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Abstract— A model that represents the shapes and positions
of organs or skeletal structures with a small number of
parameters may be expected to have a wide range of clinical
applications, such as radiotherapy and surgical guidance. How-
ever, because soft organs vary in shape and position between
patients, it is difficult for linear models to reconstruct locally
variable shapes, and nonlinear models are prone to overfitting,
particularly when the quantity of data is small. The aim of
this study was to construct a shape atlas with high accuracy
and good generalization performance. We designed a mesh
variational autoencoder that can reconstruct both nonlinear
shape and position with high accuracy. We validated the trained
model for liver meshes of 125 cases, and found that it was
possible to reconstruct the positions and shapes with an average
accuracy of 4.3 mm for the test data of 19 cases.

I. INTRODUCTION

A shape atlas of organs is a model that represents ge-
ometric information such as the positions and shapes of
organs and their interpatient variability with low-dimensional
parameters. Shape atlases are widely used in the fields
of medical image analysis and biomedical engineering. A
variety of atlases have been constructed using the concept
of statistical shape model (SSM) [1][2] and have been used
in medical image registration [3], surgical planning [4], and
prediction of tumor location in radiotherapy.

Methods for constructing an SSM are divided into two cat-
egories [5]: image-based methods [6] and mesh-based meth-
ods [7]. Image-based methods use medical images directly to
construct SSMs in the medical field. In addition, because im-
ages consist of structured pixels, it is easy to extract features
from them using filtering operations. However, the quantity
of data increases in proportion to the cube of the volume size,
making it difficult to construct high-resolution models and to
represent complex shapes and nonlinear and discontinuous
deformations between organs. In contrast, mesh-based meth-
ods require preprocessing steps, such as mesh generation
from medical images and deformable registration, to obtain
point-to-point correspondence [7]. In addition, calculation of
feature values is more complex because of the graph structure
of meshes. However, compared with images, meshes can
represent shapes with a very small amount of data, and
they have the feature that deformation is easy to handle.
This study employed a mesh-based model and focused on
its shape representation and generalization performance.
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In a mesh-based SSM, features are extracted from a
registered organ mesh using principal component analysis
(PCA) or independent component analysis (ICA), and the
shape variability of organs is expressed by the weighted
sum of the extracted features. However, most medical image
databases contain only hundreds of samples. In addition,
meshes have higher-dimensional data structures of vertices
in the three-dimensional (3D) space. Therefore, our method
targets high-dimensional and small-sample datasets. In addi-
tion, the shapes and positions of organs vary greatly between
patients. Because of this variation, it is difficult for linear
models such as PCA and ICA to represent large local
deformations. Although some studies have employed kernel
methods [7], nonlinear models are prone to overfitting to a
limited quantity of data.

Recent studies in geometric modeling have focused on
deep learning techniques, and a deep-learning-based SSM us-
ing an autoencoder (AE) has been reported [8]. Other studies
have used a mesh variational autoencoder (VAE) to construct
a shape atlas [9][10]. The VAE is widely used for images,
and may be expected to achieve higher generalization per-
formance than the AE because it represents input data as a
distribution of latent variables in a low-dimensional space.
However, these models use deformation-gradient-based local
features and do not cover the reconstruction including the
absolute coordinate positions of the vertices.

The purpose of this study was to construct a shape atlas for
abdominal organs that represents nonlinear shape differences
between patients with high interpretability. As a first step
toward this goal, we propose a mesh VAE framework that re-
constructs both the shapes and positions of individual organs
by using registered organ meshes as both input and output. To
improve the correctness of the model, we consider additional
localized features, which have been used in recent studies. In
our experiments, the mesh VAE model was trained using a set
of registered liver meshes generated from 3D computerized
tomography (CT) images of 125 patients. We evaluated the
reconstruction performance of the model and determined the
features that are effective for shape reconstruction.

II. METHODS

Fig. 1 shows the overall structure of the proposed mesh
VAE model. The model consists of an encoder and a de-
coder, and uses a graph convolutional network (GCN) for
the encoder part. During mesh reconstruction, the feature
Xinput, which is the input to the model, is first calculated
from the vertex and edge information of the organ mesh. The
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Fig. 1. Proposed model. The encoder learns transformations from inputs to
three-channel latent variables, and the decoder learns transformations from
latent variables to outputs.
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Fig. 2. Concepts of the features used in this paper. (a): deformation
gradient. (b): discrete Laplacian feature. Left case in which the curvature is
high. Right case in which the curvature is low

encoder then calculates the latent variable Z to be defined
for each vertex X by the GCN from the input features, and
the decoder reconstructs the features of the mesh Xoutput

from the obtained latent variable Z. The learning of weights
is accomplished by minimizing the loss function calculated
from the inputs and outputs of the model.

