RIMS－1979

Sign Convention for A_{∞}－Operations in Bott－Morse Case By

Kaoru ONO

Januray 2024

京都大学 数理解析研究所

Research Institute for Mathematical Sciences
 KYOTO UNIVERSITY，Kyoto，Japan

SIGN CONVENTION FOR A_{∞}-OPERATIONS IN BOTT-MORSE CASE

KAORU ONO

We give a definition of A_{∞}-operations in Bott-Morse case (see Definition 2). Let L_{i} be a relatively spin collection of Lagrangian submanifolds, which intersects cleanly in (X, ω). (The argument presented here is also valid for immersed Lagrangian submanifolds.) Denote by R_{α} a connected component of L_{i} and L_{j}. (We also consider the case that $i=j$.)

We use the convention on orientation on the fiber product (in the sense of Kuranishi structure) as in Section 8.2 in [1]. In this note, the dimension of moduli spaces means their virtual dimension. Let $p: M \rightarrow N$ be a fiber bundle with oriented relative tangent bundle. Rstrict the fiber bundle to an open subset, we may assume that N is oriented. Then we give an orientation on M using the isomorphism $T M=p^{*} T N \oplus T_{\text {fiber }} M$, where $T_{\text {fiber }} M$ is the relative tangent bundle. Then our convention of the integration along fibers of $p: M \rightarrow N$ is

$$
\int_{N} \alpha \wedge p_{!} \beta=\int_{M} p^{*} \alpha \wedge \beta,
$$

where $\alpha \in \Omega^{*}(N)$ and $\beta \in \Omega^{*}(M)$, We have the following properties.

- $p_{!}\left(\left(p^{*} \theta\right) \wedge \beta\right)=\theta \wedge\left(p_{!} \beta\right)$, where $\theta \in \Omega^{*}(N)$ and $\beta \in \Omega^{*}(M)$.
- Let $p: M \rightarrow N$ and $q: N \rightarrow B$ be fiber bundles with oriented relative tangent bundles. For $\beta \in \Omega^{*}(M)$, we have

$$
(q \circ p)!\beta=q!\circ p!(\beta) .
$$

Using them, we find that

$$
\begin{equation*}
(q \circ p)_{!}\left(p^{*} \theta \wedge \beta\right)=q_{!}\left(\theta \wedge p_{!} \beta\right) . \tag{1}
\end{equation*}
$$

We also have

- (base change) Let $f: S \rightarrow N$ be a smooth map (or a strongly smooth map between spaces with Kuranishi structure). Denote by $\bar{p}: f^{*} M \rightarrow S$ the pull-back of the fiber bundle $p: M \rightarrow N$ and $\tilde{f}: f^{*} M \rightarrow M$ the bundle map covering f. Then we have

$$
f^{*} \circ p_{!}=\bar{p}_{!} \circ \widetilde{f}^{*} .
$$

For the definition of the integration along fibers of weakly submersive strongly smoooth map in the case of Kuranishi structure is given in Section 9.2 in [2]. We will use the Stokes type formula in Theorem 9.28 in [2], the composition formula in Theorem 10.21 in [2]. See Chapter 27 in [2] in the case with coefficients in local systems. In fact, the composition formula is a consequence of these properties.

Let $(\Sigma, \partial \Sigma)$ be a bordered Riemann surface Σ of genus 0 and with connected boundary and $\vec{z}=$ $\left(z_{0}, \ldots, z_{k}\right)$ boundary marked points respecting the cyclic order on $\partial \Sigma$. Let $u:(\Sigma, \partial \Sigma) \rightarrow\left(X, \cup L_{i}\right)$ be a smooth map such that $u\left(z_{j} \widetilde{z_{j+1}}\right) \subset L_{i_{j}}, j \bmod k+1, u\left(z_{j}\right) \in R_{\alpha_{j}}$, where $R_{\alpha_{j}}$ is a connected component of $L_{i_{j-1}} \cap L_{i_{j}}$. For such u and u^{\prime}, we introduce the equivalence relation \sim so that

[^0]$u \sim u^{\prime}$ when $\int_{\Sigma^{\prime}} \omega=\int_{\Sigma^{\prime}} \omega$ and (2) the Maslov indices of u and u^{\prime} are the same. Denote by B the equivalence class.

Consider the moduli space

$$
\mathcal{M}_{k+1}\left(B ; L_{i_{0}}, \ldots, L_{i_{k}} ; R_{\alpha_{0}}, \ldots R_{\alpha_{k}}\right)
$$

of bordered stable maps of genus 0 , with connected boundary and ($k+1$) boundary marked points, representing the class B.

Set $\mathcal{L}=\left(L_{i_{0}}, \ldots, L_{i_{k}}\right)$ and $\mathcal{R}=\left(R_{\alpha_{0}}, \ldots R_{\alpha_{k}}\right)$ and write

$$
\mathcal{M}_{k+1}(B ; \mathcal{L} ; \mathcal{R})=\mathcal{M}_{k+1}\left(B ; L_{i_{0}}, \ldots, L_{i_{k}} ; R_{\alpha_{0}}, \ldots R_{\alpha_{k}}\right) .
$$

Denote by $e v_{j}^{B}: \mathcal{M}_{k+1}(B ; \mathcal{L} ; \mathcal{R}) \rightarrow R_{\alpha_{j}}$ the evaluation map at z_{j}.
For a pair of Lagrangian submanifolds L, L^{\prime} which intersect cleanly, we constructed the $O(1)-$ local system $\Theta_{R_{\alpha}}^{-}$on R_{α} in Proposition 8.1.1 in [1]. Here R_{α} is a connected component of $L \cap L^{\prime}$. In this note, we simply write it as $\Theta_{R_{\alpha}}$.

We recall the construction of $\Theta_{R_{\alpha}}$ briefly. We assume that L, L^{\prime} are equipped with spin structures. In the case of a relative spin pair, we take $T X \oplus(W \otimes \mathbb{C})$ (on the 3 -skeleton of X) instead of $T X$ and $T L \oplus W$, (resp. $T L^{\prime} \oplus W$) (on the 2-skeleton of L, (resp. L^{\prime}) instead of $T L$, (resp. $T L^{\prime}$). Then the argument goes in the same way. As written in Section 8.8 in [1], we consider the space $\mathcal{P}_{R_{\alpha}}\left(T L, T L^{\prime}\right)$ of paths of oriented Lagrangian subspaces in $T_{p} X, p \in R_{\alpha}$, of the form $\lambda(t) \oplus R_{\alpha}$ such that $\lambda(0) \oplus R_{\alpha}=T_{p} L$ and $\lambda(1) \oplus R_{\alpha}=T_{p} L^{\prime}$. Here λ is regarded as a path of Lagrangian subspaces in $V_{R_{\alpha}}=\left(T_{p} L+T_{p} L^{\prime}\right) /\left(T_{p} L+T_{p} L^{\prime}\right)^{\perp_{\omega}}=\left(T_{p} L+T_{p} L^{\prime}\right) /\left(T_{p} L \cap T_{p} L^{\prime}\right)$, which is a symplectic vector space. Pick a compatible complex struture on it and consider the Dolbeault operator $\bar{\partial}_{\lambda}$ on $Z_{-}=\left(D^{2} \cap\{\operatorname{Re} z \leq 0\}\right) \cup([0, \infty) \times[0,1])$.

We set $\mu\left(R_{\alpha} ; \lambda\right)=$ Index $\bar{\partial}_{\lambda}$. The parity of $\mu\left(R_{\alpha} ; \lambda\right)$ is independent of the choice of λ above, since $\lambda \oplus T_{p} R_{\alpha}$ is a path of oriented subspaces with fixed end points, $T_{p} L, T_{p} L^{\prime}, p \in R_{\alpha}$ which are oriented. Denote by $\mu\left(R_{\alpha}\right)=\mu\left(R_{\alpha} ; \lambda\right) \bmod 2$. Then we have

$$
\operatorname{dim} \mathcal{M}_{k+1}(B ; \mathcal{L}, \mathcal{R}) \equiv \operatorname{dim} R_{\alpha_{0}}+\mu\left(R_{\alpha_{0}}\right)-\sum_{i=1}^{k} \mu\left(R_{\alpha_{i}}\right)+k-2 \bmod 2 .
$$

We have the determinant line bundle of $\left\{\text { Index } \bar{\partial}_{\lambda}\right\}_{\lambda \in \mathcal{P}_{R_{\alpha}}\left(T L, T L^{\prime}\right)}$. Pick a hermitian metric on X. Denote by $P_{S O}\left(\lambda \oplus T_{p} R_{\alpha}\right)$ is the associated oriented orthogonal frame bundle of $\lambda \oplus T_{p} R_{\alpha}$. Note that $\left.P_{S O}\left(\lambda \oplus T_{p} R_{\alpha}\right)\right|_{t=0}$ and $\left.P_{S O}\left(\lambda \oplus T_{p} R_{\alpha}\right)\right|_{t=1}$ are canonically identified with $\left.P_{S O}(L)\right|_{p}$ and $\left.P_{S O}\left(L^{\prime}\right)\right|_{p}$, respectively. We glue the principal spin bundle $P_{\text {Spin }}\left(\lambda \oplus T_{p} R_{\alpha}\right)$ at $t=0,1$ with $\left.P_{S p i n}(L)\right|_{p}$ and $\left.P_{S p i n}\left(L^{\prime}\right)\right|_{p}$. There are two isomorphic classes of resulting spin structure on the bundle $T L \cup\left(\lambda \oplus T_{p} R_{\alpha}\right) \cup T L^{\prime}$ on $L \cup[0,1] \cup L^{\prime}$, where $p \in L$ and $p \in L^{\prime}$ are identified with $0,1 \in[0,1]$, respectively. This gives an $O(1)$-local system $O_{\text {spin }}$ on $\mathcal{P}_{R_{\alpha}}\left(T L, T L^{\prime}\right)$. Proposition 8.1.1 in [1] states that the tensor product $\operatorname{det} \bar{\partial}_{\lambda} \otimes O_{\text {Spin }}$ descends to an $O(1)$-local system $\Theta_{R_{\alpha}}$ on R_{α}.

