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On the Semi-absoluteness of Isomorphisms
between the Pro-p Arithmetic Fundamental

Groups of Smooth Varieties

by
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Abstract

Let p be a prime number. In the present paper, we consider a certain pro-p analogue of
the semi-absoluteness of isomorphisms between the étale fundamental groups of smooth
varieties over p-adic local fields [i.e., finite extensions of the field of p-adic numbers
Qp] obtained by Mochizuki. This research was motivated by Higashiyama’s recent work
on the pro-p analogue of the semi-absolute version of the Grothendieck conjecture for
configuration spaces [of dimension ≥ 2] associated to hyperbolic curves over generalized
sub-p-adic fields [i.e., subfields of finitely generated extensions of the completion of the
maximal unramified extension of Qp].
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§0. Introduction

Let p be a prime number. For a connected Noetherian scheme S, we shall write

ΠS for the étale fundamental group of S, relative to a suitable choice of basepoint.

For any field F of characteristic 0 and any algebraic variety [i.e., a separated, of

finite type, and geometrically integral scheme] X over F , we shall write F for

the algebraic closure [determined up to isomorphisms] of F , GF
def
= Gal(F/F ),

∆X
def
= ΠX×FF

.

In anabelian geometry, the relative version of the Grothendieck conjecture

proved by Mochizuki is a central result:
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Theorem 0.1 ([19, Thm. A], [20, Thm. 4.12]). Let K be a generalized sub-p-

adic field [i.e., a subfield of a finitely generated extension of the completion of

the maximal unramified extension of the field of p-adic numbers Qp—cf. [20,

Def. 4.11]]; X, X ′ hyperbolic curves over K. Write IsomK(X,X ′) for the set

of K-isomorphisms between X and X ′; IsomGK
(ΠX ,ΠX′)/Inn(∆X′) for the set of

isomorphisms ΠX
∼−→ ΠX′ of profinite groups that lie over GK , considered up to

composition with an inner automorphism arising from ∆X′ . Then the natural map

IsomK(X,X ′) −→ IsomGK
(ΠX ,ΠX′)/Inn(∆X′)

is bijective.

On the other hand, concerning the above theorem, we recall the following

open questions:

Question 1 (Absolute version of the Grothendieck conjecture). Let X, X ′ be

hyperbolic curves over p-adic local fields [i.e., finite extensions ofQp]K,K ′, respec-

tively. Write Isom(X,X ′) for the set of isomorphisms of schemes between X and

X ′; Isom(ΠX ,ΠX′)/Inn(ΠX′) for the set of isomorphisms ΠX
∼−→ ΠX′ of profinite

groups, considered up to composition with an inner automorphism arising from

ΠX′ . Then, is the natural map

Isom(X,X ′) −→ Isom(ΠX ,ΠX′)/Inn(ΠX′)

bijective?

Question 2 (Semi-absolute version of the Grothendieck conjecture). Let X, X ′

be hyperbolic curves over p-adic local fields K, K ′, respectively. Write

Isom(ΠX/GK ,ΠX′/GK′)/Inn(ΠX′)

for the set of isomorphisms ΠX
∼−→ ΠX′ of profinite groups that induce isomor-

phisms GK
∼−→ GK′ via the natural surjections ΠX ↠ GK and ΠX′ ↠ GK′ , con-

sidered up to composition with an inner automorphism arising from ΠX′ . Then,

is the natural map

Isom(X,X ′) −→ Isom(ΠX/GK ,ΠX′/GK′)/Inn(ΠX′)

bijective?

[Here we note that the analogous assertions of Questions 1, 2 for hyperbolic

curves over subfields of p-adic local fields do not hold—cf. [11, Rem. 5.6.1].] With

regard to Questions 1, 2, Mochizuki proved the following result, which asserts

that the absolute version of the Grothendieck conjecture and the semi-absolute
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version of the Grothendieck conjecture are equivalent [cf. [22, Cor. 2.8], [6, 7], [31,

Lem. 4.2]]:

Theorem 0.2. Let K, K ′ be p-adic local fields; X, X ′ smooth varieties [i.e.,

smooth, separated, of finite type, and geometrically integral schemes] over K, K ′,

respectively;

α : ΠX
∼−→ ΠX′

an isomorphism of profinite groups. Then α induces an isomorphism GK
∼−→ GK′

that fits into a commutative diagram

ΠX
∼−−−−→
α

ΠX′y y
GK

∼−−−−→ GK′ ,

where the vertical arrows denote the natural surjections [determined up to com-

position with an inner automorphism] induced by the structure morphisms of the

smooth varieties X, X ′.

