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Abstract 27 

Objective: We aimed to investigate the muscle coordination differences between a control group and patients with 28 

mild and severe knee osteoarthritis (KOA) using muscle synergy analysis and determine whether muscle coordination 29 

was associated with symptoms of KOA. 30 

Method: Fifty-three women with medial KOA and 19 control patients participated in the study. The gait analyses and 31 

muscle activity measurements of seven lower limb muscles were assessed using a motion capture system and 32 

electromyography. Gait speed and knee adduction moment impulse were calculated. The spatiotemporal components 33 

of muscle synergy were extracted using non-negative matrix factorization, and the dynamic motor control index during 34 

walking (walk-DMC) was computed. The number of muscle synergy and their spatiotemporal components were 35 

compared among the mild KOA, severe KOA, and control groups. Moreover, the association between KOA symptoms 36 

with walk-DMC and other gait parameters was evaluated using multi-linear regression analysis. 37 

Results: The number of muscle synergies were lower in mild and severe KOA compared with those in the control 38 

group. In synergy 1, the weightings of biceps femoris and gluteus medius in severe KOA were higher than that in the 39 

control group. In synergy 3, the weightings of higher tibial anterior and lower gastrocnemius lateralis were confirmed 40 

in the mild KOA group. Regression analysis showed that the walk-DMC was independently associated with knee-41 

related symptoms of KOA after adjusting for the covariates. 42 

Conclusions: Muscle coordination was altered in patients with KOA. The correlation between muscle coordination 43 

and KOA may be attributed to the knee-related symptoms. 44 
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 45 

Key Points 46 

⚫ Patients with knee osteoarthritis (OA) experienced a deterioration in muscle coordination when walking. 47 

⚫ Loss of muscle coordination was associated with severe knee-related symptoms in knee OA. 48 

⚫ Considering muscle coordination as a knee OA symptom-related factor may provide improved treatment. 49 

 50 

Keywords: gait analysis, electromyography, muscle activity, non-negative matrix factorization, dynamic motor 51 

control index 52 

 53 

  54 
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Introduction 55 

Gait characteristics in knee osteoarthritis (OA) include decreased gait speed, stride length asymmetry, 56 

decreased double knee action, and increased external knee adduction moment (KAM) [1, 2]. Increased KAM is a risk 57 

factor for knee OA progression and functional decline [3-5]. In medial knee OA, it is associated with knee joint 58 

instability, causing greater muscle co-contraction [6], which has been observed between agonist and antagonist 59 

muscles in multiple lower extremity joints [7, 8]. Therefore, assessing KAM and multi-joint muscle activity dynamics 60 

is important when evaluating the gait characteristics in knee OA. 61 

For individuals with knee OA, increased co-contraction during walking is associated with cartilage loss and 62 

severe OA [9, 10]. Co-contraction is quantified as the difference in electromyography (EMG) amplitude between 63 

agonist and antagonist muscles and accounts for muscle activation patterns [11]. The co-contraction index is used to 64 

evaluate the muscle activation pattern in a pair of agonist and antagonist muscles, but only between two muscles. A 65 

dimensionality reduction technique can be used to quantify muscle activity patterns among numerous muscles based 66 

on the covariant component of muscle activations, providing a few blocks of muscle coordination called muscle 67 

synergy [12-14]. Because muscle synergy represents several muscle activation patterns in an integrated fashion, a 68 

decrease in muscle synergy number represents a lack of muscle coordination and an abnormal muscle co-contraction 69 

among numerous muscles [15, 16]. Moreover, since muscle synergy analysis does not require normalization by the 70 

EMG amplitude during maximum isometric voluntary contraction, it can be used for patients with painful knee OA 71 

