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ABSTRACT
In quantum chemical calculations of heterogeneous structures in solids, e.g., when an impurity is located on the surface, the conventional
cluster model is insufficient to describe the electronic structure of substrates due to its finite size. The open-boundary cluster model (OCM)
overcomes this problem by performing cluster calculations under the outgoing-wave boundary condition. In this method, a complex absorb-
ing potential (CAP) is used to impose the boundary condition, but the CAP used in the previous studies required parameter optimization
based on the complex variational principle. This study proposes and applies a parameter-free CAP to OCM calculations. This approach makes
it possible to uniquely determine the band-specific CAP based on the surface Green’s function theory. Using this CAP, we conducted OCM
calculations of the tight-binding model of a one-dimensional semi-infinite chain, and we found that the calculated density of states agreed
with the exact one. Surface states of the Newns–Anderson–Grimley model were also computed using the CAP, and the projected density of
states on the adsorbed atom was successfully reproduced.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0184571

I. INTRODUCTION

Electronic structure calculations for heterogeneous structures
in solids are challenging topics in theoretical chemistry.1–4 Such sys-
tems are commonly found in the development of new materials
involving chemical substitutions for periodic carbon materials5 and
impurities in solids.6 In contrast to homogeneous structures such
as perfect crystals, typically managed with periodic boundary condi-
tions, the impurity or embedded molecule breaks the translational
symmetry, introducing heterogeneity. The challenge of handling
such systems arises from the coexistence of localized electronic states
corresponding to the impurity or molecule and delocalized states
spreading over the solid.

Two primary approaches are employed to describe the elec-
tronic structure of such systems. One approach is the cluster model.
A subsystem is defined where the target molecule and its surround-
ing atoms are extracted from the solid, and quantum chemical

calculations are performed on this subsystem. Another approach is
the supercell method, which performs band calculations by defin-
ing the subsystem as the unit cell. The former is well-suited for
describing the heterogeneous, local electronic structure of the tar-
get molecule. However, due to the finite size of the cluster, edge
effects occur, and the continuous nature of the solid electronic
structure is lost. Various studies have been conducted to address
these limitations. The simplest example is a model where the
solid is represented by a set of point charges, and the cluster is
embedded in the electrostatic field generated by them.7–9 A similar
approach is the solid-state quantum mechanics/molecular mechan-
ics (QM/MM) method, which can be applied when the interaction
between the cluster and the solid has a covalent nature.10,11 These
classical embedding methods allow us to calculate ionic crystals,
oxides, and porous materials such as zeolites and metal organic
frameworks (MOFs). If the solid is a metal or an accurate inter-
action between the cluster and the solid needs to be considered,
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the quantum embedding method is required.12,13 The supercell
approach is well-suited for describing electronic states of solids,
but it is difficult to describe localized electronic structures, such as
locally excited states in a molecule. Additionally, the cell size must
be large enough to reduce the intermolecular interactions between
neighboring supercells, thereby increasing the computational
cost.

The open-boundary cluster model (OCM) overcomes the lim-
itations of the cluster model from a different standpoint.14–17 In
OCM, the cluster calculation under the outgoing wave boundary
condition is performed. With this modification, the resulting energy
eigenvalues become complex numbers with negative imaginary
parts, known as the Siegert eigenvalues.18 Such a state represents a
finite-lived resonance state because the amplitude of the wave func-
tion decays exponentially over time. For example, the time evolution
of the wave function and amplitude of a state with a complex energy
E − iΓ/2 (Γ > 0) is expressed as follows:

Ψ(t) = e−i(E−iΓ/2)tΨ(0), (1)

∣Ψ(t)∣2 = e−Γt ∣Ψ(0)∣2. (2)

The inverse of the imaginary part, 1/Γ, corresponds to the lifetime of
the state. In the conventional cluster model, the electrons are always
bounded to the cluster region carved out of the total system. This
treatment is obviously unphysical because, in reality, the electrons in
the model cluster are expected to diffuse into the entire system. Con-
trastingly, the resonance states in the OCM calculation mimic these
effects adequately. It is noted that a model based on non-Hermitian
quantum mechanics has also been developed to deal with these
states.19 Additionally, several studies have calculated the electron
injection rate in dye-sensitized materials by modeling the electron
transfer from the dye to the substrate as a resonance decay.20–22