Then the relative spin structure for $\left\{L_{i}\right\}$, namely relative spin structures for each L_{i} with a common oriented vector bundle $W \rightarrow X^{[3]}$, determines an isomorphism Φ^{B} below.
(i) Case that $k=0$. (L is an immersed Lagrangian submanifold with clean self intersection or $R_{\alpha_{0}}=L$)

$$
\Phi^{B}: e v_{0}^{B *} \Theta_{R_{\alpha_{0}}} \rightarrow e v_{0}^{B *} O_{R_{\alpha_{0}}} \otimes O_{\mathcal{M}_{1}(B ; L)}
$$

(ii) Case that $k=1$.

$$
\Phi^{B}: e v_{0}^{B *} \Theta_{R_{\alpha_{0}}} \rightarrow e v_{0}^{B *} O_{R_{\alpha_{0}}} \otimes O_{\mathcal{M}_{2}(B ; \mathcal{L} ; \mathcal{R})} \otimes e v_{1}^{B *} \Theta_{R_{\alpha_{1}}} .
$$

(iii) Case that $k \geq 2$.

$$
\Phi^{B}: e v_{0}^{B *} \Theta_{R_{\alpha_{0}}} \rightarrow e v_{0}^{B *} O_{R_{\alpha_{0}}} \otimes O_{\mathcal{M}_{k+1}(B ; \mathcal{L} ; \mathcal{R})} \otimes \mathfrak{f o r g e t}^{*} O_{\mathcal{M}_{k+1}} \otimes e v_{1}^{B *} \Theta_{R_{\alpha_{1}}} \otimes \cdots \otimes e v_{k}^{B *} \Theta_{R_{\alpha_{k}}}
$$

Here \mathcal{M}_{k+1} is the moduli space of bordered Riemann surfaces of genus 0 , connected boundary and $(k+1)$ marked points on the boundary and forget : $\mathcal{M}_{k+1}(B ; \mathcal{L} ; \mathcal{R}) \rightarrow \mathcal{M}_{k+1}$ sends $[(\Sigma, \partial \Sigma, \vec{z}), u]$ to $[(\Sigma, \partial \Sigma, \vec{z})]$. Here $O_{R_{\alpha_{0}}}, O_{\mathcal{M}_{k+1}(B ; \mathcal{L} ; \mathcal{R})}$ and $O_{\mathcal{M}_{k+1}}$ are orientation bundles of $R_{\alpha_{0}}, \mathcal{M}_{k+1}(B ; \mathcal{L} ; \mathcal{R})$ and \mathcal{M}_{k+1}, respectively. We consider $e v_{0}^{*} O_{R_{\alpha_{0}}} \otimes O_{\mathcal{M}_{k+1}(B ; \mathcal{L} ; \mathcal{R})}$ the orientation bundle of the relative tangent bundle of $e v_{0}: \mathcal{M}_{k+1}(B ; \mathcal{L} ; \mathcal{R}) \rightarrow R_{\alpha_{0}}$. In the notation in [1], we write

$$
\mathcal{M}_{k+1}(B ; \mathcal{L} ; \mathcal{R})=R_{\alpha_{0}} \times{ }^{\circ} \mathcal{M}_{k+1}(B ; \mathcal{L} ; \mathcal{R})
$$

and

$$
\mathcal{M}_{k+1}(B ; \mathcal{L} ; \mathcal{R})=\mathcal{M}_{k+1}(B ; \mathcal{L} ; \mathcal{R})^{\circ} \times \mathcal{M}_{k+1}
$$

These descriptions are considered as the splitting of tangent spaces. Using these notations, we have

$$
\begin{gathered}
e v_{0}^{*} O_{R_{\alpha_{0}}} \otimes O_{\mathcal{M}_{k+1}(B ; \mathcal{L} ; \mathcal{R})}=O \circ_{\mathcal{M}_{k+1}(B ; \mathcal{L} ; \mathcal{R}) .} . \\
O_{\mathcal{M}_{k+1}(B ; \mathcal{L} ; \mathcal{R})} \otimes \operatorname{forget}^{*} O_{\mathcal{M}_{k+1}}=O_{\mathcal{M}_{k+1}(B ; \mathcal{L} ; \mathcal{R})^{\circ} .} .
\end{gathered}
$$

We give an orientation of $\mathcal{M}_{k+1}=\left(\partial D^{2}\right)^{k+1} / \operatorname{Aut}\left(D^{2}, \partial D^{2}\right)$ as the orientation of the quotient space following the convention (8.2.1.2) in [1]. Then the orientation bundle of $\mathcal{M}_{k+1}(B ; \mathcal{L} ; \mathcal{R})$ is canonically isomorphic to the one of $\mathcal{M}_{k+1}(B ; \mathcal{L} ; \mathcal{R})^{\circ}$. Hence, for $\mathbf{u}=[u:(\Sigma, \partial \Sigma, \vec{z}) \rightarrow$ $\left(X, \cup_{L \in \mathcal{L}} L, \cup_{R_{\alpha} \in \mathcal{R}} R_{\alpha}\right)$], the relative spin structure of \mathcal{L}, local sections $\sigma_{\alpha_{i}}$ of $O(1)$-local systems $\Theta_{\alpha_{i}}$ around $u\left(z_{i}\right), i=0,1, \ldots, k$, determines a local orientation of the relative tangent bundle of $e v_{0}^{B}: \mathcal{M}_{k+1}(B ; \mathcal{L} ; \mathcal{R}) \rightarrow R_{\alpha}$, at \mathbf{u}, i.e., the kernel of $T_{\mathbf{u}} \mathcal{M}_{k+1}(B ; \mathcal{L} ; \mathcal{R}) \rightarrow T_{u\left(z_{0}\right)} R_{\alpha_{0}}$, which is denoted by $o\left(\sigma_{\alpha_{0}} ; \sigma_{\alpha_{1}}, \ldots, \sigma_{\alpha_{k}}\right)$.

Remark 1. When $k=0$ and $R_{\alpha_{0}}=L$, the orientation on $\mathcal{M}_{1}(B ; L)$ is given in Section 8.4.1 in [1] When $k=1$, the orientation bundle of $\mathcal{M}_{2}(B ; \mathcal{L} ; \mathcal{R})$ is given in Proposition 8.8.6 in [1]. Note that $\Theta_{R_{\alpha}}^{+} \otimes O_{R_{\alpha}} \otimes \Theta_{R_{\alpha}}^{-}$is canonically trivialized. We write $\Theta_{R_{\alpha}}=\Theta_{R_{\alpha}}^{-}$in this note.

Hence Theorem 27.1 in [2] gives

$$
\left(e v_{0}^{B}\right)!\circ\left(e v_{1}^{B *} \times \cdots \times e v_{k}^{B *}\right): \Omega^{*}\left(R_{\alpha_{1}} ; \Theta_{R_{\alpha_{1}}}\right) \otimes \cdots \otimes \Omega^{*}\left(R_{\alpha_{k}} ; \Theta_{R_{\alpha_{k}}}\right) \rightarrow \Omega^{*}\left(R_{\alpha_{0}} ; \Theta_{R_{\alpha_{0}}}\right) .
$$

Namely, for $\xi_{i}=\zeta_{i} \otimes \sigma_{\alpha_{i}} \in \Omega^{*}\left(R_{\alpha_{i}} ; \Theta_{\alpha_{i}}\right), i=1, \ldots, k$, we define

$$
\begin{align*}
& \left(e v_{0}^{B}\right)_{!} \circ\left(e v_{1}^{B *} \times \cdots \times e v_{k}^{B *}\right)\left(\zeta_{1} \otimes \sigma_{\alpha_{1}}, \ldots, \zeta_{k} \otimes \sigma_{\alpha_{k}}\right) \\
= & \left(e v_{0}^{B} ; o\left(\sigma_{\alpha_{0}} ; \sigma_{\alpha_{1}}, \ldots, \sigma_{\alpha_{k}}\right)\right)_{!}\left(e v_{1}^{B *} \zeta_{1} \wedge \cdots \wedge e v_{k}^{B *} \zeta_{k}\right) \otimes \sigma_{\sigma_{\alpha_{0}}} . \tag{2}
\end{align*}
$$

Here $\left(e v_{0}^{B} ; o\left(\sigma_{\alpha_{0}} ; \sigma_{\alpha_{1}}, \ldots, \sigma_{\alpha_{k}}\right)\right)$ is the integration along fibers with respect to the relative orientation $o\left(\sigma_{\alpha_{0}} ; \sigma_{\alpha_{1}}, \ldots, \sigma_{\alpha_{k}}\right)$ of $\mathcal{M}_{k+1}(B ; \mathcal{L} ; \mathcal{R}) \rightarrow R_{\alpha_{0}}$. Note that the right hand side of (2) does not depends on $\sigma_{\alpha_{0}}$, since $\sigma_{\alpha_{0}}$ appears twice in the right hand side of (2), and gives a differential form on $R_{\alpha_{0}}$ with coefficients in $\Theta_{\alpha_{0}}$. For general $\xi_{i} \in \Omega^{*}\left(R_{\alpha_{i}} ; \Theta_{\alpha_{i}}\right)$, we use partitions of unity on $R_{\alpha_{i}}$ and extend the definition of \mathfrak{m}_{k} multi-linearly.

