown in Figs. 3C and S2. Since the re
action Fum → Malate is contained within a smaller buffering 
structure inside the TCA cycle, modulating the parameter of this 
reaction only affects the concentrations of some chemicals within 

the TCA cycle, including Fumalate, but not the others, such as 
2-oxoglutarate (Figs. 3D and S3). The reaction G3P → GR5P + 
Acetaldehyde is contained within the buffering structure corre
sponding to the pentose phosphate pathway. Therefore, activat
ing this reaction only affects the concentration of some 
chemicals within this buffering structure, including deoxyribose, 
and does not affect the concentration of chemicals outside the 
structure (Figs. 3B and S1). This result suggests that in the original 
system, the concentration of chemicals in the TCA cycle can be 
regulated by modulation of the expression levels of enzymes cata
lyzing reactions in the structure without affecting the concentra
tion of chemicals in other pathways, such as the glycolysis 
pathway and pentose phosphate pathway.

Certain leukemias, gliomas, and other cancer cells have been 
observed to exhibit a reaction that converts 2-oxoglutarate, a 
component of the TCA cycle, into a cancer-specific metabolite 
as a result of gain-of-function mutations (20–23). To investigate 
this phenomenon, we analyzed the changes in buffering struc
tures of the central metabolic system caused by the addition of 
the outflow of 2-oxoglutarate based on which case a buffering 
structure follows (Fig. 3E, Table S2). Since 2-oxoglutarate does 
not contribute to any conserved quantities in the central metabol
ic system, the addition of the outflow of 2-oxoglutarate leads to 
changes in the index of each substructure either in cases 1, 2, or 
3, as shown in Fig. 2A and B. Therefore, there is no possibility for 
substructures with an index of − 1 to become new buffering struc
tures, and all changes in buffering structures can be captured by 
simply focusing on the existing ones.

We calculated the index change of buffering structures in
duced by the addition of the outflow of 2-oxoglutarate using 
Fig. 2A (Table S2). Out of 47 buffering structures, 38 do not contain 
2-oxoglutarate and follow case 1 with no index change. Since eight 
buffering structures, including the TCA cycle, contain 2-oxogluta
rate but no cycle appears in them, case 2 is induced. Case 3 was 
induced in the one remaining buffering structure because it con
tains 2-oxoglutarate, and a new cycle is created by the structural 
modification. Since the TCA cycle is not a buffering structure after 
the addition of the outflow, modulations to reaction parameters of 
the reaction in the TCA cycle (Oxa → PEP) are expected to affect 
the concentration of chemicals outside the TCA cycle. In contrast, 
smaller buffering structures within the TCA cycle and the pentose 
phosphate pathway follow case 1, therefore they remain buffering 
structures, and the effect of perturbation to inside reactions is 
also confined in them after the structural modification.

Numerical simulations show that the activation of the reaction 
in the TCA cycle (Oxa →PEP) affects the steady-state concentra
tion of chemicals outside the TCA cycle (deoxyribose and PEP) 
after the addition of the outflow of 2-oxoglutarate (Figs. 3G and 
S5). Furthermore, the range of influence by the modulation to 
the reaction parameter of G3P → GR5P + Acetaldehyde and Fum 
→Malate does not change before and after the addition of the out
flow of 2-oxoglutarate (Figs. 3F and H, S4, and S6). Therefore, it can 
be concluded that the TCA cycle cannot be regulated independ
ently within the central metabolic system when a reaction that 
converts 2-oxoglutarate into another chemical that is not in the 
system is added. Conversely, the controllability of the pentose 
phosphate pathway and small parts of the TCA cycle is not af
fected by this structural alteration.

We also identified structural modifications that decrease the 
index of the TCA cycle and make it not a buffering structure by 
utilizing our result in reverse. In general, the addition of an out
flow to a chemical outside the substructure results in an index 
change of case 1 or 5 in Fig. 2A. Since there is no conserved 
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quantity in the original system, case 4 or 5 do not occur, and the 
addition of outflow to chemicals outside the TCA cycle results 
only in case 1. This implies that the TCA cycle remains a buffering 
structure even when an outflow of chemicals outside the TCA 
cycle is added.