OCM was initially applied to a model system of a one-dimensional
solid, demonstrating its ability to reproduce the density of states
(DOS) of a solid and provide information on the electron transfer
process between the adsorbate and surface.14 Photo-excited nuclear
dynamics was then investigated in the framework of OCM with a
model potential for an NO molecule on a Pt(111) surface.15,16 OCM
has also been applied to the first-principles electronic structure cal-
culations, where absorption spectra and excited-state lifetimes of a
Cs atom on copper substrates have been calculated.17

While OCM successfully described surface phenomena that
have been difficult to handle with conventional cluster models, there
remains a problem in constructing the complex absorption poten-
tial (CAP) to impose the outgoing-wave boundary condition in the
calculation. Various CAPs, such as box type23 and Voronoi type,24

have been employed in quantum chemical calculations of resonance
states. A transmission-free CAP25 was used in the previous OCM
calculation. However, several problems exist in applying these CAPs
to OCM calculations. They have in common that the single para-
meter in the CAP is adjusted based on the complex variational
principle26 to obtain the optimal CAP. This approach does not
always yield resonance states because non-physical stationary points
sometimes appear.27 It is also known that the value of the com-
plex energy is sensitive to the position and shape of the CAP.28 For
these reasons, a parameter-free CAP is considered desirable. More-
over, it is worthwhile to be aware that they are state-specific CAPs

because the complex variational principle is applied to a single state
or a single orbital energy. This aspect is problematic when we need
a band-specific CAP optimized for all the orbitals constituting the
solid band.

In this study, we propose a novel method for constructing
a parameter-free CAP for OCM calculations. Henderson et al.
developed a parameter-free CAP based on electron self-energy,29

overcoming all the problems mentioned earlier. However, their sym-
metrized CAP was not suitable because the exact eigenvalues from
adiabatically connected states were not reproduced. We propose a
new symmetrization scheme and find that the resulting OCM cal-
culations with the CAP reproduce well the DOS of solids and the
projected DOS (PDOS) of adsorbed atoms. Theoretical details are
presented in the next section. The results of applying the developed
method to a one-dimensional solid tight-binding model will then be
presented.

II. THEORY
In order to construct a CAP, we follow the approach by Hen-

derson et al.29 Suppose we have a cluster Hamiltonian H and
energy-dependent self-energy Σ(ϵ) matrices with sizes of N ×N.
The eigenvalue equation with self-energy is written by

[H + Σ(ϵm)]um = ϵmum, (3)

v†
m[H + Σ(ϵm)] = v†

mϵm, (4)

where um and vm are right and left column eigenvectors, respec-
tively. The dagger symbol (†) means the Hermitian transpose, and
the complex conjugate is denoted by the asterisk symbol (∗) in this
paper.

It is difficult to find resonance states associated with the bound
states of the cluster Hamiltonian because there are many other
solutions representing continuum states. Adiabatically connected
resonance states are thus obtained by solving the following equation:

[H + λΣ(ϵλ
m)]uλ

m = ϵλ
muλ

m, (5)

vλ†
m [H + λΣ(ϵλ

m)] = vλ†
m ϵλ

m. (6)

The parameter λ is varied gradually from 0 to 1, meaning that the
total Hamiltonian adiabatically changes from that of the bare cluster
to that of the cluster interacting with solids. The following matri-
ces are then constructed by collecting the eigenvalues and right/left
eigenvectors at λ = 1:

ϵ1 ≡ diag (ϵλ=1
1 , . . . , ϵλ=1

N ), (7)

U1 ≡ (uλ=1
1 , . . . , uλ=1

N ), (8)

V1 ≡ (vλ=1
1 , . . . , vλ=1

N ). (9)

