RIMS-1979

Sign Convention for A_{∞} -Operations in Bott-Morse Case

By

Kaoru ONO

Januray 2024

京都大学 数理解析研究所

RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES
KYOTO UNIVERSITY, Kyoto, Japan

SIGN CONVENTION FOR A_{∞} -OPERATIONS IN BOTT-MORSE CASE

KAORU ONO

We give a definition of A_{∞} -operations in Bott-Morse case (see Definition 2). Let L_i be a relatively spin collection of Lagrangian submanifolds, which intersects cleanly in (X, ω) . (The argument presented here is also valid for immersed Lagrangian submanifolds.) Denote by R_{α} a connected component of L_i and L_j . (We also consider the case that i = j.)

We use the convention on orientation on the fiber product (in the sense of Kuranishi structure) as in Section 8.2 in [1]. In this note, the dimension of moduli spaces means their virtual dimension. Let $p: M \to N$ be a fiber bundle with oriented relative tangent bundle. Restrict the fiber bundle to an open subset, we may assume that N is oriented. Then we give an orientation on M using the isomorphism $TM = p^*TN \oplus T_{\text{fiber}}M$, where $T_{\text{fiber}}M$ is the relative tangent bundle. Then our convention of the integration along fibers of $p: M \to N$ is

$$\int_{N} \alpha \wedge p_{!}\beta = \int_{M} p^{*}\alpha \wedge \beta,$$

where $\alpha \in \Omega^*(N)$ and $\beta \in \Omega^*(M)$, We have the following properties.

- $p_!((p^*\theta) \wedge \beta) = \theta \wedge (p_!\beta)$, where $\theta \in \Omega^*(N)$ and $\beta \in \Omega^*(M)$.
- Let $p:M\to N$ and $q:N\to B$ be fiber bundles with oriented relative tangent bundles. For $\beta\in\Omega^*(M)$, we have

$$(q \circ p)_!\beta = q_! \circ p_!(\beta).$$

Using them, we find that

$$(q \circ p)_{\mathsf{I}}(p^*\theta \wedge \beta) = q_{\mathsf{I}}(\theta \wedge p_{\mathsf{I}}\beta). \tag{1}$$

We also have

• (base change) Let $f: S \to N$ be a smooth map (or a strongly smooth map between spaces with Kuranishi structure). Denote by $\overline{p}: f^*M \to S$ the pull-back of the fiber bundle $p: M \to N$ and $\widetilde{f}: f^*M \to M$ the bundle map covering f. Then we have

$$f^* \circ p_! = \overline{p}_! \circ \widetilde{f}^*.$$

For the definition of the integration along fibers of weakly submersive strongly smooth map in the case of Kuranishi structure is given in Section 9.2 in [2]. We will use the Stokes type formula in Theorem 9.28 in [2], the composition formula in Theorem 10.21 in [2]. See Chapter 27 in [2] in the case with coefficients in local systems. In fact, the composition formula is a consequence of these properties.

Let $(\Sigma, \partial \Sigma)$ be a bordered Riemann surface Σ of genus 0 and with connected boundary and $\vec{z} = (z_0, \ldots, z_k)$ boundary marked points respecting the cyclic order on $\partial \Sigma$. Let $u: (\Sigma, \partial \Sigma) \to (X, \cup L_i)$ be a smooth map such that $u(z_j \widehat{z_{j+1}}) \subset L_{i_j}$, $j \mod k+1$, $u(z_j) \in R_{\alpha_j}$, where R_{α_j} is a connected component of $L_{i_{j-1}} \cap L_{i_j}$. For such u and u', we introduce the equivalence relation \sim so that

The author is partially supported by JSPS Grant-in-Aid for Scientific Research19H00636. He is also grateful for National Center for Theoretical Sciences, Taiwan, where a part of this work was carried out.

 $u \sim u'$ when $\int_{\Sigma} \omega = \int_{\Sigma'} \omega$ and (2) the Maslov indices of u and u' are the same. Denote by B the equivalence class.

Consider the moduli space

$$\mathcal{M}_{k+1}(B; L_{i_0}, \ldots, L_{i_k}; R_{\alpha_0}, \ldots R_{\alpha_k})$$

of bordered stable maps of genus 0, with connected boundary and (k+1) boundary marked points, representing the class B.

Set
$$\mathcal{L} = (L_{i_0}, \dots, L_{i_k})$$
 and $\mathcal{R} = (R_{\alpha_0}, \dots R_{\alpha_k})$ and write

$$\mathcal{M}_{k+1}(B;\mathcal{L};\mathcal{R}) = \mathcal{M}_{k+1}(B;L_{i_0},\ldots,L_{i_k};R_{\alpha_0},\ldots R_{\alpha_k}).$$

Denote by $ev_i^B: \mathcal{M}_{k+1}(B; \mathcal{L}; \mathcal{R}) \to R_{\alpha_i}$ the evaluation map at z_j .

For a pair of Lagrangian submanifolds L, L' which intersect cleanly, we constructed the O(1)-local system $\Theta_{R_{\alpha}}^{-}$ on R_{α} in Proposition 8.1.1 in [1]. Here R_{α} is a connected component of $L \cap L'$. In this note, we simply write it as $\Theta_{R_{\alpha}}$.

We recall the construction of $\Theta_{R_{\alpha}}$ briefly. We assume that L, L' are equipped with spin structures. In the case of a relative spin pair, we take $TX \oplus (W \otimes \mathbb{C})$ (on the 3-skeleton of X) instead of TX and $TL \oplus W$, (resp. $TL' \oplus W$) (on the 2-skeleton of L, (resp. L') instead of TL, (resp. TL'). Then the argument goes in the same way. As written in Section 8.8 in [1], we consider the space $\mathcal{P}_{R_{\alpha}}(TL,TL')$ of paths of oriented Lagrangian subspaces in T_pX , $p \in R_{\alpha}$, of the form $\lambda(t) \oplus R_{\alpha}$ such that $\lambda(0) \oplus R_{\alpha} = T_pL$ and $\lambda(1) \oplus R_{\alpha} = T_pL'$. Here λ is regarded as a path of Lagrangian subspaces in $V_{R_{\alpha}} = (T_pL + T_pL')/(T_pL + T_pL')/(T_pL + T_pL')/(T_pL + T_pL')$, which is a symplectic vector space. Pick a compatible complex struture on it and consider the Dolbeault operator $\overline{\partial}_{\lambda}$ on $Z_- = (D^2 \cap \{\text{Re } z \leq 0\}) \cup ([0, \infty) \times [0, 1])$.

We set $\mu(R_{\alpha}; \lambda) = \text{Index } \overline{\partial}_{\lambda}$. The parity of $\mu(R_{\alpha}; \lambda)$ is independent of the choice of λ above, since $\lambda \oplus T_p R_{\alpha}$ is a path of oriented subspaces with fixed end points, $T_p L$, $T_p L'$, $p \in R_{\alpha}$ which are oriented. Denote by $\mu(R_{\alpha}) = \mu(R_{\alpha}; \lambda) \mod 2$. Then we have

$$\dim \mathcal{M}_{k+1}(B;\mathcal{L},\mathcal{R}) \equiv \dim R_{\alpha_0} + \mu(R_{\alpha_0}) - \sum_{i=1}^k \mu(R_{\alpha_i}) + k - 2 \mod 2.$$

We have the determinant line bundle of $\{\operatorname{Index} \overline{\partial}_{\lambda}\}_{\lambda \in \mathcal{P}_{R_{\alpha}}(TL,TL')}$. Pick a hermitian metric on X. Denote by $P_{SO}(\lambda \oplus T_pR_{\alpha})$ is the associated oriented orthogonal frame bundle of $\lambda \oplus T_pR_{\alpha}$. Note that $P_{SO}(\lambda \oplus T_pR_{\alpha})|_{t=0}$ and $P_{SO}(\lambda \oplus T_pR_{\alpha})|_{t=1}$ are canonically identified with $P_{SO}(L)|_p$ and $P_{SO}(L')|_p$, respectively. We glue the principal spin bundle $P_{Spin}(\lambda \oplus T_pR_{\alpha})$ at t=0,1 with $P_{Spin}(L)|_p$ and $P_{Spin}(L')|_p$. There are two isomorphic classes of resulting spin structure on the bundle $TL \cup (\lambda \oplus T_pR_{\alpha}) \cup TL'$ on $L \cup [0,1] \cup L'$, where $p \in L$ and $p \in L'$ are identified with $0,1 \in [0,1]$, respectively. This gives an O(1)-local system O_{spin} on $\mathcal{P}_{R_{\alpha}}(TL,TL')$. Proposition 8.1.1 in [1] states that the tensor product $\det \overline{\partial}_{\lambda} \otimes O_{Spin}$ descends to an O(1)-local system $\Theta_{R_{\alpha}}$ on R_{α} .