In contrast, the addition of the outflow to chemicals within the 
TCA cycle can induce case 2 or 3 in the TCA cycle. We found that 

outflow of only lactate creates a new cycle in the TCA cycle and in
duces case 3, while outflows of other chemicals within the TCA cycle 
decrease the index by − 1 in case 2. In other words, large changes in 
the sensitivity behavior of the TCA cycle are induced when an out
flow is added to chemicals within the TCA cycle except for lactate.

The colors of chemicals in Fig. 4A represent the change in the 
index of the TCA cycle caused by the addition of the outflow of 
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Fig. 3. A) Central metabolic system of mice obtained from KEGG. The triangles indicate the reactions that are perturbed in the numerical calculation. The 
substructures enclosed in rectangles indicate the buffering structures in the network. B–D) Numerical simulation results of the dynamics in the network 
(A) based on mass-action kinetics. The concentrations of four chemicals (deoxyribose, PEP, Fum, and 2-oxo) are shown. At t = 400, where the system is in 
a steady state, the rate parameter of a reaction indicated by one of the triangles in (A) is varied. The perturbed reactions are (B) G3P → DR5P + 
Acetaldehyde, (C) Oxa → PEP, and (D) Fum → Malate, respectively. The frame of the numerical simulation result is thickened if the steady-state value 
differs before and after the perturbation to the reaction parameter. E) Buffering structures in the network with the new outflow of 2-oxoglutarate. F–H) 
Numerical simulation of the dynamics of the network shown in (E) based on mass-action kinetics. The rate parameter of a reaction indicated by one of the 
triangles is varied at t = 400. The perturbed reactions are (F) G3P →DR5P + Acetaldehyde, (G) Oxa → PEP, and (H) Fum →Malate, respectively. The frame 
of the numerical simulation result is thickened if the steady-state value differs before and after the perturbation to the reaction parameter.
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each chemical. The addition of the outflows of green and red 
chemicals leads to case 1 in the TCA cycle and case 3, respectively. 
The addition of the outflow of blue chemicals decreases the index 

of the TCA cycle based on case 2. We did not consider adding out
flows of black chemicals, G3P, Pyruvate, Diphosphate, and AcCoA 
because they originally had an outflow. Green chemicals are 
found only outside the TCA cycle, while chemicals in the TCA 
cycle other than pyruvate, AcCoA, and lactate are colored blue. 
Lactate is the only orange chemical.

To demonstrate that the change in the index of all output- 
complete substructures caused by the addition of the outflow of 
2-oxoglutarate can be identified using the table in Fig. 2A, we cal
culated the index values of randomly selected output-complete 
substructures before and after the addition of the outflow of 
2-oxoglutarate. First, we randomly selected 10 chemicals from 
the original system and computed the index of the smallest 
output-complete substructure that includes the chosen chemi
cals. Next, we identified the smallest output-complete substruc
ture containing the chosen chemicals on the system with the 
new outflow and calculated the index values of the substructure 
on the new network. By repeating the selection of chemicals, we 
obtained a set of index changes shown in Fig. 4B. Points on the 
straight line of Fig. 4B indicate cases when the index remains un
changed, while points below the straight line indicate cases when 
the index decreased by one. Since there are no conserved quan
tities in the whole system, only cases 1, 2, and 3 can occur, and 
the change of index is limited to unchanged or decreased.

The numerical simulation of mathematical model based on the 
KEGG database information does not show any positive steady state. 
To solve this issue, we had prepared a network modified from KEGG 
database by adding some inflows and outflows. To evaluate how this 
modification affects our result, we investigated buffering structures 
on the central metabolic network without any modifications, and 
even in this case, we found that the TCA cycle is a buffering struc
ture. Furthermore, we observed that this buffering structure disap
pears only when outflow is added to the same metabolites with 
the main result (metabolites colored in blue in Fig. 4A).

Analysis of the MAPK signaling pathway
The MAPK signaling pathway is a protein-mediated signaling 
pathway that is evolutionarily conserved and utilized in many sig
naling systems. The network shown in Fig. 5A comprises four 
types of proteins, such as Ras, Raf, Mek, and Erk. Ras has 
ATP-bounded and ADP-bounded forms, and phosphorylation of 
Raf, Mek, and Erk is promoted by Ras-GTP, RafP, and MekP, re
spectively. There are four conserved quantities in this system 
since the total amount of each protein remains unchanged by 
ATP binding or phosphorylation.