We can obtain approximate expressions WR/L for the self-energy,
which satisfy the following equations:

[H +WR]U1 = U1ϵ1, (10)
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V†
1[H +WL] = ϵ1V†

1. (11)

By multiplying the inverse matrices of U1 or V†
1 , we can obtain the

energy-independent CAPs as

WR = U1ϵ1U−1
1 , (12)

WL = (V†
1)
−1ϵ1V†

1. (13)

In this study, we propose a new formalism for symmetrizing
Eqs. (12) and (13). As stated in the previous work,29 WR and WL are
not complex-symmetric matrices, and these can be symmetrized by
the following equation:29

W = WR +WL

2
. (14)

The overline means that the CAP is symmetrized. However, it is
known that this CAP reproduces neither the eigenvalue matrix
ϵ1 nor the eigenvector matrices U1, V1 constructed from the
adiabatically connected solutions.29

Here, the iterative scheme is introduced to reproduce the eigen-
value matrix ϵ1. After the kth iteration, the symmetrized CAP is
defined as

Wk =
WR

k +WL
k

2
. (15)

The initial CAP of the iteration (k = 1) is borrowed from
Henderson’s symmetrized CAP,

WR/L
1 ≡WR/L, (16)

W1 ≡W. (17)

With this CAP, the complex valued eigenvalues and eigenvectors are
obtained by solving

[H +Wk]Uk+1 = Uk+1ϵk+1, (18)

V†
k+1[H +Wk] = ϵk+1V†

k+1. (19)

If the absolute difference ∣ϵk+1 − ϵ1∣ is smaller than the specified
threshold, the iteration stops, and we can obtain the optimized CAP
W opt as Wk. If the convergence is not met, the next step is to obtain
the right/left CAPs by

WR
k+1 = Uk+1ϵ1U−1

k+1, (20)

WL
k+1 = (V†

k+1)
−1ϵ1Vk+1, (21)

so that ϵk+2 approaches ϵ1. It is noted that these expressions con-
tain not ϵk+1 but ϵ1, although Uk+1 and Vk+1 are used. With these
right/left CAPs, the symmetrized CAP is again calculated by Eq. (15),
and the next iteration starts.

We perform OCM calculations with the constructed CAP as
follows:

[H +W opt]um = ϵmum,

= (ωm − iγm)um, (22)

where ωm is the real part of the eigenvalue ϵm, and γm is the negative
imaginary part of it. Since the CAP is symmetrized, the relation-
ship um = v∗m holds. The (scaled) density of states is represented by
the superposition of Lorentz functions whose center and width are
characterized by ωm and γm, respectively,

ρ(E) = 1
N

1
π

N

∑
m=1

γm

(E − ωm)2 + γ2
m

. (23)

The projected density of states on the ith site can also be expressed
analytically

ρii(E) = −
1
π

N

∑
m=1

Im[ [umuT
m]ii

uT
m ⋅um
(E − ωm − iγm)]

(E − ωm)2 + γ2
m

. (24)

The derivation of these equations is given in the Appendix B. Since
the right eigenvectors {um} and the left eigenvectors {vm} form bi-
orthogonal basis sets, the following relationships hold:

v†
n ⋅ um = 0 (m ≠ n), (25)

u†
m ⋅ um = 1. (26)

In this normalization condition, however, it is noted that uT
m ⋅ um

(= v†
m ⋅ um) in Eq. (24) is not equal to 1.

III. COMPUTATIONAL DETAILS
In order to confirm the validity of this approach, we consider

the tight-binding model of a one-dimensional semi-infinite chain.
We set the number of atomic sites in the subsystem model cluster N
to 40, and the cluster Hamiltonian reads

Hij = αδi,j − βδi,j−1 − βδi,j+1 (1 ≤ i, j ≤ 40), (27)

where δi,j is the Kronecker delta. We employ the values of α = 2.0
and β = 0.6 throughout this study. It is noted that the same results
are obtained for the scaled energy ζ

ζ = E − α
2β

, (28)

and the choice of α and β is arbitrary in this sense.
Since we consider a semi-infinite chain, the self-energy is added

only at one end, the 40th site. The self-energy matrix is expressed by

Σij(ϵ) = σ(ϵ)δi,40δj,40 (1 ≤ i, j ≤ 40), (29)

and the self-energy σ(ϵ) in the tight-binding model is written
analytically30

σ(ϵ) =
(α − Re[ϵ]) −

√
(α − Re[ϵ])2 − 4β2

2
. (30)
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FIG. 1. The change in eigenvalues during the adiabatic connection. The circle and
star points represent the eigenvalues at λ = 0 and λ = 1, respectively.