Then the relative spin structure for $\{L_i\}$, namely relative spin structures for each L_i with a common oriented vector bundle $W \to X^{[3]}$, determines an isomorphism Φ^B below.

(i) Case that k=0. (L is an immersed Lagrangian submanifold with clean self intersection or $R_{\alpha_0}=L$)

$$\Phi^B: ev_0^{B*}\Theta_{R_{\alpha_0}} \to ev_0^{B*}O_{R_{\alpha_0}} \otimes O_{\mathcal{M}_1(B;L)}$$

(ii) Case that k=1.

$$\Phi^B: ev_0^{B*}\Theta_{R_{\alpha_0}} \to ev_0^{B*}O_{R_{\alpha_0}} \otimes O_{\mathcal{M}_2(B;\mathcal{L};\mathcal{R})} \otimes ev_1^{B*}\Theta_{R_{\alpha_1}}.$$

(iii) Case that $k \geq 2$.

$$\Phi^B: ev_0^{B*}\Theta_{R_{\alpha_0}} \to ev_0^{B*}O_{R_{\alpha_0}} \otimes O_{\mathcal{M}_{k+1}(B;\mathcal{L};\mathcal{R})} \otimes \mathfrak{forget}^*O_{\mathcal{M}_{k+1}} \otimes ev_1^{B*}\Theta_{R_{\alpha_1}} \otimes \cdots \otimes ev_k^{B*}\Theta_{R_{\alpha_k}}.$$

Here \mathcal{M}_{k+1} is the moduli space of bordered Riemann surfaces of genus 0, connected boundary and (k+1) marked points on the boundary and forget: $\mathcal{M}_{k+1}(B;\mathcal{L};\mathcal{R}) \to \mathcal{M}_{k+1}$ sends $[(\Sigma,\partial\Sigma,\vec{z}),u]$ to $[(\Sigma,\partial\Sigma,\vec{z})]$. Here $O_{R_{\alpha_0}}$, $O_{\mathcal{M}_{k+1}(B;\mathcal{L};\mathcal{R})}$ and $O_{\mathcal{M}_{k+1}}$ are orientation bundles of R_{α_0} , $\mathcal{M}_{k+1}(B;\mathcal{L};\mathcal{R})$ and \mathcal{M}_{k+1} , respectively. We consider $ev_0^*O_{R_{\alpha_0}}\otimes O_{\mathcal{M}_{k+1}(B;\mathcal{L};\mathcal{R})}$ the orientation bundle of the relative tangent bundle of $ev_0: \mathcal{M}_{k+1}(B;\mathcal{L};\mathcal{R}) \to R_{\alpha_0}$. In the notation in [1], we write

$$\mathcal{M}_{k+1}(B;\mathcal{L};\mathcal{R}) = R_{\alpha_0} \times {}^{\circ}\mathcal{M}_{k+1}(B;\mathcal{L};\mathcal{R})$$

and

$$\mathcal{M}_{k+1}(B;\mathcal{L};\mathcal{R}) = \mathcal{M}_{k+1}(B;\mathcal{L};\mathcal{R})^{\circ} \times \mathcal{M}_{k+1}.$$

These descriptions are considered as the splitting of tangent spaces. Using these notations, we have

$$ev_0^*O_{R_{\alpha_0}} \otimes O_{\mathcal{M}_{k+1}(B;\mathcal{L};\mathcal{R})} = O_{\mathcal{M}_{k+1}(B;\mathcal{L};\mathcal{R})}.$$

$$O_{\mathcal{M}_{k+1}(B;\mathcal{L};\mathcal{R})} \otimes \mathfrak{forget}^* O_{\mathcal{M}_{k+1}} = O_{\mathcal{M}_{k+1}(B;\mathcal{L};\mathcal{R})^{\circ}}.$$

We give an orientation of $\mathcal{M}_{k+1} = (\partial D^2)^{k+1}/Aut(D^2, \partial D^2)$ as the orientation of the quotient space following the convention (8.2.1.2) in [1]. Then the orientation bundle of $\mathcal{M}_{k+1}(B; \mathcal{L}; \mathcal{R})$ is canonically isomorphic to the one of $\mathcal{M}_{k+1}(B; \mathcal{L}; \mathcal{R})^{\circ}$. Hence, for $\mathbf{u} = [u : (\Sigma, \partial \Sigma, \vec{z}) \to (X, \cup_{L \in \mathcal{L}} L, \cup_{R_{\alpha} \in \mathcal{R}} R_{\alpha})]$, the relative spin structure of \mathcal{L} , local sections σ_{α_i} of O(1)-local systems Θ_{α_i} around $u(z_i)$, $i = 0, 1, \ldots, k$, determines a local orientation of the relative tangent bundle of $ev_0^B : \mathcal{M}_{k+1}(B; \mathcal{L}; \mathcal{R}) \to R_{\alpha}$, at \mathbf{u} , i.e., the kernel of $T_{\mathbf{u}} \mathcal{M}_{k+1}(B; \mathcal{L}; \mathcal{R}) \to T_{u(z_0)} R_{\alpha_0}$, which is denoted by $o(\sigma_{\alpha_0}; \sigma_{\alpha_1}, \ldots, \sigma_{\alpha_k})$.

Remark 1. When k = 0 and $R_{\alpha_0} = L$, the orientation on $\mathcal{M}_1(B; L)$ is given in Section 8.4.1 in [1] When k = 1, the orientation bundle of $\mathcal{M}_2(B; \mathcal{L}; \mathcal{R})$ is given in Proposition 8.8.6 in [1]. Note that $\Theta_{R_{\alpha}}^+ \otimes O_{R_{\alpha}} \otimes \Theta_{R_{\alpha}}^-$ is canonically trivialized. We write $\Theta_{R_{\alpha}} = \Theta_{R_{\alpha}}^-$ in this note.