For $\xi \in \Omega^{*}\left(R_{\alpha} ; \Theta_{\alpha}\right)$, we define the shifted degree

$$
|\xi|^{\prime}=\operatorname{deg} \xi+\mu\left(R_{\alpha}\right)-1
$$

Definition 2. We set $\mathfrak{m}_{0,0}=0, \mathfrak{m}_{(1,0)} \xi=d \xi$ on $\bigoplus \Omega^{*}\left(R_{\alpha} ; \Theta_{R_{\alpha}}\right)$, i.e., the de Rham differential on differential forms with coefficients in the local system $\Theta_{R_{\alpha}}$. For $(k, B) \neq(1,0)$,

$$
\mathfrak{m}_{k, B}\left(\xi_{1}, \ldots, \xi_{k}\right)=(-1)^{\epsilon\left(\xi_{1}, \ldots, \xi_{k}\right)}\left(e v_{0}^{B}\right)!\circ\left(e v_{1}^{B *} \times \cdots \times e v_{k}^{B *}\right)\left(\xi_{1} \otimes \ldots, \otimes \xi_{k}\right)
$$

where $\xi_{i} \in \Omega^{*}\left(R_{\alpha_{i}} ; \Theta_{\alpha_{i}}\right)$ and

$$
\epsilon\left(\xi_{1}, \ldots, \xi_{k}\right)=\left\{\sum_{i=1}^{k}\left(i+\sum_{p=1}^{i-1} \mu\left(R_{\alpha_{p}}\right)\right)\left(\operatorname{deg} \xi_{i}-1\right)\right\}+1
$$

In the rest of this note, we show the filtered A_{∞}-relations. Denote by $\hat{\mathfrak{m}}_{k, B}$ the extension of $\mathfrak{m}_{k, B}$ as a coderivation with respect to the shifted degree $|\bullet|^{\prime}$. We compute $\mathfrak{m}_{k^{\prime}, B^{\prime}} \circ \hat{\mathfrak{m}}_{k^{\prime \prime}, B^{\prime \prime}}$. Clearly, $\mathfrak{m}_{1,0} \circ \mathfrak{m}_{1,0}=0$. We consider the case that $\left(k^{\prime}, B^{\prime}\right)=(1,0)$ or $\left(k^{\prime \prime}, B^{\prime \prime}\right)=(1,0)$. Namely, for $(k, B) \neq(1,0)$, we have

$$
\begin{align*}
\mathfrak{m}_{1,0} \circ \mathfrak{m}_{k, B}\left(\xi_{1}, \ldots, \xi_{k}\right) & =(-1)^{\epsilon\left(\xi_{1}, \ldots, \xi_{k}\right)} d\left(e v_{0}^{B}\right)_{!}\left(e v_{1}^{B *} \xi_{1} \wedge \cdots \wedge e v_{k}^{B *} \xi_{k}\right) \tag{3}\\
\mathfrak{m}_{k, B} \circ \hat{\mathfrak{m}}_{1,0}\left(\xi_{1}, \ldots, \xi_{k}\right) & =\sum_{j=1}^{k}(-1)^{\sum_{p=1}^{j-1}\left|\xi_{p}\right|^{\prime}} \mathfrak{m}_{k, B}\left(\xi_{1}, \ldots, d \xi_{j}, \ldots, \xi_{k}\right) \\
& =\sum_{j=1}^{k}(-1)^{\sum_{p=1}^{j-1}\left|\xi_{p}\right|^{\prime}+\epsilon\left(\xi_{1}, \ldots, d \xi_{j}, \ldots, \xi_{k}\right)}\left(e v_{0}^{B}\right)_{!}\left(e v_{1}^{B *} \xi_{1} \wedge \cdots \wedge e v_{j}^{B *} d \xi_{j} \wedge \cdots \wedge e v_{k}^{B *} \xi_{k}\right) \\
& =(-1)^{\epsilon\left(\xi_{1}, \ldots, \xi_{k}\right)+1}\left(e v_{0}^{B}\right)!d\left(e v_{1}^{B *} \xi_{1} \wedge \cdots \wedge e v_{k}^{B *} \xi_{k}\right) \tag{4}
\end{align*}
$$

Here we note that

$$
\begin{aligned}
\sum_{p=1}^{j-1}\left|\xi_{p}\right|^{\prime}+\epsilon\left(\xi_{1}, \ldots, d \xi_{j}, \ldots, \xi_{k}\right) & =\sum_{p=1}^{j-1} \operatorname{deg} \xi_{p}+\sum_{p=1}^{j-1}\left(\mu\left(R_{\alpha_{p}}\right)-1\right)+\epsilon\left(\xi_{1}, \ldots, \xi_{k}\right)+\left(j+\sum_{p=1}^{j-1} \mu\left(R_{\alpha_{p}}\right)\right) \\
& \equiv \sum_{p=1}^{j-1} \operatorname{deg} \xi_{p}+\epsilon\left(\xi_{1}, \ldots, \xi_{k}\right)+1 \bmod 2
\end{aligned}
$$

In order to compute $\mathfrak{m}_{k^{\prime}, B^{\prime}} \circ \hat{\mathfrak{m}}_{k^{\prime \prime}, B^{\prime \prime}}$, we discuss the relation between the orientation bundle of $\mathcal{M}_{k^{\prime}+1}\left(B^{\prime} ; \mathcal{L}^{\prime} ; \mathcal{R}^{\prime}\right)_{e v_{j}^{B^{\prime}}} \times_{e v_{0}^{B^{\prime \prime}}} \mathcal{M}_{k^{\prime \prime}+1}\left(B^{\prime \prime} ; \mathcal{L}^{\prime \prime} ; \mathcal{R}^{\prime \prime}\right)$ and the orientation bundle of the boundary of $\partial \mathcal{M}_{k+1}(B ; \mathcal{L} ; \mathcal{R})$. The codimension 1 boundary of the moduli space $\mathcal{M}_{k+1}(B ; \mathcal{L} ; \mathcal{R})$ is the union of the fiber products of $\mathcal{M}_{k^{\prime}+1}\left(B^{\prime} ; \mathcal{L}^{\prime} ; \mathcal{R}^{\prime}\right)$ and $\mathcal{M}_{k^{\prime \prime}+1}\left(B^{\prime \prime} ; \mathcal{L}^{\prime \prime} ; \mathcal{R}^{\prime \prime}\right)$ with respect to $e v_{j}^{B^{\prime}}: \mathcal{M}_{k^{\prime}+1}\left(B^{\prime} ; \mathcal{L}^{\prime} ; \mathcal{R}^{\prime}\right) \rightarrow R_{\alpha}$ and $e v_{0}^{B^{\prime \prime}}: \mathcal{M}_{k^{\prime \prime}+1}\left(B^{\prime \prime} ; \mathcal{L}^{\prime \prime} ; \mathcal{R}^{\prime \prime}\right) \rightarrow R_{\alpha}$, where

$$
\begin{gathered}
\mathcal{L}^{\prime}=\left(L_{i_{0}}, \ldots, L_{i_{j-1}}, L_{i_{j+k^{\prime \prime}-1}}, \ldots L_{i_{k}}\right), \mathcal{L}^{\prime \prime}=\left(L_{i_{j-1}}, \ldots, L_{i_{j+k^{\prime \prime}-1}}\right) \\
\mathcal{R}^{\prime}=\left(R_{\alpha_{0}}, \ldots, R_{\alpha_{j-1}}, R_{\alpha}, R_{\alpha_{j+k^{\prime \prime}}}, \ldots, R_{\alpha_{k}}\right), \mathcal{R}^{\prime \prime}=\left(R_{\alpha}, R_{\alpha_{j}}, \ldots R_{\alpha_{i_{j+k^{\prime \prime}}-1}}\right)
\end{gathered}
$$

over $j=1, \ldots, k, k^{\prime}, k^{\prime \prime}$ such that $k^{\prime}+k^{\prime \prime}=k+1, R_{\alpha}$ a connected component of $L_{i_{j-1}} \cap L_{j+k^{\prime \prime}-1}$, all possible decomposition of B into B^{\prime} and $B^{\prime \prime}$.

Denote by $S w$ the exchange of $\Theta_{R_{\alpha_{1}}} \otimes \cdots \otimes \Theta_{R_{\alpha_{j-1}}}$ and $O_{R_{\alpha}} \otimes O_{\mathcal{M}_{k^{\prime \prime}+1}\left(B^{\prime \prime} ; \mathcal{L}^{\prime \prime} ; \mathcal{R}^{\prime \prime}\right)^{\circ} \text { with the sign }}$ $(-1)^{\delta_{1}}$, where

$$
\begin{aligned}
\delta_{1} & =\left(\sum_{p=1}^{j-1} \mu\left(R_{\alpha_{p}}\right)\right)\left(\operatorname{dim} \mathcal{M}_{k^{\prime \prime}+1}\left(B^{\prime \prime} ; \mathcal{L}^{\prime \prime} ; \mathcal{R}^{\prime \prime}\right)-\operatorname{dim} R_{\alpha}-\operatorname{dim} \mathcal{M}_{k^{\prime \prime}+1}\right) \\
& \equiv\left(\sum_{p=1}^{j-1} \mu\left(R_{\alpha_{p}}\right)\right)\left(\mu\left(R_{\alpha}\right)-\sum_{p=j}^{j+k^{\prime \prime}-1} \mu\left(R_{\alpha_{p}}\right)\right) \bmod 2
\end{aligned}
$$

Comparing Φ^{B} and $S w \circ\left(i d \otimes \cdots \otimes i d \otimes \Phi^{B^{\prime \prime}} \otimes i d \otimes \cdots \otimes i d\right) \circ \Phi^{B^{\prime}}$, we find that

$$
O_{\mathcal{M}_{k+1}(B ; \mathcal{L} ; \mathcal{R})^{\circ}} \rightarrow O_{\mathcal{M}_{k+1}\left(B^{\prime} ; \mathcal{L}^{\prime} ; \mathcal{R}^{\prime}\right)^{\circ}} \otimes O_{R_{\alpha}} \otimes O_{\mathcal{M}_{k^{\prime \prime}+1}\left(B^{\prime \prime} ; \mathcal{L}^{\prime \prime} ; \mathcal{R}^{\prime \prime}\right)^{\circ}}
$$

is $(-1)^{\delta_{1}}$-orientation preserving ${ }^{1}$. Here $\mathcal{M}_{k+1}\left(B^{\prime} ; \mathcal{L}^{\prime} ; \mathcal{R}^{\prime}\right)^{\circ}$ is the moduli space of bordered stable maps with a fixed domain bordered Riemann surface with fixed boundary marked points. The $O(1)$-local system $O_{\mathcal{M}_{k+1}\left(B^{\prime} ; \mathcal{L}^{\prime} ; \mathcal{R}^{\prime}\right)^{\circ}} \otimes O_{R_{\alpha}} \otimes O_{\mathcal{M}_{k^{\prime \prime}+1}\left(B^{\prime \prime} ; \mathcal{L}^{\prime \prime} ; \mathcal{R}^{\prime \prime}\right)^{\circ}}$ is the orientation bundle of the fiber product $\mathcal{M}_{k^{\prime}+1}\left(B^{\prime} ; \mathcal{L}^{\prime} ; \mathcal{R}^{\prime}\right)_{e v_{j}^{B^{\prime}}}^{\circ} \times_{e v_{0}^{B^{\prime \prime}}} \mathcal{M}_{k^{\prime \prime}+1}\left(B^{\prime \prime} ; \mathcal{L}^{\prime \prime} ; \mathcal{R}^{\prime \prime}\right)^{\circ}$, which is the moduli space of bordered stable maps with a fixed boundary nodal Riemann surface wth fixed boundary marked points.