It is noted that this expression is derived under the outgoing-wave
boundary condition. The proposed method can also be applied
to the case where non-orthogonal basis sets are used. There,
α and β become matrices, and the self-energy matrix is computed
numerically.31–33

For calculating the adiabatically connected states, the grid λ is
defined as

λ(l) = Ϛ(l/100) − Ϛ(0.0)
Ϛ(1.0) − Ϛ(0.0) (l = 0, 1, . . . , 100), (31)

Ϛ(x) = 1
1 + exp (−2(4x − 2)) . (32)

The convergence criteria of the iterative scheme in Eq. (15) to
Eq. (21) is set to 1.0 × 10−6.

IV. RESULTS AND DISCUSSION
A. Construction of CAP

In this section, the details of the construction are shown.
Figure 1 displays the trace of the eigenvalues during the adiabatic
connection. The number of lines is 40, corresponding to the size
of the cluster Hamiltonian. The circle points at λ = 0 lie on the real
axis and represent bound states of the cluster Hamiltonian. As the λ
value increases, these eigenvalues are continuously connected to the
complex plane. Since the star plots at λ = 1 have negative imaginary
parts, it can be confirmed that the resonance states associated with
the bound states of the cluster are indeed obtained.

The structure of the cluster Hamiltonian and the constructed
CAP in the tight-binding basis are illustrated in Fig. 2. In this exam-
ple, W opt is obtained as W3. It can be seen that both the real and
imaginary parts of the constructed CAP are localized near the junc-
tion with the bulk solid (i = 40). This seems to be a reasonable
approximation to the self-energy only added to the 40th site. From
the enlarged view of the lower right component of Figs. 2(b) and
2(c), it is clear that the CAP is indeed complex-symmetric.

To verify the validity of the obtained CAP, the DOS was cal-
culated using the complex eigenvalues obtained from the OCM
calculation with Eq. (23). The analytical expression for the exact
DOS of a semi-infinite chain is34

ρ(E) = 1
π

1√
4β2 − (α − E)2

(α − 2β ≤ E ≤ α + 2β), (33)

and the graph is plotted with the solid black line in Fig. 3. In contrast,
the DOS of the cluster Hamiltonian is discrete, as in the following
equation:

ρ(E) =
40

∑
m=1

δ(E − ωm), (34)

which is given by setting γm to 0 in Eq. (23). In this way, the conven-
tional cluster model cannot reproduce the continuous DOS of the
solid due to its finite size.

The DOS curves obtained from the OCM calculations with
W1 and W opt are shown as the green and red lines, respectively. It
can be seen that both are able to reproduce the exact shape of the
other. This can be related to the behavior of Fig. 1. The larger the
magnitude of the imaginary part of a complex eigenvalue, the lower
and wider the Lorentz function in Eq. (23) becomes. This means that
the magnitude of the imaginary part must be small at the band edges
and large in the center to reproduce the shape of the exact DOS
for the semi-infinite chain, as observed in Fig. 1. While there are
some approaches that artificially broaden the discrete DOS to mimic
the solid electronic structure,35,36 the strength of this method is
that the optimal width is automatically chosen for each energy level
without such artificiality.