Hence Theorem 27.1 in [2] gives

$$(ev_0^B)_! \circ (ev_1^{B*} \times \cdots \times ev_k^{B*}) : \Omega^*(R_{\alpha_1}; \Theta_{R_{\alpha_1}}) \otimes \cdots \otimes \Omega^*(R_{\alpha_k}; \Theta_{R_{\alpha_k}}) \to \Omega^*(R_{\alpha_0}; \Theta_{R_{\alpha_0}}).$$

Namely, for $\xi_i = \zeta_i \otimes \sigma_{\alpha_i} \in \Omega^*(R_{\alpha_i}; \Theta_{\alpha_i}), i = 1, \dots, k$, we define

$$(ev_0^B)_! \circ (ev_1^{B*} \times \dots \times ev_k^{B*})(\zeta_1 \otimes \sigma_{\alpha_1}, \dots, \zeta_k \otimes \sigma_{\alpha_k})$$

$$= (ev_0^B; o(\sigma_{\alpha_0}; \sigma_{\alpha_1}, \dots, \sigma_{\alpha_k}))_! (ev_1^{B*}\zeta_1 \wedge \dots \wedge ev_k^{B*}\zeta_k) \otimes \sigma_{\sigma_{\alpha_0}}.$$
(2)

Here $(ev_0^B; o(\sigma_{\alpha_0}; \sigma_{\alpha_1}, \dots, \sigma_{\alpha_k}))_!$ is the integration along fibers with respect to the relative orientation $o(\sigma_{\alpha_0}; \sigma_{\alpha_1}, \dots, \sigma_{\alpha_k})$ of $\mathcal{M}_{k+1}(B; \mathcal{L}; \mathcal{R}) \to R_{\alpha_0}$. Note that the right hand side of (2) does not depends on σ_{α_0} , since σ_{α_0} appears twice in the right hand side of (2), and gives a differential form on R_{α_0} with coefficients in Θ_{α_0} . For general $\xi_i \in \Omega^*(R_{\alpha_i}; \Theta_{\alpha_i})$, we use partitions of unity on R_{α_i} and extend the definition of \mathfrak{m}_k multi-linearly.

For $\xi \in \Omega^*(R_\alpha; \Theta_\alpha)$, we define the shifted degree

$$|\xi|' = \operatorname{deg} \xi + \mu(R_{\alpha}) - 1.$$

Definition 2. We set $\mathfrak{m}_{0,0} = 0$, $\mathfrak{m}_{(1,0)}\xi = d\xi$ on $\bigoplus \Omega^*(R_\alpha; \Theta_{R_\alpha})$, i.e., the de Rham differential on differential forms with coefficients in the local system Θ_{R_α} . For $(k, B) \neq (1, 0)$,

$$\mathfrak{m}_{k,B}(\xi_1,\ldots,\xi_k) = (-1)^{\epsilon(\xi_1,\ldots,\xi_k)} (ev_0^B)_! \circ (ev_1^{B*} \times \cdots \times ev_k^{B*}) (\xi_1 \otimes \ldots, \otimes \xi_k),$$

where $\xi_i \in \Omega^*(R_{\alpha_i}; \Theta_{\alpha_i})$ and

$$\epsilon(\xi_1, \dots, \xi_k) = \left\{ \sum_{i=1}^k \left(i + \sum_{p=1}^{i-1} \mu(R_{\alpha_p}) \right) (\deg \xi_i - 1) \right\} + 1.$$

In the rest of this note, we show the filtered A_{∞} -relations. Denote by $\hat{\mathfrak{m}}_{k,B}$ the extension of $\mathfrak{m}_{k,B}$ as a coderivation with respect to the shifted degree $|\bullet|'$. We compute $\mathfrak{m}_{k',B'} \circ \hat{\mathfrak{m}}_{k'',B''}$. Clearly,, $\mathfrak{m}_{1,0} \circ \mathfrak{m}_{1,0} = 0$. We consider the case that (k',B') = (1,0) or (k'',B'') = (1,0). Namely, for $(k,B) \neq (1,0)$, we have

$$\mathfrak{m}_{1,0} \circ \mathfrak{m}_{k,B}(\xi_{1}, \dots, \xi_{k}) = (-1)^{\epsilon(\xi_{1}, \dots, \xi_{k})} d(ev_{0}^{B})_{!} (ev_{1}^{B*} \xi_{1} \wedge \dots \wedge ev_{k}^{B*} \xi_{k})$$

$$\mathfrak{m}_{k,B} \circ \hat{\mathfrak{m}}_{1,0}(\xi_{1}, \dots, \xi_{k}) = \sum_{j=1}^{k} (-1)^{\sum_{p=1}^{j-1} |\xi_{p}|'} \mathfrak{m}_{k,B}(\xi_{1}, \dots, d\xi_{j}, \dots, \xi_{k})$$

$$= \sum_{j=1}^{k} (-1)^{\sum_{p=1}^{j-1} |\xi_{p}|' + \epsilon(\xi_{1}, \dots, d\xi_{j}, \dots, \xi_{k})} (ev_{0}^{B})_{!} (ev_{1}^{B*} \xi_{1} \wedge \dots \wedge ev_{j}^{B*} d\xi_{j} \wedge \dots \wedge ev_{k}^{B*} \xi_{k})$$

$$= (-1)^{\epsilon(\xi_{1}, \dots, \xi_{k}) + 1} (ev_{0}^{B})_{!} d(ev_{1}^{B*} \xi_{1} \wedge \dots \wedge ev_{k}^{B*} \xi_{k})$$

$$(3)$$

Here we note that

$$\sum_{p=1}^{j-1} |\xi_p|' + \epsilon(\xi_1, \dots, d\xi_j, \dots, \xi_k) = \sum_{p=1}^{j-1} \deg \xi_p + \sum_{p=1}^{j-1} (\mu(R_{\alpha_p}) - 1) + \epsilon(\xi_1, \dots, \xi_k) + (j + \sum_{p=1}^{j-1} \mu(R_{\alpha_p}))$$

$$\equiv \sum_{p=1}^{j-1} \deg \xi_p + \epsilon(\xi_1, \dots, \xi_k) + 1 \mod 2.$$

In order to compute $\mathfrak{m}_{k',B'} \circ \hat{\mathfrak{m}}_{k'',B''}$, we discuss the relation between the orientation bundle of $\mathcal{M}_{k'+1}(B';\mathcal{L}';\mathcal{R}')_{ev_j^{B'}} \times_{ev_0^{B''}} \mathcal{M}_{k''+1}(B'';\mathcal{L}'';\mathcal{R}'')$ and the orientation bundle of the boundary of $\partial \mathcal{M}_{k+1}(B;\mathcal{L};\mathcal{R})$. The codimension 1 boundary of the moduli space $\mathcal{M}_{k+1}(B;\mathcal{L};\mathcal{R})$ is the union of the fiber products of $\mathcal{M}_{k'+1}(B';\mathcal{L}';\mathcal{R}')$ and $\mathcal{M}_{k''+1}(B'';\mathcal{L}'';\mathcal{R}'')$ with respect to $ev_j^{B'}: \mathcal{M}_{k'+1}(B';\mathcal{L}';\mathcal{R}') \to R_{\alpha}$ and $ev_0^{B''}: \mathcal{M}_{k''+1}(B'';\mathcal{L}'';\mathcal{R}'') \to R_{\alpha}$, where

$$\mathcal{L}' = (L_{i_0}, \dots, L_{i_{j-1}}, L_{i_{j+k''-1}}, \dots L_{i_k}), \mathcal{L}'' = (L_{i_{j-1}}, \dots, L_{i_{j+k''-1}})$$

$$\mathcal{R}' = (R_{\alpha_0}, \dots, R_{\alpha_{j-1}}, R_{\alpha}, R_{\alpha_{j+k''}}, \dots, R_{\alpha_k}), \mathcal{R}'' = (R_{\alpha}, R_{\alpha_j}, \dots R_{\alpha_{i_{j+k''-1}}})$$

over j = 1, ..., k, k', k'' such that k' + k'' = k + 1, R_{α} a connected component of $L_{i_{j-1}} \cap L_{j+k''-1}$, all possible decomposition of B into B' and B''.