[17]. Related studies are scarce, only Kubota et al., [18] have evaluated the muscle synergy number during walking in 72 
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patients with knee OA. They observed fewer muscle synergies in patients with knee OA than in healthy young 73 

individuals, whereas no difference in number was observed when compared with healthy older individuals. However, 74 

whether there are differences in the muscle activation patterns associated with worsening radiographic knee OA 75 

remains unknown. 76 

Coordination of muscle activity is altered in patients with musculoskeletal pain, such as femoroacetabular 77 

impingement [19]. Previous studies [20, 21] have suggested that a higher co-contraction was related to severe knee-78 

related symptoms. Since knee OA-related pain interacts with alterations of the central nervous system [22, 23], the 79 

coordination of muscle activity patterns during walking may deteriorate in patients with knee OA due to pain. However, 80 

to our knowledge, no studies have clarified the association between knee-related symptoms and muscle activity 81 

patterns during walking using muscle synergy analysis in patients with knee OA. 82 

This study aimed to determine 1) the difference in muscle activation patterns during walking between 83 

healthy control and mild-to-severe knee OA groups, assessed using muscle synergy analysis, and 2) the association of 84 

muscle activation patterns with knee-related symptoms in patients with knee OA. We hypothesized that the number 85 

of muscle synergies decreased with severe knee OA and that loss of muscle coordination during walking was 86 

associated with severe knee-related symptoms. 87 

 88 

 89 

Material and methods 90 
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Study participants 91 

This study employed a case-controlled design. Fifty-three women with symptomatic medial knee OA were recruited 92 

from two community orthopedic clinics. All patients had knee OA symptoms and were assessed radiographically using 93 

the Kellgren-Lawrence (KL) grading system for both knees. The inclusion criteria for the knee OA group included 94 

symptomatic knee OA with KL grade ≥ 2 and ability to live independently and walk without assistive devices. For 95 

bilateral knee OA, data on the more severe side were taken. If both knees had equal radiographic severity, the more 96 

painful side was selected. Then, patients with knee OA were classified based on the KL grade of the targeted knee 97 

side: mild OA group having a KL grade of 2 and severe OA group with KL grade of 3 or 4. Nineteen healthy controls 98 

were also recruited from local communities in Kyoto city and included those with a KL < 2, no history of knee pain, 99 

and ability to live independently and walk without assistive devices. The exclusion criteria for both groups were 100 

rheumatoid arthritis, surgical and fracture history for both limbs or the back, and neurological disorders. For the 101 

healthy control participants, the collected data related to the knee of their dominant leg. The dominant leg was defined 102 

as the leg of the foot they used to kick the ball, and the right leg was found to be dominant in all the healthy control 103 

participants. 104 

As physical characteristics, height and body weight measurements were recorded. Participants were 105 

instructed to remove their shoes and stand against a stadiometer while their height was recorded to the nearest 0.1 cm. 106 

Furthermore, they were instructed to wear light workout clothes and then stand on a scale while their weight was 107 

recorded to the nearest 0.1 kg. 108 



8 

 

The sample size was determined based on similar previous studies [17, 18]. Furthermore, due to the 109 

inclusion of five independent variables in the multiple regression analysis, 50 patients with knee OA (at least 10 110 

observations per variable) were required to clarify the association between muscle coordination and knee OA 111 

symptoms. 112 

All study procedures were approved by the Ethics Committee of the Kyoto University Graduate School of 113 

Medicine (R3014). Participants were informed of the purpose and procedures of this study and provided written 114 

informed consent. 115 

 116 

Gait analysis 117 

Participants were instructed to walk a 6-m walkway; data for gait analysis were obtained three times after sufficient 118 

practice. Kinetics data during comfortable gait were acquired using a motion capture system (Vicon; Oxford, UK) 119 

with force plate (9286A; Kistler, Switzerland). The 35 reflective markers were affixed to specific landmarks on the 120 

participant’s body according to the VICON Plug-in-gait full-body model set. Data from the reflective markers were 121 

acquired using eight infrared cameras with sampling at 200 Hz, and low-pass filtered at 6 Hz with 4th order, zero-lag 122 

Butterworth filter. The ground reaction force for calculating kinetics parameters was obtained from force plates 123 

embedded in the pathway, sampling at 1000 Hz, with low-pass filtered at 20 Hz at 4th order, zero-lag Butterworth filter 124 

[24]. We calculated the external KAMs using standard inverse dynamics to represent knee OA-related abnormal gait 125 

parameters. The time integral values of the KAMs during stance phase were calculated as KAM impulse (Nm S). The 126 
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KAM impulse on target knee side was extracted and normalized by body weight (kg) by converting the value to Nm 127 