On the other hand, when the CAP W1 is used, the DOS has
negative values at the band edges. This is a non-physical behav-
ior and conceptually inappropriate for the OCM calculations in the
sense that W1 cannot completely impose the outgoing-wave bound-
ary condition on the cluster. The reason for this is that the imaginary

FIG. 2. The structure of (a) the cluster Hamiltonian, (b) the real part of the constructed CAP, and (c) its imaginary part are shown. The CAP has values only near the junction
with the solid (i = 40), and these areas are shown in inset plots.
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FIG. 3. The comparison of the DOS based on the results of OCM calculations. The exact DOS for one-dimentional solid is shown in the solid black line. The thin black line
represents the DOS of the cluster calculated by Eq. (23). The green line is obtained from the OCM calculation with the conventional CAP W1, showing a negative region at
the band edge. The CAP constructed by the new method W opt well reproduces the exact shape (red line).

parts of the eigenvalues near the band edges are positive based on
the DOS formula in Eq. (23). This may occur because these imag-
inary parts are small and are easily affected by symmetrizing the
right and left CAPs. Since the newly proposed method determines
the CAP W opt in such a way as to reproduce the target eigenvalues
ϵ1, such a problem is not expected to occur. Conversely, the eigenval-
ues responsible for broadening near the center of the band have large
imaginary parts and seem to be less affected by the symmetrization
of the CAP.

B. Newns–Anderson–Grimley model
To demonstrate the applicability of this method, we applied the

constructed CAP to calculate the surface adsorption states. Within
the category of the tight-binding model for 1D solids, a model
describing surface adsorption states has been investigated by Ander-
son,37 Newns,38 and Grimley.39,40 In this context, the N ×N Hamil-
tonian Hmod is defined by modifying the Hamiltonian in Eq. (27) as
follows:

(35)

Two real parameters, η and α1, are introduced to describe the
surface state. η modulates the strength of interaction between the

adsorbed and substrate-edge atoms, while α1 specifies the energy
level of the adsorbed atom. The number and types of localized sur-
face states are determined by these two parameters. Newns presented
the phase diagram as shown in Fig. 4.38 In this paper, this model is
referred to as the Newns model.

The Newns model can express various surface states by vary-
ing the two parameters. Constructing the CAP with the iterative
scheme each time these parameters are changed is considered the

FIG. 4. The phase diagram of the Newns model is illustrated with respect to two
parameters η and α1 [see Eq. (35)]. The numbers and types of bound states out-
side the band edges are shown. The characters B and A mean the existence of
bonding and antibonding surface states, respectively. In the central white region,
a resonance state appears. The red star (η = 1.0, α1 = 2.0) corresponds to the
parameter of pure solid.
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FIG. 5. (a) Regions where all eigenvalues have negative imaginary parts are indicated by circles. (b) The parameter sets that reproduce the five different surface states of
the Newns model were selected within the region in (a).

most accurate approach. However, this approach is computationally
expensive when actually applied to quantum chemical calculations.
Therefore, in this study, we explored the possibility of reusing the
CAP constructed at one reference point. A pure solid, represented
by η = 1.0 and α1 = 2.0, where the CAP works effectively in the
previous section, is taken as the reference point and shown as the
red star in Fig. 4. Namely, the following OCM calculation is per-
formed to examine whether the surface states in the Newns model
are reproduced correctly

W ref ≡W opt(η = 1.0, α1 = 2.0), (36)

[Hmod(η, α1) +W ref]umod
m = (ωmod

m − iγmod
m )umod

m . (37)

To explore various parameters, OCM calculations with Eq. (37)
were performed by changing their values by Δη = 0.1 and
Δα1 = 0.075 steps in the range of Fig. 4. For each point, 40 com-
plex eigenvalues are obtained, and the regions where their imaginary
parts are all negative are plotted as circles in Fig. 5(a). This clarifies
whether the CAP optimized at the reference point correctly imposes
the outgoing-wave boundary condition on the clusters with modi-
fied surfaces. We can see that W ref can be reused for parameter sets
that do not have large perturbations from the reference point. Fur-
thermore, the circles overlap in all five regions, representing the five
different surface conditions in the Newns model. It is expected that
each of these states can be commonly calculated with W ref.