Denote by Sw the exchange of $\Theta_{R_{\alpha_1}} \otimes \cdots \otimes \Theta_{R_{\alpha_{j-1}}}$ and $O_{R_{\alpha}} \otimes O_{\mathcal{M}_{k''+1}(B'';\mathcal{L}'';\mathcal{R}'')^{\circ}}$ with the sign $(-1)^{\delta_1}$, where

$$\delta_{1} = \left(\sum_{p=1}^{j-1} \mu(R_{\alpha_{p}})\right) \left(\dim \mathcal{M}_{k''+1}(B''; \mathcal{L}''; \mathcal{R}'') - \dim R_{\alpha} - \dim \mathcal{M}_{k''+1}\right)$$

$$\equiv \left(\sum_{p=1}^{j-1} \mu(R_{\alpha_{p}})\right) \left(\mu(R_{\alpha}) - \sum_{p=j}^{j+k''-1} \mu(R_{\alpha_{p}})\right) \mod 2.$$

Comparing Φ^B and $Sw \circ (id \otimes \cdots \otimes id \otimes \Phi^{B''} \otimes id \otimes \cdots \otimes id) \circ \Phi^{B'}$, we find that

$$O_{\mathcal{M}_{k+1}(B;\mathcal{L};\mathcal{R})^{\circ}} \to O_{\mathcal{M}_{k+1}(B';\mathcal{L}';\mathcal{R}')^{\circ}} \otimes O_{R_{\alpha}} \otimes O_{\mathcal{M}_{k''+1}(B'';\mathcal{L}'';\mathcal{R}'')^{\circ}}$$

is $(-1)^{\delta_1}$ -orientation preserving¹. Here $\mathcal{M}_{k+1}(B'; \mathcal{L}'; \mathcal{R}')^{\circ}$ is the moduli space of bordered stable maps with a fixed domain bordered Riemann surface with fixed boundary marked points. The O(1)-local system $O_{\mathcal{M}_{k+1}(B';\mathcal{L}';\mathcal{R}')^{\circ}} \otimes O_{R_{\alpha}} \otimes O_{\mathcal{M}_{k''+1}(B'';\mathcal{L}'';\mathcal{R}'')^{\circ}}$ is the orientation bundle of the fiber product $\mathcal{M}_{k'+1}(B';\mathcal{L}';\mathcal{R}')^{\circ}_{ev_j^{B'}} \times_{ev_0^{B''}} \mathcal{M}_{k''+1}(B'';\mathcal{L}'';\mathcal{R}'')^{\circ}$, which is the moduli space of bordered stable maps with a fixed boundary nodal Riemann surface wth fixed boundary marked points.

Now we compare $\partial \mathcal{M}_{k+1}(B;\mathcal{L};\mathcal{R}) = \partial \left(\mathcal{M}_{k+1}(B;\mathcal{L};\mathcal{R})^{\circ} \times \mathcal{M}_{k+1}\right)$ and $\mathcal{M}_{k'+1}(B';\mathcal{L}';\mathcal{R}')_{ev_{j}^{B'}} \times_{ev_{0}^{B''}} \mathcal{M}_{k''+1}(B'';\mathcal{L}'';\mathcal{R}'') = \left(\mathcal{M}_{k'+1}(B';\mathcal{L}';\mathcal{R}')^{\circ} \times \mathcal{M}_{k'+1}\right)_{ev_{j}^{B'}} \times_{ev_{0}^{B''}} \left(\mathcal{M}_{k''+1}(B'';\mathcal{L}'';\mathcal{R}'')^{\circ} \times \mathcal{M}_{k''+1}\right).$ We note that $O_{\mathcal{M}_{k+1}(B;\mathcal{L};\mathcal{R})} = \mathbb{R}_{out} \otimes O_{\partial \mathcal{M}_{k+1}(B;\mathcal{L};\mathcal{R})}$. Here \mathbb{R}_{out} is the normal bundle of the boundary oriented by the outer normal vector.

We pick local flat sections $\sigma_{\alpha_0}, \ldots, \sigma_{\alpha_k}, \sigma_{\alpha}$ of O(1)-local systems $\Theta_{R_{\alpha_0}}, \ldots, \Theta_{R_{\alpha_k}}, \Theta_{R_{\alpha}}$ and a local orientation $o_{R_{\alpha_0}}$ of R_{α_0} around $u(z_0)$. Then we can equip $\mathcal{M}_{k+1}(B; \mathcal{L}; \mathcal{R}), \mathcal{M}_{k'+1}(B'; \mathcal{L}'; \mathcal{R}')$ and the relative tangent bundle of $ev_0^{B''}: \mathcal{M}_{k''+1}(B''; \mathcal{L}''; \mathcal{R}'') \to R_{\alpha}$ with local orientations induced by them. Then a local orientation of $\mathcal{M}_{k+1}(B; \mathcal{L}; \mathcal{R}) = R_{\alpha_0} \times^{\circ} \mathcal{M}_{k+1}(B; \mathcal{L}; \mathcal{R})$ is given by $o_{R_{\alpha_0}} \times o(\sigma_{\alpha_0}; \sigma_{\alpha_1}, \ldots, \sigma_{\alpha_k})$. As the fiber product of spaces with Kuranishi structures equipped with local orientations,

 $\mathcal{M}_{k'+1}(B';\mathcal{L}';\mathcal{R}')_{ev_j^{B'}} \times_{ev_0^{B''}} \mathcal{M}_{k''+1}(B'';\mathcal{L}'';\mathcal{R}'') = \mathcal{M}_{k'+1}(B';\mathcal{L}';\mathcal{R}') \times {}^{\circ}\mathcal{M}_{k''+1}(B'';\mathcal{L}'';\mathcal{R}'')$ is locally oriented by

$$o_{R_{\alpha_0}} \times o(\sigma_{R_{\alpha_0}}; \sigma_{R_{\alpha_1}}, \dots, \sigma_{R_{\alpha_{j-1}}}, \sigma_{R_{\alpha}}, \sigma_{R_{\alpha_{j+k''}}}, \dots, \sigma_{R_{\alpha_k}}) \times o(\sigma_{R_{\alpha}}; \sigma_{R_{\alpha_j}}, \dots, \sigma_{R_{\alpha_{j+k''-1}}}).$$

We fix $z_0 = +1, z_j = -1$ and consider the spaces of *J*-holomorphic maps $\widetilde{\mathcal{M}}_{k+1}(B; \mathcal{L}, \mathcal{R}),$ $\widetilde{\mathcal{M}}_{k'+1}(B'; \mathcal{L}', \mathcal{R}'), \widetilde{\mathcal{M}}_{k''+1}(B''; \mathcal{L}, \mathcal{R}'')$ such that

$$\mathcal{M}_{k+1}(B;\mathcal{L};\mathcal{R}) = \widetilde{\mathcal{M}}_{k'+1}(B';\mathcal{L}',\mathcal{R}')/\mathbb{R}_B,$$

$$\mathcal{M}_{k'+1}(B';\mathcal{L}';\mathcal{R}') = \widetilde{\mathcal{M}}_{k'+1}(B';\mathcal{L}';\mathcal{R}')/\mathbb{R}_{B'},$$

and

$$\mathcal{M}_{k''+1}(B'';\mathcal{L}'';\mathcal{R}'') = \widetilde{\mathcal{M}}_{k''+1}(B'';\mathcal{L},''\mathcal{R}'')/\mathbb{R}_{B''}.$$

We may also write

$$\widetilde{\mathcal{M}}_{k+1}(B;\mathcal{L};\mathcal{R}) = \mathcal{M}_{k+1}(B;\mathcal{L},\mathcal{R}) \times \mathbb{R}_B, \text{etc.},$$

as oriented spaces.

¹⁽⁻¹⁾-orientation preserving means orientation reversing.

The case that $z_0 = +1$, $z_1 = -1$ is discussed in page 699 of [1]. The case that $z_0 = +1$, $z_j = -1$ differs from the case that $z_0 = +1$, $z_1 = -1$ by an additional factor $(-1)^{j-1}$ as below.