S/kg, and finding the average of the three trials. 128 

 129 

EMG analysis 130 

Surface EMG data were recorded synchronously with motion capture system. EMG signals were acquired from seven 131 

muscles including the gluteus medius (Gmed), vastus lateralis (VL), rectus femoris, vastus medialis, long head of 132 

biceps femoris (BF), tibialis anterior (TA), and gastrocnemius lateralis (GL), with sampling at 1000 Hz using wireless 133 

telemetry EMS system (Telemyo DTS; Noraxon, USA). After cleaning skin with alcohol, disposable electrodes (Blue 134 

Sensor; Medicotest, Denmark) were attached to each muscle on target side of lower extremity according to SENIAM 135 

guidelines (Supplemental file 1). The EMG signals were processed, and then the EMG envelopes were created (Figure 136 

1). 137 

 138 

Muscle synergy extraction 139 

The muscle synergies were extracted from the EMG signal matrix (7 muscles × 300 temporal samples) using non-140 

negative matrix factorization (NMF) [25]. NMF assumes that the muscle activation patterns (E) comprised a linear 141 

combination of the muscle weightings (W) and activation coefficients (C) of a muscle synergy: 142 

𝐸 = 𝑊 × 𝐶 + 𝑒 (𝑊 ≥ 0, 𝐶 ≥ 0) (1) 143 

Where E is p × n matrix, with p and n indicating the number of muscles and temporal gait points, respectively; W is p 144 
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× k matrix of the muscle weighting, representing the spatial component; and C is k × n matrix of the activation 145 

coefficient, representing the temporal component, k is the number of muscle synergies, while e is the residual. This 146 

technique was repeated 20 times; the average data was used for further analysis because of dependency on the initial 147 

value. NMF was performed using a custom programming software (Matlab R2019b; MathWorks, USA). The EMG 148 

signal of each muscle was scaled before unit variance to avoid bias of the weighting on the muscle with high variance 149 

and inversely scaled after NMF.  150 

We extracted the muscle synergies by varying the number from one to seven. A variance accounted for 151 

(VAF) was calculated between the measured and reconstructed EMG data to evaluate decomposition accuracy of 152 

NMF: 153 

𝑉𝐴𝐹 =  (1 −
∑ ∑ (𝑒𝑖,𝑗)

2𝑛
𝑗=1

𝑝
𝑖=1

∑ ∑ (𝐸𝑖,𝑗)
2𝑛

𝑗=1
𝑝
𝑖=1

) (2) 154 

We defined the number of muscle synergy as that reaching over 90% of the VAF. To calculate the group-wise average 155 

of muscle synergy for the knee OA groups, a functional sorting was performed by grouping the muscle weighting of 156 

synergy based on the cosine similarity between an arbitrary subject and the remaining subjects, where the muscle 157 

weightings with highest cosine similarity were classified into the same category. Then, we averaged the sorted muscle 158 

weighting and activation coefficient to calculate the group-wise averages for the knee OA groups. 159 

The dynamic motor control index during walking (walk-DMC) was computed as a summary metric of 160 

synergy complexity. The walk-DMC is a z-score based on VAF of one synergy (VAF1), the average (VAFAVE), and the 161 

standard deviation (VAFSD) of VAF1 for control group: 162 
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𝑤𝑎𝑙𝑘 − 𝐷𝑀𝐶 = 100 + 10 (
𝑉𝐴𝐹𝐴𝑉𝐸 − 𝑉𝐴𝐹1

𝑉𝐴𝐹𝑆𝐷

) (3) 163 

Thus, the average walk-DMC score of the control group was 100; each 10 deviations represent one standard deviation 164 

from the control group. We used this summary metric for further analysis because the walk-DMC is strongly associated 165 

with clinical assessment and treatment of motor control [26, 27]. 166 

 167 

Self-reported knee-related symptoms 168 

The Knee Society’s Knee Scoring System (KSS) 2011 was used to assess knee-related symptoms. The KSS 2011 169 