To investigate this point, we selected five parameter sets (η, α1)
with different surface conditions and calculated the DOS and the
PDOS projected onto the adsorbed atom ρ11(E). The values of the
parameters are shown in Table I, and each point is also illustrated in
Fig. 5(b).

TABLE I. The set of parameters to reproduce five surface conditions.

Surface states η α1

0 1.2 2.0
B/A 1.7 2.0
B 1.4 1.7
A 1.4 2.3
R 0.6 2.0

DOS and PDOS curves obtained by OCM calculations are
shown in Fig. 6 together with the exact ones. In this figure, the exact
DOS and PDOS are calculated by the following equations:41

HΣ(z) ≡ Hmod + Σ(z), (38)

GΣ(z) ≡ (zI −HΣ(z))−1, (39)

ρ(E) = − 1
N

1
π

Tr [Im GΣ(E + iδ)], (40)

ρ11(E) = −
1
π
[Im GΣ(E + iδ)]11. (41)

It can be seen that, for any surface conditions, both the DOS and
PDOS obtained from the OCM calculation reproduce the exact solu-
tion well. For example, in the region of zero surface state, η and
α1 are close to the values in the pure solid. Therefore, the adsorbed
atom contributes to the solid electronic band, similar to the other
atoms in the solid. In fact, the PDOS has a rather flat shape within
the band region, and the OCM result mimics the shape well despite
the linear combination of the Lorentz functions. In regions B/A,
B and A, bound states appear due to two factors. The first is the
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FIG. 6. The DOS and PDOS are calculated for the five parameters in Fig. 5(b). The exact curves are shown in black, and the results from OCM calculations are expressed
by the red dashed lines. We introduce the imaginary shift δ = 1.0 × 10−5 in Eqs. (40) and (41) to visualize the sharp peaks in bonding and anti-bonding states.

isolation of the energy level of the adsorbed atom from the solid
band, resulting from α1 moving up or down relative to α in the
substrate atoms. Second, the coupling η between the adsorbed atom
and the substrate-edge atom is strong, resulting in a large energy
splitting. Therefore, the sharp peaks in the DOS representing bound
states must necessarily be associated with the PDOS of the adsorbed
atom. Both exact and OCM curves show that the sharp peak in the
DOS is actually attributed to the PDOS of the adsorbed atom. It is
important to note that the B/A states and solid electronic structure
can be described in a unified framework. Although OCM primar-
ily aims to model the latter with resonance states, the B/A states can
be expressed as infinite-lifetime resonance states. Resonance states
are realized when the coupling η is weak, i.e., the adsorbed atom
and the substrate-edge atom interact weakly. It can be seen that the
bell-shaped PDOS shape can also be reproduced by the OCM cal-
culation. In this way, it is shown that the five typical surface states
of the Newns model can be obtained through the OCM calculations,
even when the CAP is reused.

Concerning the transferability of the current CAP, the explana-
tion might be attributed to the localized nature of the self-energy in
Eq. (29) and the resulting CAP matrix in Fig. 2. In a previous study
that employed Henderson’s CAP for more realistic calculations,42 it
was pointed out that including the explicit electrode region, in addi-
tion to the cluster region, was important. When conducting OCM

calculations with the proposed CAP, we anticipate that the explicit
electrode region should extend at least to the area where the matrix
elements of the CAP have values. Since the size is approximately ten
in the current result (Fig. 2), we can ensure that the size of the total
system (N = 40) is sufficiently large. However, it is essential to verify
whether such locality holds for practical calculations, and care must
be taken in selecting the system size.

Finally, the orbital coefficients are illustrated for the case where
bonding and antibonding (B/A) surface states emerge. The decom-
position of the DOS into Lorentz functions in Fig. 7(a) indicates that
only one state with energy ϵ1 is associated with the bonding state
and that with energy ϵ40 is linked to the antibonding state. These
two states exist outside the shaded area, indicating the solid band,
which possesses the characteristics of bound states in the Newns
chemisorption model. Figure 7(b) illustrates the real part of the
orbital coefficients for these states, focusing on the vicinity of the
surface. For v1, the coefficients of the first site (adsorbed atom) and
the second site (substrate-edge atom) are in the same phase, whereas
for v40, they are in the opposite phase. This can be understood by the
interaction between the energy level of the adsorbed atom and the
solid band, similar to the mixing of two orbitals producing bonding
and antibonding orbitals.