Note that

6

$$\widetilde{\mathcal{M}}_{k+1}(B;\mathcal{L};\mathcal{R}) = (-1)^{j-1} \mathcal{M}_{k+1}(B;\mathcal{L};\mathcal{R})^{\circ} \times \prod_{i=1}^{j-1} (\partial D)_{z_i} \times \prod_{i=j+1}^{j+k^{\prime\prime}-1} (\partial D)_{z_i} \times \prod_{i=j+k^{\prime\prime}}^k (\partial D)_{z_i},$$

where $z_0 = +1, z_j = -1,$

$$\widetilde{\mathcal{M}}_{k'+1}(B';\mathcal{L}';\mathcal{R}') = (-1)^{j-1} \mathcal{M}_{k'+1}(B';\mathcal{L}';\mathcal{R}')^{\circ} \times \prod_{i=1}^{j-1} (\partial D)_{z_i} \times \prod_{i=j+k''}^{k} (\partial D)_{z_i},$$

where $z'_0 = +1, z'_i = -1$, and

$$\widetilde{\mathcal{M}}_{k''+1}(B'';\mathcal{L}'';\mathcal{R}'') = \mathcal{M}_{k''+1}(B'';\mathcal{L};''\mathcal{R}'')^{\circ} \times \prod_{i=j+1}^{j+k''-1} (\partial D)_{z_i},$$

where $z_0'' = +1, z_1'' = -1$.

Remark 3. We have

$$(-1)^{j-1} \prod_{i=1}^{j-1} (\partial D)_{z_i} \times \prod_{i=j+1}^{j+k''-1} (\partial D)_{z_i} \times \prod_{i=j+k''}^{k} (\partial D)_{z_i} = \mathcal{M}_{k+1} \times \mathbb{R}_B$$

$$(-1)^{j-1} \prod_{i=1}^{j-1} (\partial D)_{z_i} \times \prod_{i=j+k''}^k (\partial D)_{z_i} = \mathcal{M}_{k'+1} \times \mathbb{R}_{B'}$$

and

$$\prod_{i=j+1}^{j+k''-1} (\partial D)_{z_i} = \mathcal{M}_{k''+1} \times \mathbb{R}_{B''}.$$

Marked points of $\mathcal{M}_{k'+1}(B'; \mathcal{L}'; \mathcal{R}')$ and $\mathcal{M}_{k''+1}(B''; \mathcal{L}; \mathcal{R}'')$ are related to marked points of $\mathcal{M}_{k+1}(B; \mathcal{L}; \mathcal{R})$ in the following way.

$$(z'_0,\ldots,z'_{k'})=(z_0,\ldots,z_{j-1},z'_j,z_{j+k''},\ldots,z_k),$$

$$(z_0'', z_1'', \dots, z_{k''}') = (z_0'', z_j, \dots, z_{j+k''-1}).$$

Here z'_j and z''_0 are identified, i.e., the boundary node of the domain curve of an element in $\mathcal{M}_{k+1}(B;\mathcal{L};\mathcal{R})$.

Then we find that

$$\widetilde{\mathcal{M}}_{k+1}(B;\mathcal{L};\mathcal{R}) = (-1)^{\delta_1} \left(\mathcal{M}_{k'+1}(B';\mathcal{L}';\mathcal{R}')^{\circ} \times_{R_{\alpha}} \times \mathcal{M}_{k''+1}(B'';\mathcal{L};''\mathcal{R}'')^{\circ} \right) \times \\
\left(-1\right)^{j-1} \prod_{i=1}^{j-1} (\partial D)_{z_i} \times \prod_{i=j+1}^{j+k''-1} (\partial D)_{z_i} \times \prod_{i=j+k''}^{k} (\partial D)_{z_i} \\
= (-1)^{\delta_1 + \delta_2} \left(\mathcal{M}_{k'+1}(B';\mathcal{L}';\mathcal{R}')^{\circ} \times (-1)^{j-1} \prod_{i=1}^{j-1} (\partial D)_{z_i} \times \prod_{i=j+k''}^{k} (\partial D)_{z_i} \right) \\
\times_{R_{\alpha}} \left(\mathcal{M}_{k''+1}(B'';\mathcal{L}'';\mathcal{R}'')^{\circ} \times \prod_{i=j+1}^{j+k''-1} (\partial D)_{z_i} \right) \\
= (-1)^{\delta_1 + \delta_2} \left(\mathcal{M}_{k'+1}(B';\mathcal{L}';\mathcal{R}') \times \mathbb{R}_{B'} \right) \times_{R_{\alpha}} \times \left(\mathcal{M}_{k''+1}(B'';\mathcal{L}'';\mathcal{R}'') \times \mathbb{R}_{B''} \right) \\
= (-1)^{\delta_1 + \delta_2 + \delta_3} \mathbb{R}_{B'-B''} \times \left(\mathcal{M}_{k'+1}(B';\mathcal{L}';\mathcal{R}') \times_{R_{\alpha}} \times \mathcal{M}_{k''+1}(B'';\mathcal{L};''\mathcal{R}'') \right) \\
\times \mathbb{R}_{B'+B''} \\
= (-1)^{\delta_1 + \delta_2 + \delta_3} \mathbb{R}_{out} \times \left(\mathcal{M}_{k'+1}(B';\mathcal{L}';\mathcal{R}') \times_{R_{\alpha}} \times \mathcal{M}_{k''+1}(B'';\mathcal{L};''\mathcal{R}'') \right) \\
\times \mathbb{R}_{B}, \tag{5}$$

where

$$\delta_2 = (k''-1)(k'-j) + (k'-1) \left(\dim \mathcal{M}_{k''+1}(B''; \mathcal{L}; \mathcal{R}'')^{\circ} - \dim R_{\alpha} \right),$$

$$\delta_3 = \dim \mathcal{M}_{k'+1}(B'; \mathcal{L}'; \mathcal{R}').$$

 $\mathbb{R}_{B'-B''}$ and $\mathbb{R}_{B'+B''}$ are the oriented lines spanned by $(1,-1),(1,1)\in\mathbb{R}_{B'}\oplus\mathbb{R}_{B''}$, respectively. Note that the ordered bases (1,0),(0,1) and (1,-1),(1,1) give the same orientation of $\mathbb{R}_{B'}\oplus\mathbb{R}_{B''}$, $\mathbb{R}_{B'-B''}$ and $\mathbb{R}_{B'+B''}$ are identified with \mathbb{R}_{out} and \mathbb{R}_{B} , respectively.

Here is an explanation of the second equality, i.e., the appearance of $(-1)^{\delta_2}$. By the convention in Section 8.2 in [1], we have

$$\mathcal{M}_{k'+1}(B'; \mathcal{L}'; \mathcal{R}')^{\circ} \times_{R_{\alpha}} \times \mathcal{M}_{k''+1}(B''; \mathcal{L}; \mathcal{R}'')^{\circ}$$

$$= \mathcal{M}_{k'+1}(B'; \mathcal{L}'; \mathcal{R}')^{\circ \circ} \times R_{\alpha} \times {}^{\circ} \mathcal{M}_{k''+1}(B''; \mathcal{L}; \mathcal{R}'')^{\circ},$$

$$= \mathcal{M}_{k'+1}(B'; \mathcal{L}'; \mathcal{R}')^{\circ} \times {}^{\circ} \mathcal{M}_{k''+1}(B''; \mathcal{L}; \mathcal{R}'')^{\circ}$$

where

$$\mathcal{M}_{k'+1}(B';\mathcal{L}';\mathcal{R}')^{\circ} = \mathcal{M}_{k'+1}(B';\mathcal{L}';\mathcal{R}')^{\circ\circ} \times R_{\alpha},$$

and

$$\mathcal{M}_{k''+1}(B'';\mathcal{L};''\mathcal{R}'')^{\circ} = R_{\alpha} \times {}^{\circ}\mathcal{M}_{k''+1}(B'';\mathcal{L};''\mathcal{R}'')^{\circ}.$$