[Note that there exists a certain generalization of this result—cf. [16, Cor. D]].

Moreover, Mochizuki also proved that, if an isomorphism α : ΠX
∼−→ ΠX′

preserves the decomposition subgroups associated to the closed points, then α

is induced by a unique isomorphism X ∼−→ X ′ of schemes [cf. [23, Cor. 2.9]].

One of the ways1 to reconstruct the decomposition subgroups associated to closed

points is Mochizuki’s Belyi cuspidalization technique for strictly Belyi-type curves

[cf. [23, §3]]. However, due to the difficulty of verifying the preservation of the

decomposition subgroups, we do not know whether or not the absolute version of

the Grothendieck conjecture has an affirmative answer in general.

On the other hand, one may pose analogous questions to Questions 1, 2 in

the pro-p setting. In this pro-p setting, it appears that no analogous result to

Mochizuki’s results [cf. Theorem 0.2, [23, Cor. 2.9]] has been obtained. In this con-

text, Higashiyama studied a certain pro-p analogue of the semi-absolute version of

the Grothendieck conjecture for configuration spaces [of dimension ≥ 2] associated

to hyperbolic curves over generalized sub-p-adic fields [i.e., subfields of finitely gen-

erated extensions of the completion of the maximal unramified extension of Qp]
and obtained a partial result [cf. Definition 4.1, [5, Thm. 0.1]].

1Recently, it appears that E. Lepage discovered a different way to reconstruct the decom-
position subgroups associated to the closed points of hyperbolic Mumford curves based on his
[highly nontrivial] result on resolution of nonsingularities.
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In the present paper, inspired by Higashiyama’s research, we consider a certain

pro-p analogue of Theorem 0.2 for the configuration spaces associated to hyperbolic

curves over p-adic local fields. Note that the proof of Theorem 0.2 depends heavily

on the l-independence of a certain numerical invariant associated to ΠX and GK ,

where l ranges over the prime numbers [cf. [22, Thm. 2.6(ii), (v)]]. Thus, we need

to apply a different argument to obtain a pro-p analogue of Theorem 0.2.

Let F be a field of characteristic 0; X an algebraic variety over F . Then we

have an exact sequence of profinite groups

1 −→ ∆X −→ ΠX −→ GF −→ 1

[cf. [4, Exp. IX, Thm. 6.1]]. We shall say that X satisfies p-exactness [cf. Defini-

tion 3.1] if the above exact sequence induces an exact sequence of pro-p groups

1 −→ ∆p
X −→ ΠpX −→ GpF −→ 1

[where we note that the natural sequence of pro-p groups

∆p
X −→ ΠpX −→ GpF −→ 1

is exact without imposing any assumption on X].

Then our main result is the following:

Theorem A. Let (n, n′) be a pair of positive integers; K, K ′ fields of charac-

teristic 0; X, X ′ smooth varieties over K, K ′, respectively. Then the following

hold:

(i) Let

α : ΠpX
∼−→ ΠpX′

be an isomorphism of profinite groups. Suppose that

� K is either a Henselian discrete valuation field with infinite residues of

characteristic p or a Hilbertian field [i.e., a field for which Hilbert’s irre-

ducibility theorem holds—cf. [3, Chap. 12]];

� K ′ is either a Henselian discrete valuation field with residues of charac-

teristic p or a Hilbertian field;

� K and K ′ contain a primitive pth root of unity.