It is noted that the real parts of the right and left eigen-
vectors coincide because the CAP is symmetrized by the present
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FIG. 7. (a) The DOS of the B/A state and the Lorentz functions that make up it are shown. The region where the energy takes values from α − 2β to α + 2β is shaded, which
corresponds to the solid band. Two bound states with energies ϵ1 and ϵ40 exist outside the band edges. (b) The real part of the orbital coefficients for the two bound states is
illustrated only near the surface (i = 1).

method. This allows us to treat the real part of the orbital coeffi-
cients in OCM calculations as those in ordinary quantum chemical
calculations.

V. CONCLUSION
In this study, we developed a new method for constructing the

CAP reproducing the environment in solids and applied it to OCM
calculations. As a result, the calculation of the tight-binding model
for a 1D semi-infinite chain was carried out using a finite-size clus-
ter, and the exact solution was well reproduced for the DOS and
PDOS.

The feature of the obtained CAP is that it contains no para-
meters and is free from complex variational principles such as the
η-trajectory method. An additional advantage is that the CAP con-
tains information on all orbitals constituting a solid band, so it can
be referred to as a “band-specific” CAP, not a “state-specific” one.
There is also the physical support that can be obtained as an approx-
imation for the self-energy in the surface Green’s function theory.
With the iterative scheme proposed in this study, we have succeeded
in constructing a symmetrized CAP that can reproduce the solid-
state DOS and PDOS. Symmetrization of the CAP not only brings
cost savings in matrix operations in quantum chemical calculations
envisioned for the future but also provides interpretability for the
orbital coefficients, as the real parts of the right and left eigenvectors
coincide. Furthermore, for symmetric CAPs, it is possible to obtain
a spatial representation that reproduces the matrix representation.
We believe that this real-space CAP can be used for calculations with
basis sets different from those used in the optimization and can be
extended to the calculations of higher-dimensional materials.

On the other hand, the sequential optimization of the CAP
for each perturbation to the cluster Hamiltonian, such as surface
modification and structural change, is computationally expensive.
Therefore, we tested whether the approach of reusing the CAP once
constructed in the reference cluster is appropriate for describing sur-
face states in the Newns model. When the reference point is taken to
be a pure solid, it is confirmed that all five types of surface states
in the Newns model can be adequately described. From this result, it
can be said that the optimization of the CAP can be greatly reduced if
appropriate reference points are taken. This is an important property

for structural optimization calculations of surface adsorption states
and for discussions of the effects of local substitution on periodic
materials.

We demonstrated the new approach with a simple model but
would like to extend it to real systems in the future. To do so, we
need to extend the method to cases where non-orthogonal basis
sets are used. We also have to consider the iterative construction of
Fock matrices due to the two-electron terms that appear in quantum
chemical calculations. We hope to address these tasks and estab-
lish the method, which has different strengths compared to ordinary
cluster models and band calculations with supercells.
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APPENDIX A: THE EXPRESSION OF THE GREEN’S
MATRIX IN THE BI-ORTHOGONAL BASIS SETS

We define the Hamiltonian H′ as the sum of the cluster Hamil-
tonian H and the energy-independent CAP W. The eigenvalue
equations are shown below:

H′ ≡ H +W, (A1)

H′um = ϵmum, (A2)

v†
mH′ = ϵmv†

m. (A3)

The definition of the Green’s matrix is

G(z) = (zI −H′)−1, (A4)

where z is equal to E + iδ (δ > 0).
The Green’s matrix can be expanded with the right eigenvectors

{um} as follows:

G(z) = (u1, u2, . . . , uN)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

D11 D12 ⋅ ⋅ ⋅ D1N

D21 D22 ⋅ ⋅ ⋅ D2N

⋮ ⋮
. . . ⋮

DN1 DN2 ⋅ ⋅ ⋅ DNN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (A5)

From the definition of G(z), we obtain the following relationship:

(zI −H′)G(z) = (zI −H′)(u1, . . . , uN)D(z),

= (u1, . . . , uN)

⎛
⎜⎜⎜⎜⎜
⎝

z − ϵ1 0
. . .