Now we compare $\partial \mathcal{M}_{k+1}(B ; \mathcal{L} ; \mathcal{R})=\partial\left(\mathcal{M}_{k+1}(B ; \mathcal{L} ; \mathcal{R})^{\circ} \times \mathcal{M}_{k+1}\right)$ and $\mathcal{M}_{k^{\prime}+1}\left(B^{\prime} ; \mathcal{L}^{\prime} ; \mathcal{R}^{\prime}\right)_{e v_{j}^{B^{\prime}}} \times e v_{0}^{B^{\prime \prime}}$ $\mathcal{M}_{k^{\prime \prime}+1}\left(B^{\prime \prime} ; \mathcal{L}^{\prime \prime} ; \mathcal{R}^{\prime \prime}\right)=\left(\mathcal{M}_{k^{\prime}+1}\left(B^{\prime} ; \mathcal{L}^{\prime} ; \mathcal{R}^{\prime}\right)^{\circ} \times \mathcal{M}_{k^{\prime}+1}\right)_{e v_{j}^{B^{\prime}}} \times_{e v_{0}^{B^{\prime \prime}}}\left(\mathcal{M}_{k^{\prime \prime}+1}\left(B^{\prime \prime} ; \mathcal{L}^{\prime \prime} ; \mathcal{R}^{\prime \prime}\right)^{\circ} \times \mathcal{M}_{k^{\prime \prime}+1}\right)$. We note that $O_{\mathcal{M}_{k+1}(B ; \mathcal{L} ; \mathcal{R})}=\mathbb{R}_{\text {out }} \otimes O_{\partial \mathcal{M}_{k+1}(B ; \mathcal{L} ; \mathcal{R})}$. Here $\mathbb{R}_{\text {out }}$ is the normal bundle of the boundary oriented by the outer normal vector.

We pick local flat sections $\sigma_{\alpha_{0}}, \ldots, \sigma_{\alpha_{k}}, \sigma_{\alpha}$ of $O(1)$-local systems $\Theta_{R_{\alpha_{0}}}, \ldots, \Theta_{R_{\alpha_{k}}}, \Theta_{R_{\alpha}}$ and a local orientation $o_{R_{\alpha_{0}}}$ of $R_{\alpha_{0}}$ around $u\left(z_{0}\right)$. Then we can equip $\mathcal{M}_{k+1}(B ; \mathcal{L} ; \mathcal{R}), \mathcal{M}_{k^{\prime}+1}\left(B^{\prime} ; \mathcal{L}^{\prime} ; \mathcal{R}^{\prime}\right)$ and the relative tangent bundle of $e v_{0}^{B^{\prime \prime}}: \mathcal{M}_{k^{\prime \prime}+1}\left(B^{\prime \prime} ; \mathcal{L}^{\prime \prime} ; \mathcal{R}^{\prime \prime}\right) \rightarrow R_{\alpha}$ with local orientations induced by them. Then a local orientation of $\mathcal{M}_{k+1}(B ; \mathcal{L} ; \mathcal{R})=R_{\alpha_{0}} \times{ }^{\circ} \mathcal{M}_{k+1}(B ; \mathcal{L} ; \mathcal{R})$ is given by $o_{R_{\alpha_{0}}} \times$ $o\left(\sigma_{\alpha_{0}} ; \sigma_{\alpha_{1}}, \ldots, \sigma_{\alpha_{k}}\right)$. As the fiber product of spaces with Kuranishi structures equipped with local orieentations,

$$
\mathcal{M}_{k^{\prime}+1}\left(B^{\prime} ; \mathcal{L}^{\prime} ; \mathcal{R}^{\prime}\right)_{e v_{j}^{B^{\prime}}} \times \times_{e v_{0}^{B}} \mathcal{M}_{k^{\prime \prime}+1}\left(B^{\prime \prime} ; \mathcal{L}^{\prime \prime} ; \mathcal{R}^{\prime \prime}\right)=\mathcal{M}_{k^{\prime}+1}\left(B^{\prime} ; \mathcal{L}^{\prime} ; \mathcal{R}^{\prime}\right) \times{ }^{\circ} \mathcal{M}_{k^{\prime \prime}+1}\left(B^{\prime \prime} ; \mathcal{L}^{\prime \prime} ; \mathcal{R}^{\prime \prime}\right)
$$

is locally oriented by

$$
o_{R_{\alpha_{0}}} \times o\left(\sigma_{R_{\alpha_{0}}} ; \sigma_{R_{\alpha_{1}}}, \ldots, \sigma_{R_{\alpha_{j-1}}}, \sigma_{R_{\alpha}}, \sigma_{R_{\alpha_{j+k^{\prime \prime}}}}, \ldots, \sigma_{R_{\alpha_{k}}}\right) \times o\left(\sigma_{R_{\alpha}} ; \sigma_{R_{\alpha_{j}}}, \ldots, \sigma_{R_{\alpha_{j+k^{\prime \prime}}-1}}\right)
$$

We fix $z_{0}=+1, z_{j}=-1$ and consider the spaces of J-holomorphic maps $\widetilde{\mathcal{M}}_{k+1}(B ; \mathcal{L}, \mathcal{R})$, $\widetilde{\mathcal{M}}_{k^{\prime}+1}\left(B^{\prime} ; \mathcal{L}^{\prime}, \mathcal{R}^{\prime}\right), \widetilde{\mathcal{M}}_{k^{\prime \prime}+1}\left(B^{\prime \prime} ; \mathcal{L},{ }^{\prime \prime} \mathcal{R}^{\prime \prime}\right)$ such that

$$
\begin{gathered}
\mathcal{M}_{k+1}(B ; \mathcal{L} ; \mathcal{R})=\widetilde{\mathcal{M}}_{k^{\prime}+1}\left(B^{\prime} ; \mathcal{L}^{\prime}, \mathcal{R}^{\prime}\right) / \mathbb{R}_{B}, \\
\mathcal{M}_{k^{\prime}+1}\left(B^{\prime} ; \mathcal{L}^{\prime} ; \mathcal{R}^{\prime}\right)=\widetilde{\mathcal{M}}_{k^{\prime}+1}\left(B^{\prime} ; \mathcal{L}^{\prime} ; \mathcal{R}^{\prime}\right) / \mathbb{R}_{B^{\prime}},
\end{gathered}
$$

and

$$
\mathcal{M}_{k^{\prime \prime}+1}\left(B^{\prime \prime} ; \mathcal{L}^{\prime \prime} ; \mathcal{R}^{\prime \prime}\right)=\widetilde{\mathcal{M}}_{k^{\prime \prime}+1}\left(B^{\prime \prime} ; \mathcal{L},{ }^{\prime \prime} \mathcal{R}^{\prime \prime}\right) / \mathbb{R}_{B^{\prime \prime}}
$$

We may also write

$$
\widetilde{\mathcal{M}}_{k+1}(B ; \mathcal{L} ; \mathcal{R})=\mathcal{M}_{k+1}(B ; \mathcal{L}, \mathcal{R}) \times \mathbb{R}_{B}, \text { etc. }
$$

as oriented spaces.

[^1]The case that $z_{0}=+1, z_{1}=-1$ is discussed in page 699 of $[1]$. The case that $z_{0}=+1, z_{j}=-1$ differs from the case that $z_{0}=+1, z_{1}=-1$ by an additional factor $(-1)^{j-1}$ as below.

Note that

$$
\widetilde{\mathcal{M}}_{k+1}(B ; \mathcal{L} ; \mathcal{R})=(-1)^{j-1} \mathcal{M}_{k+1}(B ; \mathcal{L} ; \mathcal{R})^{\circ} \times \prod_{i=1}^{j-1}(\partial D)_{z_{i}} \times \prod_{i=j+1}^{j+k^{\prime \prime}-1}(\partial D)_{z_{i}} \times \prod_{i=j+k^{\prime \prime}}^{k}(\partial D)_{z_{i}}
$$

where $z_{0}=+1, z_{j}=-1$,

$$
\widetilde{\mathcal{M}}_{k^{\prime}+1}\left(B^{\prime} ; \mathcal{L}^{\prime} ; \mathcal{R}^{\prime}\right)=(-1)^{j-1} \mathcal{M}_{k^{\prime}+1}\left(B^{\prime} ; \mathcal{L}^{\prime} ; \mathcal{R}^{\prime}\right)^{\circ} \times \prod_{i=1}^{j-1}(\partial D)_{z_{i}} \times \prod_{i=j+k^{\prime \prime}}^{k}(\partial D)_{z_{i}}
$$

where $z_{0}^{\prime}=+1, z_{j}^{\prime}=-1$, and

$$
\widetilde{\mathcal{M}}_{k^{\prime \prime}+1}\left(B^{\prime \prime} ; \mathcal{L}^{\prime \prime} ; \mathcal{R}^{\prime \prime}\right)=\mathcal{M}_{k^{\prime \prime}+1}\left(B^{\prime \prime} ; \mathcal{L} ;^{\prime \prime} \mathcal{R}^{\prime \prime}\right)^{\circ} \times \prod_{i=j+1}^{j+k^{\prime \prime}-1}(\partial D)_{z_{i}}
$$

where $z_{0}^{\prime \prime}=+1, z_{1}^{\prime \prime}=-1$.
Remark 3. We have

$$
\begin{gathered}
(-1)^{j-1} \prod_{i=1}^{j-1}(\partial D)_{z_{i}} \times \prod_{i=j+1}^{j+k^{\prime \prime}-1}(\partial D)_{z_{i}} \times \prod_{i=j+k^{\prime \prime}}^{k}(\partial D)_{z_{i}}=\mathcal{M}_{k+1} \times \mathbb{R}_{B} \\
(-1)^{j-1} \prod_{i=1}^{j-1}(\partial D)_{z_{i}} \times \prod_{i=j+k^{\prime \prime}}^{k}(\partial D)_{z_{i}}=\mathcal{M}_{k^{\prime}+1} \times \mathbb{R}_{B^{\prime}}
\end{gathered}
$$

and

$$
\prod_{i=j+1}^{j+k^{\prime \prime}-1}(\partial D)_{z_{i}}=\mathcal{M}_{k^{\prime \prime}+1} \times \mathbb{R}_{B^{\prime \prime}}
$$