Using these notations, we have

$$\left(\mathcal{M}_{k'+1}(B'; \mathcal{L}'; \mathcal{R}')^{\circ} \times_{R_{\alpha}} \times \mathcal{M}_{k''+1}(B''; \mathcal{L}; '' \mathcal{R}'')^{\circ} \right) \times \prod_{i=1}^{j-1} (\partial D)_{z_{i}} \times \prod_{i=j+k''}^{k} (\partial D)_{z_{i}} \times \prod_{i=j+1}^{j+k''-1} (\partial D)_{z_{i}}$$

$$= (-1)^{\gamma_{1}} \left(\mathcal{M}_{k'+1}(B'; \mathcal{L}'; \mathcal{R}')^{\circ} \times_{R_{\alpha}} \times \mathcal{M}_{k''+1}(B''; \mathcal{L}; '' \mathcal{R}'')^{\circ} \right) \times \prod_{i=1}^{j-1} (\partial D)_{z_{i}} \times \prod_{i=j+1}^{j+k''-1} (\partial D)_{z_{i}} \times \prod_{i=j+k''}^{k} (\partial D)_{z_{i}}$$

$$= (-1)^{\gamma_{1}} \left(\mathcal{M}_{k'+1}(B'; \mathcal{L}'; \mathcal{R}')^{\circ} \times {}^{\circ} \mathcal{M}_{k''+1}(B''; \mathcal{L}; '' \mathcal{R}'')^{\circ} \right) \times \prod_{i=1}^{j-1} (\partial D)_{z_{i}} \times \prod_{i=j+1}^{j+k''-1} (\partial D)_{z_{i}} \times \prod_{i=j+k''}^{k} (\partial D)_{z_{i}}$$

$$= (-1)^{\gamma_{1}+\gamma_{2}} \mathcal{M}_{k'+1}(B'; \mathcal{L}'; \mathcal{R}')^{\circ} \times \prod_{i=1}^{j-1} (\partial D)_{z_{i}} \times \prod_{i=j+1}^{k} (\partial D)_{z_{i}} \times {}^{\circ} \mathcal{M}_{k''+1}(B''; \mathcal{L}'; \mathcal{R}'')^{\circ} \times \prod_{i=j+k''}^{k} (\partial D)_{z_{i}}$$

$$= (-1)^{\gamma_{1}+\gamma_{2}} \mathcal{M}_{k'+1}(B'; \mathcal{L}'; \mathcal{R}')^{\circ} \times \prod_{i=1}^{j-1} (\partial D)_{z_{i}} \times \prod_{i=j+k''}^{k} (\partial D)_{z_{i}} \times \mathcal{M}_{k''+1}(B''; \mathcal{L}''; \mathcal{R}'')^{\circ} \times \prod_{i=j+k''}^{k} (\partial D)_{z_{i}}$$

$$= (-1)^{\gamma_{1}+\gamma_{2}} \mathcal{M}_{k'+1}(B'; \mathcal{L}'; \mathcal{R}')^{\circ} \times \prod_{i=1}^{j-1} (\partial D)_{z_{i}} \times \prod_{i=j+k''}^{k} (\partial D)_{z_{i}} \times \mathcal{M}_{k''+1}(B''; \mathcal{L}''; \mathcal{R}'')^{\circ} \times \prod_{i=j+k''}^{k} (\partial D)_{z_{i}}$$

$$= (-1)^{\gamma_{1}+\gamma_{2}} \mathcal{M}_{k'+1}(B'; \mathcal{L}'; \mathcal{R}')^{\circ} \times \prod_{i=1}^{j-1} (\partial D)_{z_{i}} \times \prod_{i=j+k''}^{k} (\partial D)_{z_{i}} \times$$

where $\gamma_1 = (k''-1)(k'-j)$, i.e., $(-1)^{\gamma_1}$ is the sign of exchange of $(z_{j+k''}, \ldots, z_k)$ and $(z_{j+1}, \ldots, z_{j+k''-1})$, and $\gamma_2 = \dim \left({}^{\circ}\mathcal{M}_{k''+1}(B''; \mathcal{L}; \mathcal{R}'')^{\circ} \right) \left(\dim \mathcal{M}_{k'+1} + 1 \right)$. Then $\delta_2 = \gamma_1 + \gamma_2$.

Now we return to the discussion on local orientations of the orientation bundle of $\mathcal{M}_{k'+1}(B';\mathcal{L}';\mathcal{R}')_{ev_i^{B'}} \times_{ev_0^{B''}} \mathcal{M}_{k''+1}(B'';\mathcal{L}'';\mathcal{R}'')$ and $\partial \mathcal{M}_{k+1}(B;\mathcal{L};\mathcal{R})$. Recall that

$$\widetilde{\mathcal{M}}_{k+1}(B;\mathcal{L};\mathcal{R}) = \mathcal{M}_{k'+1}(B';\mathcal{L}',\mathcal{R}') \times \mathbb{R}_B. \tag{6}$$

Set $\kappa = \delta_1 + \delta_2 + \delta_3$. Comparing (5) and (6), we have

$$(-1)^{\kappa} \mathcal{M}_{k'+1}(B'; \mathcal{L}'; \mathcal{R}')_{ev_i^{B'}} \times_{ev_0^{B''}} \mathcal{M}_{k''+1}(B''; \mathcal{L}''; \mathcal{R}'') \subset \partial \mathcal{M}_{k+1}(B; \mathcal{L}; \mathcal{R}). \tag{7}$$

We have

$$\kappa \equiv (k'' - 1)(k' - j) + (k' - 1)(\mu(R_{\alpha}) - \sum_{p=j}^{j+k''-1} \mu(R_{\alpha_p})) + (\sum_{p=1}^{j-1} \mu(R_{\alpha_p}))(\mu(R_{\alpha}) - \sum_{p=j}^{j+k''-1} \mu(R_{\alpha_p}))$$

$$+ \dim R_{\alpha_0} + \mu(R_{\alpha_0}) - (\sum_{p=1}^{j-1} \mu(R_{\alpha_p}) + \mu(R_{\alpha}) + \sum_{p=j+k''}^{k} \mu(R_{\alpha_p})) + k'.$$

From (1) in the setting of Kuranishi structures, (7), (1) and the base change formula for integration along fibers, we find that

$$(ev_{0}^{B}|_{\partial\mathcal{M}_{k+1}(B;\mathcal{L};\mathcal{R})}; \partial o(\sigma_{\alpha_{0}}; \sigma_{\alpha_{1}}, \dots, \sigma_{\alpha_{k}}))_{!} (\prod_{i=1}^{j-1} ev_{i}^{B*} \times \prod_{i=j+k''}^{k} ev_{i}^{B*} \times \prod_{i=j}^{j+k''-1} ev_{i}^{B*})$$

$$= (-1)^{\kappa} (ev_{0}^{B'}; o(\sigma_{\alpha_{0}}; \sigma_{\alpha_{1}}, \dots, \sigma_{\alpha_{j-1}}, \sigma_{\alpha}, \sigma_{\alpha_{j+k''-1}}, \dots, \sigma_{\alpha_{k}}))_{!}$$

$$\circ \left(\prod_{i=1}^{j-1} ev_{i}^{B'*} \times \prod_{i=j+1}^{k'} ev_{i}^{B'*} \times \left(ev_{j}^{B'*} \circ (ev_{0}^{B''}; o(\sigma_{\alpha_{i}}; \sigma_{\alpha_{j}}, \dots, \sigma_{\alpha_{j+k''-1}}))_{!} \circ \prod_{i=1}^{k''} ev_{i}^{B''*}\right) \right) (8)$$

as operations applied to $(\bigotimes_{i=1}^{j-1}\zeta_i)\otimes(\bigotimes_{i=j+k''}^{k}\zeta_i)\otimes(\bigotimes_{i=j}^{j+k''-1}\zeta_i)$, where $\xi_i=\zeta_i\otimes\sigma_{\alpha_i}, i=1,\ldots k$. Here $\partial o(\sigma_{\alpha_0};\sigma_{\alpha_1},\ldots,\sigma_{\alpha_k})^2$ is the orientation of the relative tangent bundle $\partial \mathcal{M}_{k+1}(B;\mathcal{L};\mathcal{R})\to R_{\alpha_0}$ induced from $o(\sigma_{\alpha_0};\sigma_{\alpha_1},\ldots,\sigma_{\alpha_k})$.