The blue box in the network in Fig. 5A indicates the smallest 
buffering structure containing reaction 1, a state transition reac
tion from Ras-GDP to Ras-GTP. The activation of reaction 1 influ
ences the concentration of all chemicals, including ErkPP, because 
the buffering structure comprises all chemicals. This is consistent 
with experimental observations that the MAPK signaling pathway 
is activated when cells receive signals from outside the cell and 
regulate the expression of various genes through the nuclear 
migration of ErkPP. Numerical simulations show that the steady- 
state concentration of four protein states, including ErkPP, is 
affected when the parameter of reaction 1 is perturbed (Fig. 5B). 
Here, although the SSA does not require information on rate func
tions, and buffering structures are defined only from network 
structure, specific reaction rate functions are given for numerical 
simulation, as described in Fig. S4.

Subsequently, we consider the change in the sensitivity of the 
system by the addition of the outflow of ErkPP, which is the deg
radation reaction of ErkPP at a rate depending on the ErkPP 
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Fig. 4. A) Colors of the nodes indicate how the index of the TCA cycle 
changes when the outflow is added: green indicates no change in the index in 
case 1, red indicates no change in case 3, and blue indicates a decrease in 
case 2. Black nodes are not included in the analysis because they already 
have an outflow in the original network. B) Changing of the index of the 
smallest output-complete substructure containing a randomly selected 
chemical by adding an outflow of 2-oxoglutarate. The horizontal axis is the 
index before the addition, and the vertical axis is the index after the addition.
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concentration (Fig. 5C). In the original system, the sum of Erk and 
ErkPP does not vary over time, but after the addition of the outflow 
of ErkPP, this quantity is no longer conserved. If an output- 
complete substructure contains ErkPP, its index does not change 
due to the structural modification because it follows case 
4. When Erk but not ErkPP is present in the substructure, case 5 
is induced, and its index increases by one. Substructures that do 
not contain Erk or ErkPP follow only case 1 since new outflow is 
not included in them. In summary, the index change of all output- 
complete substructures is limited to no change or +1; thus, we can 
capture new or lost buffering structures by focusing on output- 
complete substructures with an index of 0 or − 1.

We examined which case output-complete substructures with 
the index of 0 or − 1 follow (Table S4). In the new system, the sub
structure shown by the blue rectangle in Fig. 5B is the smallest 
buffering structure containing reaction 1; thus, the activation of 
reaction 1 does not influence the concentration of ErkPP. This 
result indicates that if the degradation rate of ErkPP is high and 

non-negligible, the activation of reaction 1 does not change the 
concentration of ErkPP, and signals from outside the cell are not 
normally transmitted to the nucleus. In other words, the slow deg
radation of ErkPP is important for the MAPK signaling pathway to 
function.