Marked points of $\mathcal{M}_{k^{\prime}+1}\left(B^{\prime} ; \mathcal{L}^{\prime} ; \mathcal{R}^{\prime}\right)$ and $\mathcal{M}_{k^{\prime \prime}+1}\left(B^{\prime \prime} ; \mathcal{L} ;^{\prime \prime} \mathcal{R}^{\prime \prime}\right)$ are related to marked points of $\mathcal{M}_{k+1}(B ; \mathcal{L} ; \mathcal{R})$ in the following way.

$$
\begin{aligned}
& \left(z_{0}^{\prime}, \ldots, z_{k^{\prime}}^{\prime}\right)=\left(z_{0}, \ldots, z_{j-1}, z_{j}^{\prime}, z_{j+k^{\prime \prime}}, \ldots, z_{k}\right) \\
& \left(z_{0}^{\prime \prime}, z_{1}^{\prime \prime}, \ldots, z_{k^{\prime \prime}}^{\prime \prime}\right)=\left(z_{0}^{\prime \prime}, z_{j}, \ldots, z_{j+k^{\prime \prime}-1}\right)
\end{aligned}
$$

Here z_{j}^{\prime} and $z_{0}^{\prime \prime}$ are identified, i.e., the boundary node of the domain curve of an element in $\mathcal{M}_{k+1}(B ; \mathcal{L} ; \mathcal{R})$.

Then we find that

$$
\begin{align*}
\widetilde{\mathcal{M}}_{k+1}(B ; \mathcal{L} ; \mathcal{R})= & (-1)^{\delta_{1}}\left(\mathcal{M}_{k^{\prime}+1}\left(B^{\prime} ; \mathcal{L}^{\prime} ; \mathcal{R}^{\prime}\right)^{\circ} \times_{R_{\alpha}} \times \mathcal{M}_{k^{\prime \prime}+1}\left(B^{\prime \prime} ; \mathcal{L}^{\prime \prime}{ }^{\prime \prime} \mathcal{R}^{\prime \prime}\right)^{\circ}\right) \times \\
& (-1)^{j-1} \prod_{i=1}^{j-1}(\partial D)_{z_{i}} \times \prod_{i=j+1}^{j+k^{\prime \prime}-1}(\partial D)_{z_{i}} \times \prod_{i=j+k^{\prime \prime}}^{k}(\partial D)_{z_{i}} \\
= & (-1)^{\delta_{1}+\delta_{2}}\left(\mathcal{M}_{k^{\prime}+1}\left(B^{\prime} ; \mathcal{L}^{\prime} ; \mathcal{R}^{\prime}\right)^{\circ} \times(-1)^{j-1} \prod_{i=1}^{j-1}(\partial D)_{z_{i}} \times \prod_{i=j+k^{\prime \prime}}^{k}(\partial D)_{z_{i}}\right) \\
& \times_{R_{\alpha}}\left(\mathcal{M}_{k^{\prime \prime}+1}\left(B^{\prime \prime} ; \mathcal{L}^{\prime \prime} ; \mathcal{R}^{\prime \prime}\right)^{\circ} \times \prod_{i=j+1}^{j+k^{\prime \prime}-1}(\partial D)_{z_{i}}\right) \\
= & (-1)^{\delta_{1}+\delta_{2}}\left(\mathcal{M}_{k^{\prime}+1}\left(B^{\prime} ; \mathcal{L}^{\prime} ; \mathcal{R}^{\prime}\right) \times \mathbb{R}_{B^{\prime}}\right) \times_{R_{\alpha}} \times\left(\mathcal{M}_{k^{\prime \prime}+1}\left(B^{\prime \prime} ; \mathcal{L}^{\prime \prime} ; \mathcal{R}^{\prime \prime}\right) \times \mathbb{R}_{B^{\prime \prime}}\right) \\
= & (-1)^{\delta_{1}+\delta_{2}+\delta_{3} \mathbb{R}_{B^{\prime}-B^{\prime \prime}} \times\left(\mathcal{M}_{k^{\prime}+1}\left(B^{\prime} ; \mathcal{L}^{\prime} ; \mathcal{R}^{\prime}\right) \times_{R_{\alpha}} \times \mathcal{M}_{k^{\prime \prime}+1}\left(B^{\prime \prime} ; \mathcal{L}^{\prime \prime} \mathcal{R}^{\prime \prime}\right)\right)} \\
& \times \mathbb{R}_{B^{\prime}+B^{\prime \prime}} \\
= & (-1)^{\delta_{1}+\delta_{2}+\delta_{3}} \mathbb{R}_{\text {out }} \times\left(\mathcal{M}_{k^{\prime}+1}\left(B^{\prime} ; \mathcal{L}^{\prime} ; \mathcal{R}^{\prime}\right) \times_{R_{\alpha}} \times \mathcal{M}_{k^{\prime \prime}+1}\left(B^{\prime \prime} ; \mathcal{L}^{\prime \prime} \mathcal{R}^{\prime \prime}\right)\right) \\
& \times \mathbb{R}_{B} \tag{5}
\end{align*}
$$

where

$$
\begin{aligned}
\delta_{2} & =\left(k^{\prime \prime}-1\right)\left(k^{\prime}-j\right)+\left(k^{\prime}-1\right)\left(\operatorname{dim} \mathcal{M}_{k^{\prime \prime}+1}\left(B^{\prime \prime} ; \mathcal{L}^{\prime \prime} \mathcal{R}^{\prime \prime}\right)^{\circ}-\operatorname{dim} R_{\alpha}\right), \\
\delta_{3} & =\operatorname{dim} \mathcal{M}_{k^{\prime}+1}\left(B^{\prime} ; \mathcal{L}^{\prime} ; \mathcal{R}^{\prime}\right)
\end{aligned}
$$

$\mathbb{R}_{B^{\prime}-B^{\prime \prime}}$ and $\mathbb{R}_{B^{\prime}+B^{\prime \prime}}$ are the oriented lines spanned by $(1,-1),(1,1) \in \mathbb{R}_{B^{\prime}} \oplus \mathbb{R}_{B^{\prime \prime}}$, respectively. Note that the ordered bases $(1,0),(0,1)$ and $(1,-1),(1,1)$ give the same orientation of $\mathbb{R}_{B^{\prime}} \oplus \mathbb{R}_{B^{\prime \prime}}$, $\mathbb{R}_{B^{\prime}-B^{\prime \prime}}$ and $\mathbb{R}_{B^{\prime}+B^{\prime \prime}}$ are identified with $\mathbb{R}_{\text {out }}$ and \mathbb{R}_{B}, respectively.

Here is an explanation of the second equality, i.e., the appearance of $(-1)^{\delta_{2}}$. By the convention in Section 8.2 in [1], we have

$$
\begin{aligned}
& \mathcal{M}_{k^{\prime}+1}\left(B^{\prime} ; \mathcal{L}^{\prime} ; \mathcal{R}^{\prime}\right)^{\circ} \times_{R_{\alpha}} \times \mathcal{M}_{k^{\prime \prime}+1}\left(B^{\prime \prime} ; \mathcal{L}^{\prime \prime} \mathcal{R}^{\prime \prime}\right)^{\circ} \\
= & \mathcal{M}_{k^{\prime}+1}\left(B^{\prime} ; \mathcal{L}^{\prime} ; \mathcal{R}^{\prime}\right)^{\circ \circ} \times R_{\alpha} \times{ }^{\circ} \mathcal{M}_{k^{\prime \prime}+1}\left(B^{\prime \prime} ; \mathcal{L}^{\prime \prime} \mathcal{R}^{\prime \prime}\right)^{\circ}, \\
= & \mathcal{M}_{k^{\prime}+1}\left(B^{\prime} ; \mathcal{L}^{\prime} ; \mathcal{R}^{\prime}\right)^{\circ} \times{ }^{\circ} \mathcal{M}_{k^{\prime \prime}+1}\left(B^{\prime \prime} ; \mathcal{L} ;^{\prime \prime} \mathcal{R}^{\prime \prime}\right)^{\circ}
\end{aligned}
$$

where

$$
\mathcal{M}_{k^{\prime}+1}\left(B^{\prime} ; \mathcal{L}^{\prime} ; \mathcal{R}^{\prime}\right)^{\circ}=\mathcal{M}_{k^{\prime}+1}\left(B^{\prime} ; \mathcal{L}^{\prime} ; \mathcal{R}^{\prime}\right)^{\circ \circ} \times R_{\alpha}
$$

and

$$
\mathcal{M}_{k^{\prime \prime}+1}\left(B^{\prime \prime} ; \mathcal{L} ;^{\prime \prime} \mathcal{R}^{\prime \prime}\right)^{\circ}=R_{\alpha} \times{ }^{\circ} \mathcal{M}_{k^{\prime \prime}+1}\left(B^{\prime \prime} ; \mathcal{L} ;^{\prime \prime} \mathcal{R}^{\prime \prime}\right)^{\circ}
$$