Japanese edition is a patient-reported outcome tool for knee conditions [28]. The symptom category in KSS comprises 170 

the degree of knee pain during walking and climbing stairs and knee stiffness. KSS symptom scores range from 0 to 171 

25 points, with lower scores representing worse symptoms. 172 

 173 

Statistical analysis 174 

All values were expressed as means (standard deviations; SDs). All statistical analyses were conducted with statistical 175 

software (SPSS 25.0; SPSS Japan, Japan). The level of statistical significance was set at p<0.05. 176 

A one-way analysis of variance (ANOVA) was applied to test differences between the control and knee OA 177 

subgroups in terms of participant characteristics, number of synergies, walk-DMC, KAM impulse, and gait speed; 178 

post-hoc comparisons were performed. Levene’s test was used to confirm equality of variances; depending on the 179 

result, whereas the Tukey or Games-Howell test was used for post-hoc comparison. Using the statistical parametric 180 
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mapping (SPM; SPM1d version 4) [29], one-way ANOVAs were conducted to assess the statistical differences 181 

between the mild knee OA, severe knee OA, and control groups in the temporal component in synergy 1-3. Then, 182 

post-hoc two-sample SPM{t} tests were conducted to compare the waveform of synergy 1-3 between the groups. 183 

Significant group differences indicate regions where SPM{t} values exceeded the critical threshold. Furthermore, for 184 

spatial component in synergy 1-3, one-way ANOVAs and post-hoc tests were conducted to test differences between 185 

the three groups in each muscle. 186 

To determine the relationship between knee-related symptoms and muscle coordination in knee OA, we 187 

conducted a multiple linear regression analysis with KSS symptom scores as the dependent variable. The regression 188 

analyses included the walk-DMC and KAM impulse as independent variables, with adjustment variables for gait speed, 189 

age, and KL grade.  190 

 191 

 192 

Results 193 

Table 1 presents the participant and gait characteristics in the healthy control and knee OA subgroups. The mild and 194 

severe knee OA groups had a higher body weight than the control group (control vs mild, p=0.010; 95% confidence 195 

interval [CI], 1.56-13.76: vs severe, p=0.038; 95%CI, 0.27-12.00); no difference was observed in age between groups 196 

(p=0.275 to 0.863). The KSS symptom scores were also lower in mild and severe knee OA groups than in the control 197 

group (control vs mild, p<0.001; 95%CI, -10.21 to -3.74: vs severe, p=0.038; 95%CI, -12.00 to -0.27), but no 198 
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difference was observed between mild and severe knee OA groups (p=0.204; 95%CI, -4.99 to 0.82). 199 

The mild and severe knee OA groups had fewer synergies than the control group (Table 1). Supplemental 200 

file 2 shows the number of patients in terms of synergies in each group: most healthy controls had three to four 201 

synergies; mild knee OA, three; and severe knee OA, two to three. The walk-DMC was also lower in mild and severe 202 

knee OA groups compared with that of the control group (control vs mild, p=0.004; 95%CI, -20.80 to -3.28: vs severe, 203 

p<0.001; 95%CI, -26.55 to -9.71). Additionally, the KAM impulse was higher in the severe knee OA group compared 204 

with that of both the control and mild knee OA groups (severe vs control, p<0.001; 95%CI, 0.05-0.14: vs mild, 205 

p<0.001; 95%CI, 0.03-0.12). Gait speed did not differ between groups (p=0.171 to 0.969).  206 

Figure 1 shows EMG envelopes of individual muscles during gait cycle for the control, mild OA, and severe 207 

OA groups. Figure 2 shows the temporal component in synergy 1-3 in each group. With the one-way ANOVA using 208 