Numerical simulations of the dynamics in the new network 
demonstrate that the concentration of ErkPP temporarily in
creases when reaction 1 is activated, but its concentration at the 
steady state remains unchanged before and after the activation 
of reaction 1 (Fig. 5D). Notably, when the calculation is performed, 
we added an intake reaction of Erk to the system for the existence 
of a positive steady state in addition to the outflow of ErkPP, 
and we confirmed that the addition of this intake reaction to a 
network with the outflow of ErkPP does not change the index of 
any output-complete substructures. This example illustrates 
that the difference in the structure of the network, whether a 
protein degradation reaction is included or not, can significantly 
change the sensitivity of the network.
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Fig. 5. A) MAPK network. Solid lines represent state transition reactions and dotted lines represent activation or inhibition. The substructure enclosed by 
the line represents the smallest buffering structure containing reaction 1. B) Network with the outflow of ErkPP. The substructure enclosed by the line 
represents the smallest buffering structure containing reaction 1. C) Numerical simulation result of the dynamics in the network shown in (A). The 
parameter of reaction 1 is perturbed at time t = 100. At t = 100, the dynamics of the network before perturbation reached a steady state. The frame of the 
numerical simulation result is thickened if the steady-state value differs before and after the perturbation to the reaction parameter. D) Numerical 
simulation result of the dynamics in the network with the outflow of ErkPP shown in (B). The reaction constants are the same as in (C). The frame of the 
numerical simulation result is thickened if the steady-state value differs before and after the perturbation to the reaction parameter. E) Changing of the 
index of the smallest output-complete substructure containing a set of randomly chosen chemicals by the addition of the outflow of ErkPP. Each dot 
represents an output-complete substructure with randomly chosen chemicals. The horizontal axis is the index before the addition, and the vertical axis 
is the index after the addition.
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In addition to the buffering structure previously examined, 
there are more than 28 − 1 output-complete substructures in the 
system. We calculated how the index of each output-complete 
substructure is altered by adding the outflow of ErkPP (Fig. 5E). 
First, we chose four chemicals randomly from the MAPK network 
and identified the smallest output-complete substructure con
taining the selected chemicals. Subsequently, on the new system 
with an outflow of ErkPP, we found the smallest output-complete 
substructure that includes the selected chemicals. Then, we cal
culated the index values of those two substructures. By repeating 
the choice of chemicals, we obtained a set of index changes shown 
in Fig. 5E. The points on the straight line indicate cases where the 
index did not change, the points above indicate cases where the 
index increased, and the points below indicate cases where the in
dex decreased. As expected from the argument above, there are 
no points below the line.

Discussion
We analyzed the effect of network alterations on the sensitivity of 
a reaction network using the SSA. We found that the addition of 
an outflow may induce a change in the index of output-complete 
substructures that exist in a reaction system. The index change is 
classified into five different patterns depending on the structure of 
the network of the system. A buffering structure (i.e. a regulatory 
module) may be created or disappear when the index change is 
not zero, and it induces a qualitative and macroscopic change in 
the response of a system to modulations of enzymatic activity.

By focusing on the index change of output-complete substruc
tures, we can predict the creation or loss of buffering structures in
duced by the addition of an outflow. There is at least one 
output-complete substructure for all possible chemical subsets, 
whose total number is 2 M(Γ)| | − 1. Using our result, we calculated 
the effect of a structural modification of the network on sensitivity 
for all those substructures simultaneously. Since the value of the 
index change is limited to +1 (case 5), − 1 (case 2), or no change 
(cases 1, 3, and 4), all new or lost buffering structures can be iden
tified by examining output-complete substructures with the index 
of +1, − 1, or 0 in the original network. We can also identify new 
outflows that influence the index of selected substructures by util
izing our result in reverse.

We applied our result to biological networks to evaluate the ef
fect of adding a degradation reaction to biological functions. In the 
central metabolic system of mice, the TCA cycle remains a buffer
ing structure even in the presence of the outflow of chemicals out
side the TCA cycle, but its index can decrease when the outflow of 
chemicals inside the TCA cycle is added to the system. Based on 
this result, if the degradation rate of those chemicals is not negli
gible, energy metabolism driven by the TCA cycle cannot be inde
pendently regulated from other metabolic pathways. However, it 
is debatable whether it is biologically plausible that the TCA cycle 
is a buffering structure.

The numerical calculation in Fig. 3 shows that the perturbation 
of a reaction from oxaloacetate to PEP (D and H) does not affect the 
concentration of substances in glycolysis if the TCA cycle is a buf
fering structure (Fig. 3D), while the perturbation influences gly
colysis if the TCA cycle is not a buffering structure (Fig. 3H). The 
reaction that transforms oxaloacetate to PEP is related to the glu
cogenesis pathway, which is activated when a cell lacks glucose 
and needs to synthesize glucose and other substances included 
in the glycolysis pathway. Considering this, the TCA cycle may 
not be a buffering structure for the regulation of glucogenesis by 
the reaction from oxaloacetate to PEP.