Using these notations, we have

$$
\begin{aligned}
& \left(\mathcal{M}_{k^{\prime}+1}\left(B^{\prime} ; \mathcal{L}^{\prime} ; \mathcal{R}^{\prime}\right)^{\circ} \times_{R_{\alpha}} \times \mathcal{M}_{k^{\prime \prime}+1}\left(B^{\prime \prime} ; \mathcal{L}^{\prime \prime} \mathcal{R}^{\prime \prime}\right)^{\circ}\right) \times \prod_{i=1}^{j-1}(\partial D)_{z_{i}} \times \prod_{i=j+k^{\prime \prime}}^{k}(\partial D)_{z_{i}} \times \prod_{i=j+1}^{j+k^{\prime \prime}-1}(\partial D)_{z_{i}} \\
= & (-1)^{\gamma_{1}}\left(\mathcal{M}_{k^{\prime}+1}\left(B^{\prime} ; \mathcal{L}^{\prime} ; \mathcal{R}^{\prime}\right)^{\circ} \times_{R_{\alpha}} \times \mathcal{M}_{k^{\prime \prime}+1}\left(B^{\prime \prime} ; \mathcal{L}^{\prime \prime} ; \mathcal{R}^{\prime \prime}\right)^{\circ}\right) \times \prod_{i=1}^{j-1}(\partial D)_{z_{i}} \times \prod_{i=j+1}^{j+k^{\prime \prime}-1}(\partial D)_{z_{i}} \times \prod_{i=j+k^{\prime \prime}}^{k}(\partial D)_{z_{i}} \\
= & (-1)^{\gamma_{1}}\left(\mathcal{M}_{k^{\prime}+1}\left(B^{\prime} ; \mathcal{L}^{\prime} ; \mathcal{R}^{\prime}\right)^{\circ} \times{ }^{\circ} \mathcal{M}_{k^{\prime \prime}+1}\left(B^{\prime \prime} ; \mathcal{L}^{\prime \prime} ;^{\prime \prime} \mathcal{R}^{\prime \prime}\right)^{\circ}\right) \times \prod_{i=1}^{j-1}(\partial D)_{z_{i}} \times \prod_{i=j+1}^{j+k^{\prime \prime}-1}(\partial D)_{z_{i}} \times \prod_{i=j+k^{\prime \prime}}^{k}(\partial D)_{z_{i}} \\
= & (-1)^{\gamma_{1}+\gamma_{2}} \mathcal{M}_{k^{\prime}+1}\left(B^{\prime} ; \mathcal{L}^{\prime} ; \mathcal{R}^{\prime}\right)^{\circ} \times \prod_{i=1}^{j-1}(\partial D)_{z_{i}} \times \prod_{i=j+1}^{j+k^{\prime \prime}-1}(\partial D)_{z_{i}} \times{ }^{\circ} \mathcal{M}_{k^{\prime \prime}+1}\left(B^{\prime \prime} ; \mathcal{L}^{\prime \prime} \mathcal{R}^{\prime \prime}\right)^{\circ} \times \prod_{i=j+k^{\prime \prime}}^{k}(\partial D)_{z_{i}} \\
= & (-1)^{\gamma_{1}+\gamma_{2}}\left(\mathcal{M}_{k^{\prime}+1}\left(B^{\prime} ; \mathcal{L}^{\prime} ; \mathcal{R}^{\prime}\right)^{\circ} \times \prod_{i=1}^{j-1}(\partial D)_{z_{i}} \times \prod_{i=j+k^{\prime \prime}}^{k}(\partial D)_{z_{i}}\right) \times_{R_{\alpha}}\left(\mathcal{M}_{k^{\prime \prime}+1}\left(B^{\prime \prime} ; \mathcal{L}^{\prime \prime} ; \mathcal{R}^{\prime \prime}\right)^{\circ} \times \prod_{i=j+1}^{j+k^{\prime \prime}-1}(\partial D)_{z_{i}}\right),
\end{aligned}
$$

where $\gamma_{1}=\left(k^{\prime \prime}-1\right)\left(k^{\prime}-j\right)$, i.e., $(-1)^{\gamma_{1}}$ is the sign of exchange of $\left(z_{j+k^{\prime \prime}}, \ldots, z_{k}\right)$ and $\left(z_{j+1}, \ldots, z_{j+k^{\prime \prime}-1}\right)$, and $\gamma_{2}=\operatorname{dim}\left({ }^{\circ} \mathcal{M}_{k^{\prime \prime}+1}\left(B^{\prime \prime} ; \mathcal{L} ;{ }^{\prime \prime} \mathcal{R}^{\prime \prime}\right)^{\circ}\right)\left(\operatorname{dim} \mathcal{M}_{k^{\prime}+1}+1\right)$. Then $\delta_{2}=\gamma_{1}+\gamma_{2}$.

Now we return to the discussion on local orientations of the orientation bundle of $\mathcal{M}_{k^{\prime}+1}\left(B^{\prime} ; \mathcal{L}^{\prime} ; \mathcal{R}^{\prime}\right)_{e v_{j}^{\prime}} \times_{e v B_{0}^{\prime \prime}} \mathcal{M}_{k^{\prime \prime}+1}\left(B^{\prime \prime} ; \mathcal{L}^{\prime \prime} ; \mathcal{R}^{\prime \prime}\right)$ and $\partial \mathcal{M}_{k+1}(B ; \mathcal{L} ; \mathcal{R})$. Recall that

$$
\begin{equation*}
\widetilde{\mathcal{M}}_{k+1}(B ; \mathcal{L} ; \mathcal{R})=\mathcal{M}_{k^{\prime}+1}\left(B^{\prime} ; \mathcal{L}^{\prime}, \mathcal{R}^{\prime}\right) \times \mathbb{R}_{B} \tag{6}
\end{equation*}
$$

Set $\kappa=\delta_{1}+\delta_{2}+\delta_{3}$. Comparing (5) and (6), we have

$$
\begin{equation*}
(-1)^{\kappa} \mathcal{M}_{k^{\prime}+1}\left(B^{\prime} ; \mathcal{L}^{\prime} ; \mathcal{R}^{\prime}\right)_{e v_{j}^{B^{\prime}}} \times{ }_{e v_{0}^{B^{\prime \prime}}} \mathcal{M}_{k^{\prime \prime}+1}\left(B^{\prime \prime} ; \mathcal{L}^{\prime \prime} ; \mathcal{R}^{\prime \prime}\right) \subset \partial \mathcal{M}_{k+1}(B ; \mathcal{L} ; \mathcal{R}) . \tag{7}
\end{equation*}
$$

We have

$$
\begin{aligned}
\kappa \equiv & \left(k^{\prime \prime}-1\right)\left(k^{\prime}-j\right)+\left(k^{\prime}-1\right)\left(\mu\left(R_{\alpha}\right)-\sum_{p=j}^{j+k^{\prime \prime}-1} \mu\left(R_{\alpha_{p}}\right)\right)+\left(\sum_{p=1}^{j-1} \mu\left(R_{\alpha_{p}}\right)\right)\left(\mu\left(R_{\alpha}\right)-\sum_{p=j}^{j+k^{\prime \prime}-1} \mu\left(R_{\alpha_{p}}\right)\right) \\
& +\operatorname{dim} R_{\alpha_{0}}+\mu\left(R_{\alpha_{0}}\right)-\left(\sum_{p=1}^{j-1} \mu\left(R_{\alpha_{p}}\right)+\mu\left(R_{\alpha}\right)+\sum_{p=j+k^{\prime \prime}}^{k} \mu\left(R_{\alpha_{p}}\right)\right)+k^{\prime} .
\end{aligned}
$$

From (1) in the setting of Kuranishi structures, (7), (1) and the base change formula for integration along fibers, we find that

$$
\begin{align*}
& \left(e v_{0}^{B} \mid \partial \mathcal{M}_{k+1}(B ; \mathcal{L} ; \mathcal{R}) ; \partial o\left(\sigma_{\alpha_{0}} ; \sigma_{\alpha_{1}}, \ldots, \sigma_{\alpha_{k}}\right)\right)_{!}\left(\prod_{i=1}^{j-1} e v_{i}^{B *} \times \prod_{i=j+k^{\prime \prime}}^{k} e v_{i}^{B *} \times \prod_{i=j}^{j+k^{\prime \prime}-1} e v_{i}^{B *}\right) \\
= & (-1)^{\kappa}\left(e v_{0}^{B^{\prime}} ; o\left(\sigma_{\alpha_{0}} ; \sigma_{\alpha_{1}}, \ldots, \sigma_{\alpha_{j-1}}, \sigma_{\alpha}, \sigma_{\alpha_{j+k^{\prime \prime}-1}}, \ldots, \sigma_{\alpha_{k}}\right)\right)_{!} \\
& \circ\left(\prod_{i=1}^{j-1} e v_{i}^{B^{\prime} *} \times \prod_{i=j+1}^{k^{\prime}} e v_{i}^{B^{\prime} *} \times\left(e v_{j}^{B^{\prime} *} \circ\left(e v_{0}^{B^{\prime \prime}} ; o\left(\sigma_{\alpha} ; \sigma_{\alpha_{j}}, \ldots, \sigma_{\alpha_{j+k^{\prime \prime}-1}}\right)\right)!\prod_{i=1}^{k^{\prime \prime}} e v_{i}^{B^{\prime \prime} *}\right)\right) \tag{8}
\end{align*}
$$

as operations applied to $\left(\otimes_{i=1}^{j-1} \zeta_{i}\right) \otimes\left(\otimes_{i=j+k^{\prime \prime}}^{k} \zeta_{i}\right) \otimes\left(\otimes_{i=j}^{j+k^{\prime \prime}-1} \zeta_{i}\right)$, where $\xi_{i}=\zeta_{i} \otimes \sigma_{\alpha_{i}}, i=1, \ldots k$. Here $\partial o\left(\sigma_{\alpha_{0}} ; \sigma_{\alpha_{1}}, \ldots, \sigma_{\alpha_{k}}\right)^{2}$ is the orientation of the relative tangent bundle $\partial \mathcal{M}_{k+1}(B ; \mathcal{L} ; \mathcal{R}) \rightarrow R_{\alpha_{0}}$ induced from $o\left(\sigma_{\alpha_{0}} ; \sigma_{\alpha_{1}}, \ldots, \sigma_{\alpha_{k}}\right)$.