0 z − ϵN

⎞
⎟⎟⎟⎟⎟
⎠

D(z) = I.

(A6)

By multiplying the matrix (v†
1 , v†

2 , . . . , v†
N)

T from the left and using
the bi-orthogonal relationship in Eqs. (25) and (26), the following
equation holds:

⎛
⎜⎜⎜⎜⎜
⎝

v†
1 ⋅ u1 0

. . .

0 v†
N ⋅ uN

⎞
⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜
⎝

z − ϵ1 0
. . .

0 z − ϵN

⎞
⎟⎟⎟⎟⎟
⎠

D(z) =
⎛
⎜⎜⎜⎜
⎝

v†
1

⋮
v†

N

⎞
⎟⎟⎟⎟
⎠

, (A7)

and the matrix D(z) is expressed by

D(z) =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

1
v†

1 ⋅ u1(z − ϵ1)
0

. . .

0
1

v†
N ⋅ uN(z − ϵN)

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜
⎝

v†
1

⋮
v†

N

⎞
⎟⎟⎟⎟
⎠

. (A8)

The expression of Green’s matrix is thus obtained as

G(z) = (u1, u2, . . . , uN)D(z),

=
N

∑
m=1

1
z − ϵm

umv†
m

v†
m ⋅ um

. (A9)

APPENDIX B: THE EXPRESSIONS OF THE DOS
AND PDOS IN OCM

The definitions of DOS and PDOS are given by41

ρ(E) = − 1
N

1
π

lim
δ→+0

Im [Tr G(z)], (B1)

ρii(E) = −
1
π

lim
δ→+0

Im Gii(z). (B2)

By using the following equation,

Tr [umv†
m] = tr

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

u1mv
∗
m1 u1mv

∗
m2 ⋅ ⋅ ⋅ u1mv

∗
mN

u2mv
∗
m1 u2mv

∗
m2 ⋅ ⋅ ⋅ u2mv

∗
mN

⋮ ⋮
. . . ⋮

uNmv
∗
m1 uNmv

∗
m2 ⋅ ⋅ ⋅ uNmv

∗
mN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

=
N

∑
i=1

uimv
∗
mi = v†

m ⋅ um, (B3)

the DOS expression is written as

ρ(E) = − 1
N

1
π

lim
δ→+0

Im
N

∑
m=1

1
z − ϵm

= − 1
N

1
π

lim
δ→+0

Im
N

∑
m=1

1
(E − ωm) + i(δ + γm)

= 1
N

1
π

lim
δ→+0

N

∑
m=1

γm + δ
(E − ωm)2 + (δ + γm)2

= 1
N

1
π

N

∑
m=1

γm

(E − ωm)2 + γ2
m

. (B4)

A similar transformation of Eq. (B2) yields the expression for
the PDOS

ρii(E) = −
1
π

lim
δ→+0

Im
N

∑
m=1

1
z − ϵm

(umv†
m)ii

v†
m ⋅ um

= − 1
π

lim
δ→+0

Im
N

∑
m=1

1
(E − ωm) + i(δ + γm)

(umv†
m)ii

v†
m ⋅ um

= − 1
π

lim
δ→+0

N

∑
m=1

1
(E − ωm)2 + (δ + γm)2 ,

× Im
⎡⎢⎢⎢⎢⎣

(umv†
m)ii

v†
m ⋅ um

{E − ωm − i(δ + γm)}
⎤⎥⎥⎥⎥⎦

= − 1
π

N

∑
m=1

Im[
(umv†m)ii

v†m ⋅um
(E − ωm − iγm)]

(E − ωm)2 + γ2
m

. (B5)
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