Then α induces an isomorphism GpK
∼−→ GpK′ that fits into a commutative

diagram
ΠpX

∼−−−−→
α

ΠpX′y y
GpK

∼−−−−→ GpK′ ,
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where the vertical arrows denote the natural surjections [determined up to

composition with an inner automorphism] induced by the structure morphisms

of the smooth varieties X, X ′.

(ii) Suppose that X, X ′ are hyperbolic curves over K, K ′, respectively. Write

Xn (respectively, X ′
n′) for the nth (respectively, the n′th) configuration space

associated to X (respectively, X ′) [cf. Definition 4.1]. Let

α : ΠpXn

∼−→ ΠpX′
n′

be an isomorphism of profinite groups. Suppose, moreover, that

� K and K ′ are either Henselian discrete valuation fields of residue char-

acteristic p or Hilbertian fields;

� Xn and X ′
n′ satisfy p-exactness.

Then the following hold:

� Let Π be a topological group isomorphic to ΠpXn
. Then there exists a

functorial group-theoretic algorithm

Π ⇝ n

for constructing the dimension n from Π. In particular, it holds that

n = n′.

� α induces an isomorphism GpK
∼−→ GpK′ that fits into a commutative

diagram
ΠpXn

∼−−−−→
α

ΠpX′
ny y

GpK
∼−−−−→ GpK′ ,

where the vertical arrows denote the natural surjections [determined up

to composition with an inner automorphism] induced by the structure

morphisms of the configuration spaces Xn, X
′
n.

Recall that every finitely generated extension of the field of rational numbers

Q or Qp is a Hilbertian field or a Henselian discrete valuation field of residue

characteristic p [cf. [3, Thm. 13.4.2]]. In particular, by combining Theorem A(ii)

with Higashiyama’s result [cf. [5, Thm. 0.1]], we obtain the “absolute version” of

Higashiyama’s result in the case where the base fields are such fields.

Furthermore, it would be interesting to investigate to what extent the assump-

tions of Theorem A may be weakened. Thus, it is natural to pose the following

question, which may be regarded as a generalization of the above theorem [cf. [16,

Cor. D]]:
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Question 3. Let X, X ′ be smooth varieties over fields K, K ′ of characteristic 0,

respectively;

α : ΠpX
∼−→ ΠpX′

an isomorphism of profinite groups. Suppose that K and K ′ are either

� subfields of Henselian discrete valuation fields of residue characteristic p or

� Hilbertian fields.

Then does α induce an isomorphism GpK
∼−→ GpK′ via the natural surjections

ΠpX ↠ GpK and ΠpX′ ↠ GpK′?

However, at the time of writing of the present paper, the author does not

know whether the answer is affirmative or not. Moreover, we note that Theo-

rem A(ii) is not proved in a “mono-anabelian” fashion [cf. [22, Introduction], [24,

Introduction]], and, at the time of writing of the present paper, the author does not

know whether or not such a proof exists. Since Theorem 0.2 is proved in a “mono-

anabelian” fashion, it would be also interesting to investigate a mono-anabelian

reconstruction of the closed subgroup Ker(ΠpX → GpK) ⊆ ΠpX from [the underlying

topological group structure of] ΠpX .

Finally, we remark that there exists other research on the semi-absoluteness

of isomorphisms between the étale fundamental groups of algebraic varieties [cf.

[13, Thm.], [16, Cor. D]].

The present paper is organized as follows. In Section 1 we review some group-

theoretic properties of the maximal pro-p quotients of the absolute Galois groups

of p-adic local fields. In Section 2 we review some group-theoretic properties of the

maximal pro-p quotients of the étale fundamental groups of hyperbolic curves over

p-adic local fields. In Section 3, by applying the results reviewed in Sections 1, 2,

we give a proof of Theorem A(ii) for hyperbolic curves over p-adic local fields. In

Section 4, by combining the results obtained in Section 3 with some considera-

tions on the geometry of configuration spaces associated to hyperbolic curves, we

complete the proof of Theorem A.

Notation and conventions.

Numbers. The notation N will be used to denote the set of nonnegative integers.