Namely, for $\mathbf{u} \in \partial \mathcal{M}_{k+1}(B ; \mathcal{L} ; \mathcal{R}), o\left(\sigma_{\alpha_{0}} ; \sigma_{\alpha_{1}}, \ldots, \sigma_{\alpha_{k}}\right)$ of ${ }^{\circ} \mathcal{M}_{k+1}(B ; \mathcal{L} ; \mathcal{R})$ and $\partial o\left(\sigma_{\alpha_{0}} ; \sigma_{\alpha_{1}}, \ldots, \sigma_{\alpha_{k}}\right)$ of the relative tangent bundle of $\partial \mathcal{M}_{k+1}(B ; \mathcal{L} ; \mathcal{R}) \rightarrow R_{\alpha_{0}}$ are related as follows: we write

$$
\begin{gathered}
T_{\mathbf{u}} \mathcal{M}_{k+1}(B ; \mathcal{L} ; \mathcal{R})=\mathbb{R}_{o u t} \times T_{\mathbf{u}} \partial \mathcal{M}_{k+1}(B ; \mathcal{L} ; \mathcal{R}) \\
T_{\mathbf{u}} \mathcal{M}_{k+1}(B ; \mathcal{L} ; \mathcal{R})=T_{u\left(z_{0}\right)} R_{\alpha_{0}} \times T_{\mathbf{u}}{ }^{\circ} \mathcal{M}_{k+1}(B ; \mathcal{L} ; \mathcal{R})
\end{gathered}
$$

Then, under the following identification

$$
\mathbb{R}_{\text {out }} \times T_{\mathbf{u}} \partial \mathcal{M}_{k+1}(B ; \mathcal{L} ; \mathcal{R})=\mathbb{R}_{\text {out }} \times T_{u\left(z_{0}\right)} R_{\alpha_{0}} \times T_{\mathbf{u}}{ }^{\circ} \partial \mathcal{M}_{k+1}(B ; \mathcal{L} ; \mathcal{R})
$$

we define $\partial \mathcal{M}_{k+1}(B ; \mathcal{L} ; \mathcal{R}) \rightarrow R_{\alpha_{0}}$ by

$$
o_{R_{\alpha_{0}}} \times o\left(\sigma_{\alpha_{0}} ; \sigma_{\alpha_{1}}, \ldots, \sigma_{\alpha_{k}}\right)=\mathbb{R}_{o u t} \times o_{R_{\alpha_{0}}} \times \partial o\left(\sigma_{\alpha_{0}} ; \sigma_{\alpha_{1}}, \ldots, \sigma_{\alpha_{k}}\right)
$$

Note that

$$
\left.e v_{i}^{B}\right|_{\partial \mathcal{M}_{k+1}(B ; \mathcal{L} ; \mathcal{R})}= \begin{cases}e v_{i}^{B^{\prime}} \circ \pi_{B^{\prime}}^{B}, & i=1, \ldots, j-1, \\ e v_{i-j+1}^{B^{\prime \prime}} \circ \pi_{B^{\prime \prime}}^{B}, & i=j, \ldots, j+k^{\prime \prime}-1, \\ e v_{i-k^{\prime \prime}+1}^{B^{\prime}} \circ \pi_{B^{\prime}}^{B}, & i=j+k^{\prime \prime}, \ldots, k,\end{cases}
$$

where $\pi_{B^{\prime}}^{B}$ and $\pi_{B^{\prime \prime}}^{B}$ are projections from the fiber product $\mathcal{M}_{k^{\prime}+1}\left(B^{\prime} ; \mathcal{L}^{\prime} ; \mathcal{R}^{\prime}\right)_{e v_{j}^{B^{\prime}}} \times{ }_{e v_{0}^{B^{\prime \prime}}} \mathcal{M}_{k^{\prime \prime}+1}\left(B^{\prime \prime} ; \mathcal{L}^{\prime \prime} ; \mathcal{R}^{\prime \prime}\right)$ to $\mathcal{M}_{k^{\prime}+1}\left(B^{\prime} ; \mathcal{L}^{\prime} ; \mathcal{R}^{\prime}\right)$ and $\mathcal{M}_{k^{\prime \prime}+1}\left(B^{\prime \prime} ; \mathcal{L}^{\prime \prime} ; \mathcal{R}^{\prime \prime}\right)$, respectively. Note that σ_{α} appears twice and the right hand side of (8) does not depends on the choice of local section σ_{α} of the $O(1)$-local system Θ_{α}.

Next, we compute $\mathfrak{m}_{k^{\prime}, B^{\prime}} \circ \hat{\mathfrak{m}}_{k^{\prime \prime}, B^{\prime \prime}}$ with $\left(k^{\prime}, B^{\prime}\right) \neq(1,0),\left(k^{\prime \prime}, B^{\prime \prime}\right) \neq(1,0)$. Armed with (8), we regard $\xi_{i}, i=1, \ldots, k$ as differential forms on $R_{\alpha_{i}}$ in the computation below.

$$
\begin{align*}
\mathfrak{m}_{k^{\prime}, B^{\prime}} \circ \hat{\mathfrak{m}}_{k^{\prime \prime}, B^{\prime \prime}}\left(\xi_{1}, \ldots, \xi_{k}\right)= & \sum_{j=1}^{k}(-1)^{\sum_{i=1}^{j-1}\left|\xi_{i}\right|^{\prime}} \mathfrak{m}_{k^{\prime}, B^{\prime}}\left(\xi_{1}, \ldots, \mathfrak{m}_{k^{\prime \prime}, B^{\prime \prime}}\left(\xi_{j}, \ldots, \xi_{j+k^{\prime \prime}-1}\right), \ldots, \xi_{k}\right) \\
= & \sum_{j=1}^{k}(-1)^{\delta_{4}}\left(e v_{0}^{B^{\prime}}\right)!\left(e v_{1}^{B^{\prime} *} \xi_{1} \wedge \cdots \wedge e v_{j-1}^{B^{\prime} *} \xi_{j-1}\right. \\
& \wedge e v_{j}^{B^{\prime} *}\left(\left(e v_{0}^{B^{\prime \prime}}\right)!\left(e v_{1}^{B^{\prime \prime} *} \xi_{j} \wedge \cdots \wedge e v_{k^{\prime \prime}}^{B^{\prime \prime} *} \xi_{j+k^{\prime \prime}-1}\right) \wedge \cdots \wedge e v_{k^{\prime}}^{B^{\prime} *} \xi_{k}\right) \\
= & (-1)^{\delta_{4}+\delta_{5}}\left(e v_{0}^{\left(B^{\prime}, B^{\prime \prime}\right)}\right)!\left(e v_{1}^{\left(B^{\prime}, B^{\prime \prime}\right) *} \xi_{1} \wedge \cdots \wedge e v_{k}^{\left(B^{\prime}, B^{\prime \prime}\right) *} \xi_{k}\right) \\
= & (-1)^{\delta_{4}+\delta_{5}+\kappa}\left(\left.e v_{0}^{B}\right|_{\partial \mathcal{M}_{k+1}(B ; \mathcal{L} ; \mathcal{R})}\right)!\left(e v_{1}^{B *} \xi_{1} \wedge \ldots e v_{k}^{B *} \xi_{k}\right) \tag{9}
\end{align*}
$$

where

$$
\begin{gathered}
\delta_{4}=\sum_{i=1}^{j-1}\left|\xi_{i}\right|^{\prime}+\epsilon\left(\xi_{1}, \ldots, \mathfrak{m}_{k^{\prime \prime}, B^{\prime \prime}}\left(\xi_{j}, \ldots, \xi_{j+k^{\prime \prime}-1}\right), \ldots, \xi_{k}\right)+\epsilon\left(\xi_{j}, \ldots, \xi_{j+k^{\prime \prime}-1}\right) . \\
\delta_{5}=\left(\mu\left(R_{\alpha}\right)-\sum_{i=j}^{j+k^{\prime \prime}-1} \mu\left(R_{\alpha_{i}}\right)+k^{\prime \prime}-2\right)\left(\sum_{i=j+k^{\prime \prime}}^{k} \operatorname{deg} \xi_{i}\right),
\end{gathered}
$$

[^2]and $e v_{j}^{\left(B^{\prime}, B^{\prime \prime}\right)}: \mathcal{M}_{k^{\prime}+1}\left(B^{\prime} ; \mathcal{L}^{\prime} ; \mathcal{R}^{\prime}\right)_{e v_{j}^{B^{\prime}}} \times{ }_{e v_{0}^{B^{\prime \prime}}} \mathcal{M}_{k^{\prime \prime}+1}\left(B^{\prime \prime} ; \mathcal{L}^{\prime \prime} ; \mathcal{R}^{\prime \prime}\right) \rightarrow R_{\alpha_{j}}$ is the evaluation map at the j-th marked point on the fiber product $\mathcal{M}_{k^{\prime}+1}\left(B^{\prime} ; \mathcal{L}^{\prime} ; \mathcal{R}^{\prime}\right)_{e v_{j}^{B^{\prime}}} \times_{e v_{0}^{B^{\prime \prime}}} \mathcal{M}_{k^{\prime \prime}+1}\left(B^{\prime \prime} ; \mathcal{L}^{\prime \prime} ; \mathcal{R}^{\prime \prime}\right)$. Here the numbering of the marked points is the same as that on $\mathcal{M}_{k+1}(B ; \mathcal{L} ; \mathcal{R})$. The appearance of $(-1)^{\delta_{5}}$ above is due to (1) and the composition formula (Theorem 10.21 in [2]). Namely, we have
\[