SPM for the temporal component, main effects were confirmed in synergy 1 and 3 (Supplemental file 3). In post-hoc 209 

two-sample SPM{t} tests, the early stance phase (18-21% of gait cycle) in synergy 1 was different between the healthy 210 

control and severe knee OA groups; the early swing phase in synergy 3 (60-75% of gait cycle) was different between 211 

the control and mild knee OA groups. Figure 3 indicates the results of spatial components between the three groups 212 

in synergy 1-3. In synergy 1, the weightings of BF and Gmed in severe knee OA were higher than those in healthy 213 

controls (in BF, p=0.002; 95%CI, 0.12-0.57: in Gmed, p=0.030; 95%CI, -0.36 to -0.02); the weighting of VL was 214 

lower in severe knee OA than in mild knee OA (p=0.009; 95%CI, -0.41 to -0.05). In synergy 3, the weightings of TA 215 

in knee OA groups were higher than those in healthy controls (control vs mild, p<0.001; 95%CI, 0.29-0.75: vs severe, 216 
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p=0.003; 95%CI, 0.10-0.54); the weighting of GL was lower in mild knee OA than in healthy controls (p=0.019; 217 

95%CI, -0.59 to -0.04). 218 

Multiple linear regression analysis showed that the walk-DMC (Beta [B], 0.13; p=0.023; 95%CI, 0.02-0.25) 219 

was independently associated with the KSS symptom score in knee OA after adjusting for the covariates, excluding 220 

the KAM impulse and gait speed (Table 2). 221 

 222 

 223 

Discussion 224 

To our knowledge, this study is the first to clarify the differences in muscle synergy of knee OA severities during 225 

walking and the association of muscle coordination with knee-related symptoms. In partial agreement with our 226 

hypothesis, the number of synergy and walk-DMC were lower in mild and severe knee OA groups compared with the 227 

values in the healthy control group, but did not differ between the knee OA groups. This result suggests that muscle 228 

coordination between multiple EMG activities in knee OA deteriorated. Additionally, a lower walk-DMC (the loss of 229 

muscle coordination during walking) was associated with severe knee-related symptoms in knee OA, supporting our 230 

hypothesis. These findings suggested that the loss of muscle coordination was an abnormal gait characteristic in knee 231 

OA, and its decrease was associated with more severe symptoms. 232 

Furthermore, patients with knee OA had fewer muscle synergies during walking compared with that of the 233 

healthy controls. Generally, the number of muscle synergies in normal walking is four to five [12, 30]. Most patients 234 
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with knee OA had three synergies during gait, which decreased as the severity of knee OA increased. Previous studies 235 

[31-33] have shown that muscle synergies decreased in patients with neurological and musculoskeletal disorders [19, 236 

34], including those with painful knee OA. There are currently no studies which have assessed the walk-DMC in 237 

patients with knee OA; however, a previous study reported a decline in walk-DMC with increasing severity of 238 

neurological impairment in patients with cerebral palsy [27]. Our results agreed that as the severity of a patient’s 239 

impairment increased the walk-DMC decreased. 240 

The results of the temporal component indicated that differences between groups were in the early stance 241 

phase of synergy 1 and early swing phase of synergy 3. Analysis of the spatial component showed higher BF and 242 

lower Gmed activities in severe knee OA in the early stance phase of synergy 1 than those in healthy controls. 243 

Additionally, in the early swing phase of synergy 3, there were higher TA and lower GL weightings in the knee OA 244 

groups compared with that of the healthy controls. Taken together, the lack of muscle coordination during walking in 245 

knee OA reflects altered muscle activity patterns during early stance and swing phases resulting from excessive and 246 

scanty EMG signals, respectively, in muscles that play a major role in each phase. 247 

Muscle activity of the BF in the early stance is high in knee OA [7, 35, 36]. An increased lateral knee muscle 248 

activity is protective against cartilage loss [10], suggesting that higher BF activity is a compensatory adaptation to 249 

medial knee joint stress. Meanwhile, decreased Gmed activity in stance phase increases medial knee joint stress [37]. 250 

Decreased contribution of the Gmed in stance limb causes pelvic drop in contralateral swing limb and, consequently, 251 

increased KAM and worsening symptoms [38, 39]. Therefore, neuromuscular re-adaptation of the Gmed is necessary 252 
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for loss of muscle coordination in the early stance in patients with knee OA. Furthermore, knee OA groups had higher 253 

TA and lower GL weightings in the early swing phase of synergy 3 compared with that of the healthy controls. As TA 254 

muscle activity in the early swing phase plays a role in lifting the forefoot from the ground [40], excessive muscle 255 

activity of TA accompanied by relatively reduced GL activity could contribute to toe clearance during the swing phase. 256 