Namely, for $\mathbf{u} \in \partial \mathcal{M}_{k+1}(B; \mathcal{L}; \mathcal{R})$, $o(\sigma_{\alpha_0}; \sigma_{\alpha_1}, \dots, \sigma_{\alpha_k})$ of ${}^{\circ}\mathcal{M}_{k+1}(B; \mathcal{L}; \mathcal{R})$ and $\partial o(\sigma_{\alpha_0}; \sigma_{\alpha_1}, \dots, \sigma_{\alpha_k})$ of the relative tangent bundle of $\partial \mathcal{M}_{k+1}(B; \mathcal{L}; \mathcal{R}) \to R_{\alpha_0}$ are related as follows: we write

$$T_{\mathbf{u}}\mathcal{M}_{k+1}(B;\mathcal{L};\mathcal{R}) = \mathbb{R}_{out} \times T_{\mathbf{u}}\partial\mathcal{M}_{k+1}(B;\mathcal{L};\mathcal{R})$$
$$T_{\mathbf{u}}\mathcal{M}_{k+1}(B;\mathcal{L};\mathcal{R}) = T_{u(z_0)}R_{\alpha_0} \times T_{\mathbf{u}} \,{}^{\circ}\mathcal{M}_{k+1}(B;\mathcal{L};\mathcal{R})$$

Then, under the following identification

$$\mathbb{R}_{out} \times T_{\mathbf{u}} \partial \mathcal{M}_{k+1}(B; \mathcal{L}; \mathcal{R}) = \mathbb{R}_{out} \times T_{u(z_0)} R_{\alpha_0} \times T_{\mathbf{u}} \circ \partial \mathcal{M}_{k+1}(B; \mathcal{L}; \mathcal{R}),$$

we define $\partial \mathcal{M}_{k+1}(B;\mathcal{L};\mathcal{R}) \to R_{\alpha_0}$ by

$$o_{R_{\alpha_0}} \times o(\sigma_{\alpha_0}; \sigma_{\alpha_1}, \dots, \sigma_{\alpha_k}) = \mathbb{R}_{out} \times o_{R_{\alpha_0}} \times \partial o(\sigma_{\alpha_0}; \sigma_{\alpha_1}, \dots, \sigma_{\alpha_k}).$$

Note that

$$ev_i^B|_{\partial \mathcal{M}_{k+1}(B;\mathcal{L};\mathcal{R})} = \begin{cases} ev_i^{B'} \circ \pi_{B'}^B, & i = 1, \dots, j-1, \\ ev_{i-j+1}^{B'} \circ \pi_{B''}^B, & i = j, \dots, j+k''-1, \\ ev_{i-k''+1}^{B'} \circ \pi_{B'}^B, & i = j+k'', \dots, k, \end{cases}$$

where $\pi_{B'}^B$ and $\pi_{B''}^B$ are projections from the fiber product $\mathcal{M}_{k'+1}(B'; \mathcal{L}'; \mathcal{R}')_{ev_j^{B'}} \times_{ev_0^{B''}} \mathcal{M}_{k''+1}(B''; \mathcal{L}''; \mathcal{R}'')$ to $\mathcal{M}_{k'+1}(B'; \mathcal{L}'; \mathcal{R}')$ and $\mathcal{M}_{k''+1}(B''; \mathcal{L}''; \mathcal{R}'')$, respectively. Note that σ_{α} appears twice and the right hand side of (8) does not depends on the choice of local section σ_{α} of the O(1)-local system Θ_{α} .

Next, we compute $\mathfrak{m}_{k',B'} \circ \hat{\mathfrak{m}}_{k'',B''}$ with $(k',B') \neq (1,0), (k'',B'') \neq (1,0)$. Armed with (8), we regard ξ_i , $i=1,\ldots,k$ as differential forms on R_{α_i} in the computation below.

$$\mathfrak{m}_{k',B'} \circ \hat{\mathfrak{m}}_{k'',B''}(\xi_{1},\ldots,\xi_{k}) = \sum_{j=1}^{k} (-1)^{\sum_{i=1}^{j-1} |\xi_{i}|'} \mathfrak{m}_{k',B'}(\xi_{1},\ldots,\mathfrak{m}_{k'',B''}(\xi_{j},\ldots,\xi_{j+k''-1}),\ldots,\xi_{k})
= \sum_{j=1}^{k} (-1)^{\delta_{4}} (ev_{0}^{B'})_{!} \left(ev_{1}^{B'*} \xi_{1} \wedge \cdots \wedge ev_{j-1}^{B'*} \xi_{j-1} \right)
\qquad \wedge ev_{j}^{B'*} \left((ev_{0}^{B''})_{!} (ev_{1}^{B''*} \xi_{j} \wedge \cdots \wedge ev_{k''}^{B''*} \xi_{j+k''-1}) \wedge \cdots \wedge ev_{k'}^{B'*} \xi_{k} \right)
= (-1)^{\delta_{4} + \delta_{5}} (ev_{0}^{(B',B'')})_{!} (ev_{1}^{(B',B'')*} \xi_{1} \wedge \cdots \wedge ev_{k}^{(B',B'')*} \xi_{k})
= (-1)^{\delta_{4} + \delta_{5} + \kappa} (ev_{0}^{B}|_{\partial \mathcal{M}_{k+1}(B;\mathcal{L};\mathcal{R})})_{!} (ev_{1}^{B*} \xi_{1} \wedge \cdots \wedge ev_{k}^{B*} \xi_{k})$$

$$(9)$$

where

$$\delta_4 = \sum_{i=1}^{j-1} |\xi_i|' + \epsilon(\xi_1, \dots, \mathfrak{m}_{k'', B''}(\xi_j, \dots, \xi_{j+k''-1}), \dots, \xi_k) + \epsilon(\xi_j, \dots, \xi_{j+k''-1}).$$

$$\delta_5 = \left(\mu(R_\alpha) - \sum_{i=j}^{j+k''-1} \mu(R_{\alpha_i}) + k'' - 2\right) \left(\sum_{i=j+k''}^k \deg \xi_i\right),$$

 $^{^2\}partial o(\sigma_{\alpha_0}; \sigma_{\alpha_1}, \dots, \sigma_{\alpha_k})$ is not the boundary orientation of $\partial \circ \mathcal{M}_{k+1}(B; \mathcal{L}; \mathcal{R})$ induced from the orientation $o(\sigma_{\alpha_0}; \sigma_{\alpha_1}, \dots, \sigma_{\alpha_k})$ of $^\circ \mathcal{M}_{k+1}(B; \mathcal{L}; \mathcal{R})$. They differ by $(-1)^{\dim R_{\alpha_0}}$.