$$
\begin{aligned}
& \left(e v_{0}^{B^{\prime}}\right)!\left(e v _ { 1 } ^ { B ^ { B ^ { \prime } } * } \xi _ { 1 } \wedge \cdots \wedge e v _ { j - 1 } ^ { B ^ { \prime } * } \xi _ { j - 1 } \wedge e v _ { j } ^ { B ^ { \prime } * } \left(\left(e v_{0}^{B^{\prime \prime}}\right)!\left(e v_{1}^{B^{\prime \prime} *} * \xi_{j} \wedge \cdots \wedge e v_{k^{\prime \prime}}^{B^{\prime \prime} *} \xi_{j+k^{\prime \prime}-1}\right)\right.\right. \\
& \wedge e v_{j+1}^{B^{\prime} *} \xi_{j+k^{\prime \prime}} \wedge \cdots \wedge e v_{\left.k^{B^{\prime}}{ }^{B^{\prime}} \xi_{k}\right)}^{=}(-1)^{\eta_{1}}\left(e v_{0}^{B^{\prime}}\right)!\left(\left(e v_{1}^{B^{\prime} *} \xi_{1} \wedge \cdots \wedge e v_{j-1}^{B^{\prime} *} \xi_{j-1} \wedge e v_{j+1}^{B^{\prime} *} \xi_{j+k^{\prime \prime}} \cdots \wedge e v_{k^{\prime}}^{B^{\prime} *} \xi_{k}\right)\right. \\
& \wedge e v_{j}^{B^{\prime} *} \circ\left(e v_{0}^{B^{\prime \prime}}\right)!\left(e v_{1}^{B^{\prime \prime} *} * \xi_{j} \wedge \cdots \wedge e v_{k^{\prime \prime}}^{B^{\prime \prime} *} \xi_{j+k^{\prime \prime}-1}\right) \\
= & (-1)^{\eta_{1}}\left(e v_{0}^{B^{\prime}}\right)!\left(\left(e v_{1}^{B^{\prime} *} \xi_{1} \wedge \cdots \wedge e v_{j-1}^{B^{\prime} *} \xi_{j-1} \wedge e v_{j+1}^{B^{\prime} *} \xi_{j+k^{\prime \prime}} \cdots \wedge e v_{k^{\prime}}^{B^{\prime} *} \xi_{k}\right)\right. \\
& \wedge\left(\pi_{B^{\prime}}\right)!\circ \pi_{B^{\prime \prime}}^{*}\left(e v_{1}^{B^{\prime \prime} *} \xi_{j} \wedge \cdots \wedge e v_{k^{\prime \prime}}^{B^{\prime \prime} *} \xi_{j+k^{\prime \prime}-1}\right) \\
= & (-1)^{\eta_{1}}\left(e v_{0}^{B^{\prime}}\right)!\circ\left(\pi_{B^{\prime}}\right)!\left(\pi_{B^{\prime}}^{*}\left(e v_{1}^{B^{\prime} *} \xi_{1} \wedge \cdots \wedge e v_{j-1}^{B^{\prime} *} \xi_{j-1} \wedge e v_{j+1}^{B^{\prime} *} \xi_{j+k^{\prime \prime}} \cdots \wedge e v_{k^{\prime}}^{B^{\prime} *} \xi_{k}\right)\right. \\
= & \left.\wedge \pi_{B^{\prime \prime}}^{*}\left(e v_{1}^{B^{\prime \prime} *} \xi_{j} \wedge \cdots \wedge e v_{k^{\prime \prime}}^{B^{\prime \prime} *} \xi_{j+k^{\prime \prime}-1}\right)\right) \\
= & (-1)^{\eta_{1}+\eta_{2}}\left(e v_{0}^{B^{\prime}} \circ \pi_{B^{\prime}}\right)!\left(\pi_{B^{\prime}}^{*}\left(e v_{1}^{B^{\prime} *} \xi_{1} \wedge \cdots \wedge e v_{j-1}^{B^{\prime} *} \xi_{j-1}\right) \wedge \pi_{B^{\prime \prime}}^{*}\left(e v_{1}^{B^{\prime \prime} *} * \xi_{j} \wedge \cdots \wedge e v_{k^{\prime \prime}}^{B^{\prime \prime} *} \xi_{j+k^{\prime \prime}-1}\right)\right. \\
& \pi_{B^{\prime}}^{*}\left(e v_{j+1}^{B^{\prime} *} \xi_{j+k^{\prime \prime}} \cdots \wedge e v v_{k^{\prime}}^{B^{\prime} *} \xi_{k}\right) \\
= & (-1)^{\eta_{1}+\eta_{2}}\left(e v_{0}^{\left(B^{\prime}, B^{\prime \prime}\right)}\right)!\left(e v_{1}^{\left(B^{\prime}, B^{\prime \prime}\right) *} \xi_{1} \wedge \cdots \wedge e v_{k}^{\left(\left(B^{\prime}, B^{\prime \prime}\right) *\right.} \xi_{k}\right),
\end{aligned}
$$
\]

where $\eta_{1}=\left(\left(\left(\sum_{i=j}^{j+k^{\prime \prime}-1} \operatorname{deg} \xi_{i}\right)+\left(\mu_{R_{\alpha}}-\sum_{i=j}^{j+k^{\prime \prime}-1} \mu\left(R_{\alpha_{i}}\right)+k^{\prime \prime}-2\right)\right)\left(\sum_{i=j+k^{\prime \prime}}^{k} \operatorname{deg} \xi_{i}\right)\right.$ and $\eta_{2}=$ $\left(\sum_{i=j}^{j+k^{\prime \prime}-1} \operatorname{deg} \xi_{i}\right)\left(\sum_{i=j+k^{\prime \prime}}^{k} \operatorname{deg} \xi_{i}\right)$. Then $\delta_{5}=\eta_{1}+\eta_{2}=\left(\mu\left(R_{\alpha}\right)-\sum_{i=j}^{j+k^{\prime \prime}-1} \mu\left(R_{\alpha_{i}}\right)+k^{\prime \prime}-\right.$ 2) ($\left.\sum_{i=j+k^{\prime \prime}}^{k} \operatorname{deg} \xi_{i}\right)$. The second equality is a consequence of the base change formula for integration along fibers, i.e., $e v_{j}^{B^{\prime} *} \circ\left(e v_{0}^{B^{\prime \prime}}\right)!=\left(\pi_{B^{\prime}}\right)!\circ \pi_{B^{\prime \prime}}^{*}$. The third equality follows from (1). Note that

$$
e v_{i}^{\left(B^{\prime}, B^{\prime \prime}\right)}= \begin{cases}e v_{i}^{B^{\prime}} \circ \pi_{B^{\prime}}^{B} & i=0,1, \ldots, j-1, \\ e v_{i-j+1}^{B^{\prime \prime}} \circ \pi_{B^{\prime \prime}}^{B}, & i=j, \ldots, j+k^{\prime \prime}-1, \\ e v_{i-k^{\prime \prime}+1} B^{\prime} \circ \pi_{B^{\prime}}^{B}, & i=j+k^{\prime \prime}, \ldots, k .\end{cases}
$$

We find that

$$
\begin{aligned}
\delta_{4}+\delta_{5}+\kappa & \equiv \epsilon\left(\xi_{1}, \ldots, \xi_{k}\right)+1+k+\sum_{i=1}^{k} \operatorname{deg} \xi_{i}+\operatorname{dim} R_{\alpha_{0}}+\mu\left(R_{\alpha_{0}}\right)-\sum_{p=1}^{k} \mu\left(R_{\alpha_{p}}\right) \\
& \equiv \epsilon\left(\xi_{1}, \ldots, \xi_{k}\right)+1+\operatorname{dim} \mathcal{M}_{k+1}(B ; \mathcal{L} ; \mathcal{R})+\sum_{i=1}^{k} \operatorname{deg} \xi_{i} \bmod 2
\end{aligned}
$$

Using Theorem 27.2 in [2], we have

$$
\begin{align*}
& d\left(e v_{0}^{B}\right)!\left(e v_{1}^{B *} \xi_{1} \wedge \cdots \wedge e v_{k}^{B *} \xi_{k}\right) \\
= & \left(e v_{0}^{B}\right)!d\left(e v_{1}^{B *} \xi_{1} \wedge \cdots \wedge e v_{k}^{B *} \xi_{k}\right) \\
& +(-1)^{\operatorname{dim} \mathcal{M}_{k+1}(B ; \mathcal{L} ; \mathcal{R})+\sum_{i=1}^{k} \operatorname{deg} \xi_{i}}\left(\left.e v_{0}^{B}\right|_{\partial \mathcal{M}_{k+1}(B ; \mathcal{L} ; \mathcal{R})}\right)!\left(e v_{1}^{B *} \xi_{1} \wedge \cdots \wedge e v_{k}^{B *} \xi_{k}\right) . \tag{10}
\end{align*}
$$

Combining (3), (4), (9), (10), we have

$$
\begin{aligned}
& \quad \mathfrak{m}_{1,0} \circ \mathfrak{m}_{k, B}\left(\xi_{1}, \ldots, \xi_{k}\right)+\mathfrak{m}_{k, B} \circ \hat{\mathfrak{m}}_{1,0}\left(\xi_{1}, \ldots, \xi_{k}\right) \\
& +\sum_{\left(k^{\prime}, B^{\prime}\right),\left(k^{\prime \prime}, B^{\prime \prime}\right) \neq(1,0)} \mathfrak{m}_{k^{\prime}, B^{\prime}} \circ \hat{\mathfrak{m}}_{k^{\prime \prime}, B^{\prime \prime}}\left(\xi_{1}, \ldots, \xi_{k}\right)=0 .
\end{aligned}
$$

References

[1] K. Fukaya, Y.-G. Oh, H. Ohta and K. Ono, Lagrangian Intersection Floer Theory - Anomaly and Obstruction, AMS/IP Studies in Advanced Mathematics 46, Part II, Amer. Math. Soc. and International Press, 2009.
[2] K. Fukaya, Y.-G. Oh, H. Ohta and K. Ono, Kuranishi Structures and Virtual Fundamental Chains, Springer Monographs in Mathematics, Springer Nature Singapore, 2020.

Research Institute for Mathematical Sciences, Kyoto University, Kyoto, 606-8502, Japan
Email address: ono@kurims.kyoto-u.ac.jp

[^0]: The author is partially supported by JSPS Grant-in-Aid for Scientific Research19H00636. He is also grateful for National Center for Theoretical Sciences, Taiwan, where a part of this work was carried out.

[^1]: ${ }^{1}(-1)$-orientation preserving means orientation reversing.

[^2]: ${ }^{2} \partial o\left(\sigma_{\alpha_{0}} ; \sigma_{\alpha_{1}}, \ldots, \sigma_{\alpha_{k}}\right)$ is not the boundary orientation of $\partial^{\circ} \mathcal{M}_{k+1}(B ; \mathcal{L} ; \mathcal{R})$ induced from the orientation $o\left(\sigma_{\alpha_{0}} ; \sigma_{\alpha_{1}}, \ldots, \sigma_{\alpha_{k}}\right)$ of ${ }^{\circ} \mathcal{M}_{k+1}(B ; \mathcal{L} ; \mathcal{R})$. They differ by $(-1)^{\operatorname{dim} R_{\alpha_{0}}}$.