In the MAPK network, the addition of an outflow of ErkPP in
creased the index of a substructure, including Erk and the state 
transition reaction from Ras-GDP to Ras-GTP, but not ErkPP. The 
MAPK signal transduction network is activated when cells receive 
the activation signal of the reaction from Ras-GDP to Ras-GTP, and 
it leads to the phosphorylation of Erk, resulting in the regulation of 
gene expressions by ErkPP. From our result, if the degradation rate 
of ErkPP is high, the extracellular signal cannot change the con
centration of ErkPP at a steady state, and the MAPK signaling path
way does not properly function. This indicates that if we could 
artificially raise the degradation rate of ErkPP, then the extracellu
lar signal would not activate the Erk signaling pathway. Since mu
tations that constantly activate the Erk signaling pathway are 
found in some kinds of cancer cells, our result could be used for 
new cancer therapies (24).

If the index of a buffering structure increases with case 5, and a 
substructure with a positive index arises, the A-matrix becomes 
singular, and the entire system cannot be analyzed by the SSA 
(“Regularity of A-matrix and substructure with positive index” in 
the Methods section). Therefore, we should be careful when add
ing an outflow of the chemicals that constitute conserved quan
tities. Although the relationship between the singularity of the 
A-matrix and the existence of the positive steady state of the sys
tem remains elusive, most networks with singular A-matrices do 
not possess any positive steady states.

Although we focused on the change in sensitivity by the addition 
of an outflow, the effect of adding a reaction other than the outflow 
can also be analyzed from the viewpoint of the change in the index 
of output-complete substructures. For example, consider adding a 
general reaction in which both substrates and products are present 
in the original system and check the change in the index of a sub
structure γ. If γ does not contain the substrate of the new reaction, 
the number of reactions and cycles in γ remains unchanged, 
but the number of conserved quantities may change; thus, the in
dex change is χ(Γ′) − χ(Γ) = +1 or 0. Therefore, if γ is a buffering 
structure, there is a risk that an output-complete substructure 
with a positive index will arise, making the entire system 
unanalyzable.

In this study, we considered the addition of degradation reac
tions as a modification of a chemical reaction network. In prin
ciple, degradation reactions should be present in all chemicals. 
However, depending on the chemical reaction system and time 
scale of interest, the degradation reactions of some chemicals 
may be considerably slow to be interpreted as non-existent. The 
method we have developed in this article rather gives criteria for 
determining whether a degradation reaction should exist for 
each chemical. For example, in the MAPK signaling pathway, if 
the degradation reaction of ErkPP exists, the extracellular signal 
is not transmitted to ErkPP at a steady state. This implies that 
the degradation reaction of ErkPP should be regarded as negligibly 
slow compared to the phosphorylation reaction to understand the 
effect of the growth factor on Erk.

Because most biological networks are large and complex, in 
typical theoretical studies, a subsystem of interest is selected, 
and a mathematical model is developed for that subsystem. 
However, it is often not tested on how robust the obtained theor
etical conclusions are to the choice of a subsystem. In this study, 
we established a general rule that determines how the system’s 
behavior changes with the addition of outflows. This rule provides 
a systematic understanding of how the selection of subnetworks 
affects sensitivity. If experimental data on sensitivity is available, 
by examining the consistency between the experimental data 
and the theoretical expectations, we can verify whether the 
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subsystem is appropriately chosen or can predict whether un
known outflows should be present or not.

Methods
The dynamics of chemical reaction system
The time evolution of chemical concentrations x1, . . . , xM in a 
chemical reaction system is described by an ordinary differential 
equation system (14, 19, 25, 26), which is expressed as

dxm

dt
=
􏽘N

n=1

νmnrn, (m = 1, . . . ,M), (2) 

where r1, . . . , rN are the reaction rates and νmn is called stoichio
metric coefficients. If the stoichiometry of reaction n among 
chemicals X1, . . . ,XM is

yn
1X1 + · · · + yn

MXM → ỹn
1X1 + · · · + ỹn

MXM,

νmn is defined as

νmn = ỹn
m − yn

m.

The reaction rate rn of a reaction n depends on the concentration 
of chemicals x and a specific parameter kn, and it is described as 
rn(x; kn). The parameter kn represents the activity or expression 
level of the enzyme catalyzing the reaction n. Mass-action law ki
netics and Michaelis Menten kinetics are used for modeling reac
tion rate functions. However, in the SSA, we do not assume any 
specific kinetics for all reactions. Our formalization includes any 
regulatory interactions regardless of specific types such as com
petitive, noncompetitive, or uncompetitive.