A. Organ Mesh Features

Although the vertex positions of a mesh can be used as
input features for the proposed model, organs may have com-
plex 3D shapes. Highly accurate shape reconstruction may
not always be achieved from vertex positional information
alone. Therefore, in this study, we considered the following
three types of features and their combinations, which can be
calculated from the mesh dataset:

• positions of vertices (three channels),
• deformation gradient (DG) (nine channels), and
• discrete Laplacian (DL) (three channels).
1) Deformation Gradient: The DG is a matrix that de-

scribes the change in the positional relationship between
corresponding points in two objects, as shown in Fig. 2 (a).
Suppose that an object M becomes M ′ because of local
deformation such as stretching, bending, or twisting. Points
P and P + de, separated by a small distance in M , have
moved to P ′ and P ′ + de′, respectively, because of the
deformation. The DG matrix T between P and P + de is

defined in (1).

de′ = Tde (1)

T is a 3× 3 matrix if the vertex coordinates are 3D vectors.
By applying polar decomposition, a type of singular value
decomposition, to T , T is decomposed into a positive definite
symmetric matrix S and a rectangular matrix R, as follows:

T = RS (2)

where R is the rotation matrix representing the rotation or
bending in the deformation and S is the distortion tensor.
For example, if the object M is not deformed at all but only
movement occurs, T is the unit matrix I from (1). In parallel
translation, no rotation or distortion of the shape occurs, and
R = S = I in (2). These equations are consistent with the
properties exhibited by the object.

Let M be the shape of the average shape template before
mesh deformation positioning. We calculate the DG T (i) that
represents the deformation of each case i to the mesh Mi and
create the feature f (i).

First, consider the energy E(T
(i)
j ) with DG T

(i)
j for vertex

j in mesh Mi, defined by

E(T
(i)
j ) =

∑
k∈Nj

cjk|e′jk − T
(i)
j ejk|2 (3)

where

e′jk = v′j − v′k,

ejk = vj − vk.

Here, v′j denotes the vertex position of M ′ and vj denotes
the corresponding vertex position of M . Nj denotes the set
of vertices adjacent to vertex j, and cjk is defined as follows:

cjk = cotα+ cotβ,

where α and β refer to the angles located on opposite sides of
two triangles that share side ejk. The purpose of coefficient
cjk is to maintain the smoothness of the mesh surface in the
optimization of (3).

Second, we define the rotational difference as (4).

dRjk = RT
j Rk (4)

dRjk represents the rotation between edges that connect
adjacent vertices, excluding the rotational component in
the entire mesh. Furthermore, by calculating the natural
logarithm ln(dRjk) of the rotational difference, the value
of the element becomes the rotation angle.

Because the stretch tensor Sj is a positive definite target
matrix, the deformation-gradient-based feature fj at vertex
j is expressed using three independent components of dRjk

and six independent components of Sj , as follows:

fM
j =

1

|Nj |
(ln(dRjk);Sj)(∀k ∈ Nj) (5)



2) Discrete Laplacian: The DL is a 3D feature defined at
each vertex as the displacement vector between the position
of the target vertex and the center position of its surrounding
vertices. It is a feature that approximates the average curva-
ture at each vertex for meshes in which the edge length and
number of adjacent vertices are relatively uniform across the
mesh [11]. As shown in Fig. 2 (b), a larger curvature at each
vertex corresponds to a larger DL.

We now explain how the DL is calculated. The DL vector
is calculated from the graph Laplacian L, which is defined
in (6).

L = D −A (6)

where D is the degree matrix, which represents the numbers
of adjacent vertices, and A is the adjacency matrix, which
represents whether pairs of vertices are adjacent. The DL
vector for the set of vertices V ∈ {vi} is defined in (7).

fDL = LV (7)

For each vertex, this is expressed as follows:

fDL
i = |Ni|v′i −

∑
j∈Ni

v′j (8)

B. Network Structure

In this study, two types of network configurations were
considered: the fully connected (FC) model used in Mesh-
VAE [9] and the network configuration using a GCN. A GCN
applies convolutional operations, which are widely used in
deep learning methods in the image processing field, to graph
data. The FC-based model determines output components
from all elements of the input vector, whereas the GCN-
based model calculates output components from information
on adjacent vertices only. Therefore, the GCN-based model
is thought to be more efficient for learning.

C. Loss Function

To ensure good generalization performance and highly
accurate reconstruction, we introduce a loss function that
considers both the distribution of latent variables and input–
output reconstruction errors.

For the former, we introduce LKL, defined in (9), to make
the distribution of the latent variable Z close to a multiple
normal distribution.

LKL =
1

N

N∑
i=0

DK[N(µi, σ
2
i )||N(0, 1)] (9)

where N(µ, σ2) means the normal distribution. µ and σ are
the mean and the standard deviation respectively. For the
latter, we introduce the reconstruction loss LF for feature F
which means the positional feature, the DL feature or the
DG feature, as defined in (10).

LF = MSE(F label, F pred) (10)

The overall loss function L is defined in (11).

L = LKL + αLPos + βLDG + γLDL, (11)

where LPos, LDG, and LDL denote the reconstruction errors
for vertex position, DG, and DL, respectively. However, (11)
defines the loss function when all features are used, and the
coefficients are set to 0 for features that are not used in a
specific experiment. For example, if only vertex position and
DG are used as features, we set γ = 0.