This finding suggests that alteration of ankle muscle coordination is also a compensatory adaptation in knee OA. 257 

The important finding of this study was that knee-related symptom severities in patients with knee OA were 258 

associated with lower muscle coordination, but not mechanical loading of the knee. This is the first study to 259 

demonstrate the relationship between pain and muscle coordination during walking in patients with knee OA. For 260 

pain-related muscle activity changes, acute pain induced by hypertonic saline injection did not change muscle 261 

coordination [41, 42], whereas patients with femoroacetabular impingement and protracted pain had poor muscle 262 

coordination despite no kinematic changes [19]. These findings could help interpret chronic pain in musculoskeletal 263 

disorders due to poor muscle coordination. Chronic knee OA pain and changes in morphology and blood flow in the 264 

brain are closely related [23, 43], suggesting an interaction between changes in the central nervous system and 265 

decreased muscle coordination. In contrast, although the KAM impulse was higher in severe knee OA than in healthy 266 

controls, our results ruled out the association between knee-related symptom and KAM impulse. Higher KAM impulse 267 

in severe knee OA was associated with worsening knee-related symptoms, whereas no association was found in mild 268 

knee OA [44]. Since half the knee OA patients had a mild form of the disease, KAM impulse may not have been 269 

associated with knee-related symptoms. As a clinical indication, improving muscle co-contraction by training 270 
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intervention may relieve knee-related symptoms [21]. Although training strategies that improve muscle synergy during 271 

walking should be developed, it should be emphasized that muscle synergy is a changeable factor. 272 

This study had several limitations. First, the cross-sectional design hindered our ability to clarify whether 273 

knee OA caused poor muscle coordination during walking. Thus, future studies should examine the association 274 

between knee OA progression and altered muscle coordination, focusing on knee-related symptoms. Second, the 275 

measured number of muscles was limited to seven in the symptomatic lower limb. The muscle synergy analysis highly 276 

depends on the measured muscle. Therefore, to better understand muscle coordination in knee OA, trunk and 277 

contralateral lower limb muscles should be included. 278 

In conclusion, the number of muscle synergies were lower in mild and severe cases of knee OA compared 279 

with those in the control group. Altered muscle coordination for specific muscles was prominent in the early stance 280 

and swing phases of severe and mild OA, respectively. A lower walk-DMC (the loss of muscle coordination during 281 

walking) was independently associated with knee-related symptoms. Therefore, understanding the muscle 282 

coordination mechanism behind gait abnormalities could lead to improved therapeutic interventions for patients with 283 

knee OA. Future studies should focus on the association between altered muscle coordination and knee OA progression 284 

to gain greater insight into their correlation regarding knee-related symptoms. 285 

 286 
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Table 1. Participant and gait characteristics in the healthy control and knee OA subgroups 440 

  Control Mild OA Severe OA 

  n = 19 n = 24 n = 29 

Age, years 68.3 (8.6) 70.5 (6.4) 71.5 (6.6) 

Height, cm 152.0 (3.8) 156.7 (5.7) * 152.8 (7.6) 

Body weight, kg 49.0 (5.7) 56.7 (10.2) * 55.2 (8.0) † 

KSS symptom score, /25 23.7 (1.9) 16.7 (4.7) ** 14.6 (5.2) †† 

Number of synergies, n 3.37 (0.45) 3.00 (0.42) * 2.76 (0.58) †† 

Walk-DMC, % 100.0 (10.0) 88.0 (9.5) ** 81.9 (14.5) †† 

KAM impulse, Nm S/kg 0.17 (0.05) 0.18 (0.07) 0.26 (0.07) ††, ‡‡ 

Gait speed, m/s 1.69 (0.31) 1.51 (0.29) 1.53 (0.35) 

* p<0.05 and ** p<0.01, significantly difference compared with the healthy group 441 

† p<0.05 and †† p<0.01, significantly difference compared with the healthy group 442 