Eq. 2 is also described as

dx
dt
= νr (3) 

and ν is called the stoichiometric matrix.

Mathematical background of the structural 
sensitivity analysis
The SSA enables us to know how the concentrations of chemicals at 
a steady-state change when reaction parameters are perturbed sole
ly from the network structure of the original system. We consider a 
steady state of the Eq. 3. The reaction rate r∗ at a steady state satisfies 
νr∗ = 0 and is included in ker ν = {v ∣ νv = 0}. When a basis of ker ν is 
selected as {c1, . . . , cK} , r∗ is expressed using coefficients μ1, . . . , μK,

r∗ =
􏽘K

i=1

μici.

If coker ν: = {v|v⊤ν = 0} is nontrivial, the value of dl ∈ coker ν does not 
change in time. Thus, a basis of coker ν = {d1, . . . , dKC } is called con
served quantities.

Let A be a matrix defined as  

A =

∂r
∂x

􏼌
􏼌
􏼌
􏼌
x=x∗

c1 . . . cK

d⊤
1

..

.
0

d⊤
Kc

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

This matrix is always square because the size of ν is M × N and 
rank ν = N − K = M − Kc holds from rank-nullity theorem. 
Notably, whether each component of the matrix is zero or nonzero 

is determined solely by the network structure. That is, ∂rn
∂xm 

is 

identically zero when the rate of reaction n does not depend on 
the concentration of chemical m and nonzero when it does. The 
cycles and conserved quantities cn and dn are determined from 
the stoichiometric matrix.

When the A-matrix is regular, the change of concentrations 
and reaction rates by a parameter modulation is given by

δ1x · · · δN+KC x
δ1μ · · · δN+KCμ

􏼒 􏼓

∝ − A−1 ≡ S.

Whether the response of a concentration or reaction rate to a par
ameter modulation is zero or nonzero can be determined from the 
distribution of nonzero elements in the S-matrix. The nth column 
of the S-matrix shows how the steady-state concentration of the 
chemical and reaction rates change when the parameter of nth re
action kn is modulated (13). These are solely determined from the 
distribution of the zero (nonzero) components of the S-matrix (i.e. 
the structure of the reaction network).

Mathematical definition of the buffering structure
Let the entire chemical reaction system be Γ, and an output- 
complete substructure γ consisting of a set of chemicals M(γ) and 
a set of reactions R(γ) in Γ. γ is output-complete if it contains all re
actions whose reactants are in M(γ). For example, in the network 
shown in Fig. 2B case 1, a subnetwork {A}, {2}

( 􏼁
satisfies the output- 

complete condition.
From Eq. 3, the stoichiometric matrix ν has rows corresponding 

to chemicals and columns corresponding to reactions. We define 
the matrix νR(γ) as a submatrix of ν consisting of only the columns 
corresponding to R(γ), and νM(Γ)\M(γ) is a submatrix of ν constructed 
from the deletion of rows corresponding to M(γ). The number of 
cycles in γ is defined as

Ncyc(γ) := dim ker νR(γ), (4) 

and the number of conserved quantities is expressed as

Ncons(γ) := dim coker ν − dim coker νM(Γ)\M(γ). (5) 

In the case of mono-molecular reaction networks, the cycle in our 
definition coincides with the cycle in graph theory by introducing a 
new node that corresponds to the outer part of the system. With 
such a new node, inflow is expressed as an edge from outside to a 
chemical, and outflow is an edge from chemical to outside. Note 
also that Ncons(γ) is not always equal to dim coker νM(γ). For example, 

in the network used at Fig. 2C cases 4 and 5, the sum of concentra
tions xA + xB + xC remains constant over time. The number of 
conserved quantities in a substructure ({A}, {1}) is dim coker 
ν − dim coker νB,C = 1, which is different from dim coker νA = 0. 
For a substructure γ that is output-complete, we define its index 
as Eq. 1. An output-complete substructure γ is a buffering structure 
if χ(γ) = 0 holds. The modulation of the reaction parameters and 
conserved quantities in the buffering structure γ do not affect the 
concentration of chemicals outside γ (14, 19).