and $ev_j^{(B',B'')}: \mathcal{M}_{k'+1}(B';\mathcal{L}';\mathcal{R}')_{ev_j^{B'}} \times_{ev_0^{B''}} \mathcal{M}_{k''+1}(B'';\mathcal{L}'';\mathcal{R}'') \to R_{\alpha_j}$ is the evaluation map at the j-th marked point on the fiber product $\mathcal{M}_{k'+1}(B';\mathcal{L}';\mathcal{R}')_{ev_j^{B'}} \times_{ev_0^{B''}} \mathcal{M}_{k''+1}(B'';\mathcal{L}'';\mathcal{R}'')$. Here the numbering of the marked points is the same as that on $\mathcal{M}_{k+1}(B;\mathcal{L};\mathcal{R})$. The appearance of $(-1)^{\delta_5}$ above is due to (1) and the composition formula (Theorem 10.21 in [2]). Namely, we have

$$(ev_0^{B'})_! \left(ev_1^{B'*} \xi_1 \wedge \cdots \wedge ev_{j-1}^{B'*} \xi_{j-1} \wedge ev_j^{B'*} ((ev_0^{B''})_! (ev_1^{B''*} \xi_j \wedge \cdots \wedge ev_{k''}^{B''*} \xi_{j+k''-1}) \right.$$

$$\wedge ev_{j+1}^{B'*} \xi_{j+k''} \wedge \cdots \wedge ev_{k'}^{B'*} \xi_k)$$

$$= (-1)^{\eta_1} (ev_0^{B'})_! \left((ev_1^{B'*} \xi_1 \wedge \cdots \wedge ev_{j-1}^{B'*} \xi_{j-1} \wedge ev_{j+1}^{B'*} \xi_{j+k''} \cdots \wedge ev_{k'}^{B'*} \xi_k) \right.$$

$$\wedge ev_j^{B'*} \circ (ev_0^{B''})_! (ev_1^{B''*} \xi_j \wedge \cdots \wedge ev_{k''}^{B''*} \xi_{j+k''-1})$$

$$= (-1)^{\eta_1} (ev_0^{B'})_! \left((ev_1^{B'*} \xi_1 \wedge \cdots \wedge ev_{j-1}^{B'*} \xi_{j-1} \wedge ev_{j+1}^{B'*} \xi_{j+k''} \cdots \wedge ev_{k'}^{B'*} \xi_k) \right.$$

$$\wedge (\pi_{B'})_! \circ \pi_{B''}^* (ev_1^{B''*} \xi_j \wedge \cdots \wedge ev_{k''}^{B''*} \xi_{j+k''-1})$$

$$= (-1)^{\eta_1} (ev_0^{B'})_! \circ (\pi_{B'})_! (\pi_{B'}^* (ev_1^{B''*} \xi_1 \wedge \cdots \wedge ev_{j-1}^{B'*} \xi_{j-1} \wedge ev_{j+1}^{B'*} \xi_{j+k''} \cdots \wedge ev_{k'}^{B'*} \xi_k)$$

$$\wedge \pi_{B''}^* (ev_1^{B''*} \xi_j \wedge \cdots \wedge ev_{k''}^{B''*} \xi_{j+k''-1}))$$

$$= (-1)^{\eta_1 + \eta_2} (ev_0^{B'} \circ \pi_{B'})_! (\pi_{B'}^* (ev_1^{B'*} \xi_1 \wedge \cdots \wedge ev_{j-1}^{B'*} \xi_{j-1}) \wedge \pi_{B''}^* (ev_1^{B''*} \xi_j \wedge \cdots \wedge ev_{k''}^{B''*} \xi_{j+k''-1})$$

$$\pi_{B'}^* (ev_{j+1}^{B'*} \xi_{j+k''} \cdots \wedge ev_{k'}^{B''*} \xi_k)$$

$$= (-1)^{\eta_1 + \eta_2} (ev_0^{(B',B'')})_! (ev_1^{(B',B'')*} \xi_1 \wedge \cdots \wedge ev_k^{((B',B'')*} \xi_k),$$

where $\eta_1 = \left(\left(\left(\sum_{i=j}^{j+k''-1} \deg \xi_i\right) + \left(\mu_{R_{\alpha}} - \sum_{i=j}^{j+k''-1} \mu(R_{\alpha_i}) + k'' - 2\right)\right)\left(\sum_{i=j+k''}^{k} \deg \xi_i\right)$ and $\eta_2 = \left(\sum_{i=j}^{j+k''-1} \deg \xi_i\right)\left(\sum_{i=j+k''}^{k} \deg \xi_i\right)$. Then $\delta_5 = \eta_1 + \eta_2 = \left(\mu(R_{\alpha}) - \sum_{i=j}^{j+k''-1} \mu(R_{\alpha_i}) + k'' - 2\right)\left(\sum_{i=j+k''}^{k} \deg \xi_i\right)$. The second equality is a consequence of the base change formula for integration along fibers, i.e., $ev_j^{B'*} \circ (ev_0^{B''})_! = (\pi_{B'})_! \circ \pi_{B''}^*$. The third equality follows from (1). Note that

$$ev_i^{(B',B'')} = \begin{cases} ev_i^{B'} \circ \pi_{B'}^B, & i = 0, 1, \dots, j-1, \\ ev_{i-j+1}^{B''} \circ \pi_{B''}^B, & i = j, \dots, j+k''-1, \\ ev_{i-k''+1}B' \circ \pi_{B'}^B, & i = j+k'', \dots, k. \end{cases}$$

We find that

$$\delta_4 + \delta_5 + \kappa \equiv \epsilon(\xi_1, \dots, \xi_k) + 1 + k + \sum_{i=1}^k \deg \xi_i + \dim R_{\alpha_0} + \mu(R_{\alpha_0}) - \sum_{p=1}^k \mu(R_{\alpha_p})$$

$$\equiv \epsilon(\xi_1, \dots, \xi_k) + 1 + \dim \mathcal{M}_{k+1}(B; \mathcal{L}; \mathcal{R}) + \sum_{i=1}^k \deg \xi_i \mod 2$$

Using Theorem 27.2 in [2], we have

$$d(ev_{0}^{B})_{!}(ev_{1}^{B*}\xi_{1} \wedge \cdots \wedge ev_{k}^{B*}\xi_{k})$$

$$= (ev_{0}^{B})_{!}d(ev_{1}^{B*}\xi_{1} \wedge \cdots \wedge ev_{k}^{B*}\xi_{k})$$

$$+(-1)^{\dim \mathcal{M}_{k+1}(B;\mathcal{L};\mathcal{R})+\sum_{i=1}^{k} \deg \xi_{i}}(ev_{0}^{B}|_{\partial \mathcal{M}_{k+1}(B;\mathcal{L};\mathcal{R})})_{!}(ev_{1}^{B*}\xi_{1} \wedge \cdots \wedge ev_{k}^{B*}\xi_{k}).$$
(10)

Combining (3), (4), (9), (10), we have

$$\begin{split} &\mathfrak{m}_{1,0}\circ\mathfrak{m}_{k,B}(\xi_1,\ldots,\xi_k)+\mathfrak{m}_{k,B}\circ\hat{\mathfrak{m}}_{1,0}(\xi_1,\ldots,\xi_k)\\ &+\sum_{(k',B'),(k'',B'')\neq(1,0)}\mathfrak{m}_{k',B'}\circ\hat{\mathfrak{m}}_{k'',B''}(\xi_1,\ldots,\xi_k)=0. \end{split}$$

References

- [1] K. Fukaya, Y.-G. Oh, H. Ohta and K. Ono, Lagrangian Intersection Floer Theory Anomaly and Obstruction, AMS/IP Studies in Advanced Mathematics 46, Part II, Amer. Math. Soc. and International Press, 2009.
- [2] K. Fukaya, Y.-G. Oh, H. Ohta and K. Ono, Kuranishi Structures and Virtual Fundamental Chains, Springer Monographs in Mathematics, Springer Nature Singapore, 2020.

RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, KYOTO UNIVERSITY, KYOTO, 606-8502, JAPAN *Email address*: ono@kurims.kyoto-u.ac.jp