III. EXPERIMENTS AND RESULTS

To confirm the effectiveness of the proposed method,
experiments were conducted on several combinations of the
proposed features and models. Python 3.9, PyTorch, and
PyTorch-Geometric were used to implement the proposed
model. The batch size for training was set to 32, the
maximum number of training epochs was set to 1000, and
EarlyStopping was used to monitor the LPos of the validation
data. The EarlyStopping patience was set to 50 epochs. The
network was optimized using Adam with a learning rate set
to 10−2. For the hyperparameters of the loss function, we
checked the performance of the model for several combi-
nations and decided to use the combination with the best
performance: α = 1012, β = 1012, and γ = 106.

A. Dataset and Preprocessing

Experiments were conducted on liver meshes obtained
from abdominal 3D-CT data of 125 patients undergoing
radiotherapy for pancreatic cancer at the Department of
Radiotherapy, Kyoto University Hospital. After obtaining
surface meshes for each organ region from its 3D contours,
defined by a radiation oncologist, a liver mesh was obtained
by template-based deformable mesh registration. These pre-
processing procedures were the same as those used in our
previous studies[11]. The overall experiments were approved
by the Kyoto University Medical Ethics Committee (approval
number: R1446).

The vertices of the meshes were located in the range
of [−256, 256] (mm) in coordinates with the origin at the
position of the pancreatic cancer: the target of the thera-
peutic beam in radiation therapy. We normalized the range
of feature values to [−1, 1]. The 125 meshes used in the
experiment were split into three sets: 87 for training, 19 for
validation, and 19 for testing.

B. Evaluation of Mesh Reconstruction Performance

In this experiment, to explore the combinations of features
and models that are useful for reconstructing organ meshes,
we trained models to compare the combinations listed in
Table I and obtained reconstruction results for the liver mesh.
We also evaluated a PCA-based algorithm with six eigenvec-
tors as a conventional linear shape estimation approach. For
quantitative evaluation of the results, the distance error E
between the vertices of the reconstruction result v′ and the
corresponding vertices of the target v was calculated using
(12) for each dataset.

E =
1

NM

M∑
i

N∑
j

||v(j)i − v
′(j)
i ||2 (12)
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Fig. 3. Reconstruction results for the two cases with the largest reconstruction errors in the test data. From left to right: axial, coronal, and sagittal. The
gray area depicts the mesh of the label data, and the colored mesh depicts the reconstruction results. The red area indicates a larger error, and the blue
area indicates a smaller error. [Ours] feature: Position + DL + DG, model: GCN-based, [FC] feature: Position, model: FC-based

TABLE I
MODEL AND FEATURE COMBINATIONS IN TRAINING RESULTS. THE

EPOCH COLUMN SHOWS THE NUMBER OF EPOCHS WITH THE BEST

RECONSTRUCTION ERROR ON THE VALIDATION DATA, AS DETERMINED

BY EARLYSTOPPING. THE COLUMNS TRAIN, VAL, AND TEST SHOW

THE DISTANCE ERROR. THE UNIT OF DISTANCE IS MM

model feature epoch Train Val Test
PCA Position - 5.4927 5.3511 5.1410
FC Position 230 6.7509 11.929 12.158

GCN Position 995 5.3704 5.4113 5.3337
GCN Position 995 5.3704 5.4113 5.3337
GCN Position + DG 676 5.1983 5.1691 5.2139
GCN Position + DL 981 4.2451 4.2300 4.3023
GCN Position + DL + DG 991 4.2126 4.2298 4.2643

where N is the number of vertices in one mesh and M
is the number of mesh in a dataset. From Table I, it can
be observed that the GCN-based model using the vertex
position + DL + DG features had the lowest error on the
test data. The GCN-based model using the vertex position +
DL features had the second-lowest error. To compare these
two models, a two-tailed Wilcoxon signed rank test was
conducted at a significance level of 0.05. The p-value was
0.007145, confirming that the results of the two models were
significantly different.

Two examples of the reconstruction results are visualized
in Fig. 3. The figure shows that the FC-based model had
a large overall error, whereas the GCN-based model was
able to reconstruct the entire image with high accuracy.
In particular, at the tip of the left lobe (indicated by the
arrow in the figure), the FC-based model was far from the
correct position, whereas the GCN-based model was able to
reconstruct the image with high accuracy. This confirms that
the GCN-based model is superior to the FC-based one.

IV. CONCLUSIONS

In this study, we designed a mesh VAE that can reconstruct
both the shape and position of individual organs with high
accuracy using 3D meshes as input and output. This achieved
our objective, namely to construct a shape model with high
accuracy and high generalization performance. The model
was validated using organ meshes from 125 cases, and the
positions and shapes were reconstructed with an average

accuracy of 4.3 mm. For future work, guided by the results
obtained in this study, we will revise the architecture of the
model to improve its interpretability, strive to elucidate the
low-dimensional parameters that constitute organ shapes, and
apply the method to other abdominal organs.
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