This means that changes in the activity of enzymes catalyzing 
the reactions in the buffering structure do not alter the concentra
tion of chemicals and rate of reactions outside the buffering struc
ture. Substructures in the network with an index less than 0 do not 
have the properties of buffering structures. Furthermore, if there 
is even one substructure with an index greater than 1, the 
A-matrix reflecting the network structure is singular, making it 
impossible to analyze sensitivity by the SSA (“Regularity of 
A-matrix and substructure with positive index” in the Methods 
section).
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Classification of the index change
For a given original system Γ, we consider adding an outflow to a 
chemical m∗, which does not have outflows originally. The altered 
system is referred to as Γ′. For an output-complete substructure γ 
with M(γ) and R(γ) in Γ, we define the corresponding output-complete 
substructure γ′ with M(γ′) and R(γ′) in Γ′ as follows: M(γ′) in γ′ is iden
tical to M(γ) in γ. R(γ′) is identical to R(γ) if M(γ) (or M(γ′)) does not con
tain m∗, while R(γ′) is the union of the new outflow and R(γ) if M(γ) 
contains m∗. Obviously, γ′ is output-complete by this definition.

The change in the index is expressed as

χ(γ′) − χ(γ) = − (|R(γ′)| − |R(γ)|)+ (Ncyc(γ′) − Ncyc(γ))
− (Ncons(γ′) − Ncons(γ)).

The change in the number of reactions ( R(γ′)
􏼌
􏼌

􏼌
􏼌 − R(γ)

􏼌
􏼌

􏼌
􏼌) is +1 or 0 de

pending on whether R(γ′) includes the new outflow or not. The new 
outflow is included in γ only when m∗ is in it. The change in the 
number of cycles (Ncyc(γ′) − Ncyc(γ)) is +1 if a new cycle constructed 

from the new outflow is created in the system or 0 otherwise. The 
change in the number of conserved quantities Ncons(γ′) − Ncons(γ) is 
−1 or 0 depending on whether substrates that construct conserved 
quantity with m∗ is included in M(γ) or not.

1. Cases when γ contains m∗

In those cases, the new outflow of m∗ is in the γ′; hence,

R(γ′)
􏼌
􏼌

􏼌
􏼌 − R(γ)

􏼌
􏼌

􏼌
􏼌 = 1.

If the new outflow creates a new cycle in the substructure γ, 
the change in the number of cycles (Ncyc(γ′) − Ncyc(γ)) is +1, 
and 0 otherwise. If there is a conserved quantity constructed 
from m∗ in the original system Γ, the quantity is counted in 
the number of conserved quantities of the substructure γ. 
The change in the number of conserved quantities (Ncons(γ′) −
Ncons(γ)) is −1 since the quantity is not conserved after the 
addition of the outflow. If there is no conserved quantity con
structed from m∗ in γ, then the change in the number of con
served quantities is 0.

2. Cases when γ does not contain m∗

In these cases, the set of reactions of R(γ′) is identical to R(γ); 
therefore,

R(γ′)
􏼌
􏼌

􏼌
􏼌 − R(γ)

􏼌
􏼌

􏼌
􏼌 = 0 

and

Ncyc(γ′) − Ncyc(γ) = 0 

hold. The change in the number of conserved quantities is −1 
if there is a chemical that constructs a conserved quantity 
with m∗, or 0 otherwise.

The above argument for “Cases when γ contains m∗” does not 
exclude a case where the number of reactions increases by one, 
the number of cycles increases by one, and the number of con
served quantities decreases by one. However, it can be proven 
that the numbers of cycles and conserved quantities do not 
change simultaneously.

We show that when the number of cycles increases, the num
ber of conserved quantities does not change. We can use the stoi
chiometric matrix ν of Γ and the unit vector em∗ of which the 
element corresponding to m∗ is 1 and the others are zero to ex
press the stoichiometric matrix ν′ of Γ′ as

ν′ = (ν − em∗ ).

Here, we set the coefficient of m∗ in the chemical equation of the 
new outflow to 1, but it can take any positive integer without af
fecting the proof. Since the number of cycles in subsystem γ in
creases, we have

dim ker ν′R(γ′ ) − dim ker νR(γ) = 1.