‡‡ p<0.01, significantly difference compared with the mild OA group 443 

 444 

Abbreviation: OA, osteoarthritis; KSS, knee scoring system; DMC, dynamic motor control; KAM, knee adduction 445 

moment. 446 

 447 



28 

 

Table 2. Association of the gait characteristics with knee symptom 448 

  B β p-value 95% CI 

Walk-DMC 0.13 0.34 0.023 [0.02, 0.25] 

KAM impulse -8.74 -0.13 0.393 [-29.11, 11.63] 

Gait speed 1.80 0.11 0.420 [-2.65, 6.25] 

Age 0.04 0.06 0.698 [-0.18, 0.27] 

KL grade 0.35 0.06 0.716 [-1.56, 2.26] 

A multiple linear regression analysis was conducted with KSS symptom scores as the dependent variable, and walk-449 

DMC, KAM impulse, and gait speed as independent variables, with adjustment variables for age and KL grade. 450 

 451 

Abbreviation: CI, confidence interval; DMC, dynamic motor control; KAM, knee adduction moment; KL, Kellgren-452 

Lawrence. 453 

  454 
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Figure legends 455 

Figure 1. EMG envelopes of individual muscles during gait cycle for the control, mild OA, and severe OA groups 456 

The EMG signal corresponding to one gait cycle was extracted based on the spatiotemporal gait parameters of the 457 

heel strike of targeted leg and the following heel strike of same leg. The EMG signals were processed using the band-458 

pass filter (zero-phase-lag 4th-order Butterworth filter from 20 to 450 Hz) and rectified. Then, the rectified EMG 459 

signals were low-pass filtered at 10 Hz using zero-phase lag 4th-order Butterworth filter to create EMG envelopes. 460 

The EMG envelopes of individual muscles were temporally normalized to 100 samples representing a percent gait 461 

cycle (1–100 %) by interpolation and normalized by the maximal value during the gait cycles. The EMG envelopes 462 

were concatenated for three gait cycles.  463 

 464 

 465 

Figure 2. The temporal component in synergy 1-3 466 

The temporal component in synergy 1-3. The waves indicate the activation coefficient calculated from the EMG 467 

signals during gait cycle. The temporal component (each solid line) indicates the mean value across all participants in 468 

each group.  469 

 470 

 471 

Figure 3. The spatial component in synergy 1-3 472 
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The spatial component (each bar) indicates the mean value across all participants in each group. 473 

* p<0.05 and ** p<0.01, significant difference between the healthy and mild OA groups 474 

† p<0.05 and †† p<0.01, significant difference between the healthy and severe OA groups 475 

‡ p<0.05 and ‡‡ p<0.01, significant difference between the mild and severe OA groups 476 

 477 
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Sensor locations for EMG acquisition in each muscle 

 

 

 Muscle Sensor location 

Gluteus medius 

(Gmed) 

Middle point of the line between the greater trochanter and the crista 

iliac 

Vastus lateralis 

(VL) 

Two thirds distal of the line between the anterior spina iliac superior 

and the lateral side of the patella 

Rectus femoris 

(RF) 

Middle point of the line between the anterior spina iliac superior and 

superior border of the patella 

Vastus medialis 

(VM) 

80% distal of the line between the anterior spina iliac superior and 

the medial knee joint space 

Biceps femoris 

(BF) 

Middle point of the line between the ischial tuberosity and the lateral 

epicondyle of the tibia 

Tibialis 

anterior (TA) 

One thirds proximal of the line between the tip of the fibula and the 

tip of the medial malleolus 

Gastrocnemius 

lateralis (GL) 

One thirds proximal of the line between the head of the fibula and 

the heel. 
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Histogram on number of synergies and participants in each group 

 

The horizontal axis indicates the number of synergies, and the vertical axis indicates the 

number of participants. Abbreviation: OA, osteoarthritis. 

 



Supplemental file 3 

 

The results of one-way analysis of variances and post hoc tests using the statistical 

parametric mapping against the temporal component in synergy 1-3 

 

The main effects and significant group differences indicate regions where SPM{F} and 

SPM{t} values exceeded the critical threshold (dashed line). Abbreviation: OA, 

osteoarthritis; SPM, statistical parametric mapping. 
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