Then from the rank-nullity theorem, we find that

R(Γ)
􏼌
􏼌

􏼌
􏼌 − rank ν < R(Γ′)

􏼌
􏼌

􏼌
􏼌 − rank ν′ = R(Γ)

􏼌
􏼌

􏼌
􏼌+ 1 − rank ν′, 

i.e. rank ν′ − rank ν < 1. Because rank ν′ ≥ rank ν, we conclude that 

rank ν = rank ν′. This means that M(Γ)
􏼌
􏼌

􏼌
􏼌 − rank ν = M(Γ′)

􏼌
􏼌

􏼌
􏼌 − rank ν′,

that is, the number of conserved quantities in the network remains 

unchanged. Furthermore, when a vector d satisfies ν′⊤d = 0, it is 

also a member of ker ν⊤. Therefore, when we choose a basis of 

ker ν′⊤, its basis vectors are included in ker ν⊤. Since the rank of 

ker ν⊤ is equal to that of ker ν′⊤, ker ν⊤ is also spanned by the basis 

of ker ν′⊤. This leads to

ker ν⊤ = ker ν′⊤.

To finalize, we show that the number of conserved quantities in γ 
and that in γ′ is the same. Since em∗ has only nonzero entry in a 
row corresponding to m∗, ν′M(Γ)\M(γ) has an additional zero column 

compared to νM(Γ)\M(γ), i.e.

ν′M(Γ)\M(γ) = (νM(Γ)\M(γ) 0).

This leads to

dim coker ν′M(Γ)\M(γ) = dim coker νM(Γ)\M(γ).

This means that when the number of cycles in a substructure in
creases by one with a new outflow, the number of conserved quan
tities of the substructure does not change.

In summary, when γ contains m∗, either cases 2, 3, or 4 occurs, 
and the case where the number of cycles and the number of con
served quantities simultaneously change cannot occur. When γ 
does not contain m∗, either case 1 or case 5 occurs. All notations 
used in this article and their meanings are listed in Table 1.

Regularity of A-matrix and substructure with 
positive index
Suppose that there exists an output-complete substructure γs that 
has a positive index in the original system. Then, we can rearrange 
rows and columns to transform the A-matrix as

A→ Aγs
∗

0 ∗

􏼒 􏼓

.

The number of rows of Aγs 
is smaller than the number of columns 

because the index of γs is positive. It means that A-matrix is singular.

Numerical calculation of the S-matrix
The derivatives of reaction rate functions ∂r

∂x

􏼌
􏼌
􏼌
x=x∗

appear in the def
inition of the A-matrix. The SSA does not require the information 

regarding specific values of ∂ri
∂xm

􏼌
􏼌
􏼌
x=x∗

and only assumes that 
∂ri

∂xm

􏼌
􏼌
􏼌
x=x∗

>0 if m is the substrate of reaction i. For a given reaction 

network, in principle, qualitative sensitivity (i.e. whether ele
ments of the S-matrix are zero or nonzero [and sometimes 
whether they are positive or negative]) can be determined by sym
bolically expressing the inverse of the A-matrix (i.e. the S-matrix) 
in terms of ∂ri

∂xm

􏼌
􏼌
􏼌
x=x∗

.
However, symbolic calculation is computationally expensive 

for large networks, such as a central metabolic system. 
Therefore, we assigned real random numbers between 0 and 1 
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to ∂ri
∂xm

􏼌
􏼌
􏼌
x=x∗

appearing in the A-matrix and then numerically com

puted the S-matrix to speed up the computation. Therefore, to 
speed up the computation, we assigned real random numbers be
tween 0 and 1 to ∂ri

∂xm

􏼌
􏼌
􏼌
x=x∗

appearing in the A-matrix and then nu
merically computed the S-matrix.
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ν Stoichiometric matrix of Γ
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R(γ) Reactions in γ
Ncyc(γ) Number of cycles in γ defined in Eq. 4
Ncons(γ) Number of conserved quantities in γ defined in Eq. 5
χ(γ) Index of γ defined in Eq. 1
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