The notation Z will be used to denote the additive group of integers. The notation

Q will be used to denote the field of rational numbers. If p is a prime number, then

the notation Qp will be used to denote the field of p-adic numbers; the notation

Zp will be used to denote the additive group or ring of p-adic integers. We shall

refer to a finite extension field of Qp as a p-adic local field.
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Fields. Let F be a field of characteristic 0. Then the notation F will be used to

denote an algebraic closure [determined up to isomorphisms] of F . The notation

GF will be used to denote the absolute Galois group Gal(F/F ) of F . If p is a prime

number, then we shall fix a primitive pth root of unity ζp ∈ F . Let E (⊆ F ) be a

finite extension field of F . Then we shall denote by [E : F ] the extension degree

of the finite extension F ⊆ E.

Profinite groups. Let G be a profinite group and H ⊆ G a closed subgroup of

G. Then we shall denote by ZG(H) the centralizer of H ⊆ G, i.e.,

ZG(H)
def
=

{
g ∈ G | ghg−1 = h for any h ∈ H

}
.

Let p be a prime number. Then we shall write Gp for the maximal pro-p

quotient of G; Gab for the abelianization of G, i.e., the quotient of G by the closure

of the commutator subgroup of G; cdp(G) for the cohomological p-dimension of

G [cf. [28, §7.1]]. If G is abelian, then we shall write Gtor ⊆ G for the maximal

torsion subgroup. If G is a topologically finitely generated pro-p group, then the

notation rankG will be used to denote the rank of G [cf. [27, Def. 3.5.18]].

Schemes. Let K be a field; K ⊆ L a field extension; X an algebraic variety [i.e.,

a separated, of finite type, and geometrically integral scheme] over K. Then we

shall write XL
def
= X ×K L; X(L) for the set of L-rational points of X.

Fundamental groups. For a connected Noetherian scheme S, we shall write ΠS
for the étale fundamental group of S, relative to a suitable choice of basepoint.

Let K be a field of characteristic 0; X an algebraic variety over K. Then we shall

write ∆X
def
= ΠXK

.

§1. The maximal pro-p quotients of the absolute Galois groups of

p-adic local fields

Let p be a prime number; K a p-adic local field. In the present section we review

some group-theoretic properties of GpK [cf. Notation and conventions], which will

be of use in later sections.

Definition 1.1 ([27, Def. 3.9.9]). Let G be a topologically finitely generated pro-p

group. Then we shall say that G is a Demushkin group if

dimZ/pZH
2(G,Z/pZ) = 1,

and the cup product

H1(G,Z/pZ)×H1(G,Z/pZ) → H2(G,Z/pZ)

is nondegenerate.
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Remark 1.1.1. Let G be a Demushkin group. Then it follows immediately from

[28, Thm. 7.7.4] that G is not a free pro-p group.

Definition 1.2 ([22, Def. 1.1(ii)]). Let G be a profinite group.

(i) We shall say that G is slim if ZG(H) = {1} [cf. Notation and conventions] for

any open subgroup H of G.

(ii) We shall say that G is elastic if every nontrivial topologically finitely generated

normal closed subgroup of an open subgroup of G is open in G.

Proposition 1.3. Write pa for the cardinality of the group of p-power roots of

unity ∈ K; d
def
= [K : Qp]. Then (GpK)ab is isomorphic to Z/paZ ⊕ Z⊕d+1

p [cf.

Notation and conventions]. In particular, (GpK)ab has a torsion element in the

case where ζp ∈ K.

Proof. Proposition 1.3 follows immediately from local class field theory, together

with the well-known structure of the multiplicative group of a p-adic local field [cf.

[26, Chap. II, Prop. 5.7(i); Chap. V, Thms. 1.3, 1.4]].

Theorem 1.4 ([27, Thm. 7.5.11]). Write d
def
= [K : Qp]. Then the following hold:

(i) Suppose that ζp /∈ K. Then GpK is a free pro-p group of rank d+ 1.

(ii) Suppose that ζp ∈ K. Then GpK is a Demushkin group of rank d+ 2.

Theorem 1.5 ([22, Prop. 1.6, Thm. 1.7], [27, Thm. 7.1.8]). The following hold:

(i) GpK is slim.

(ii) GpK is elastic.

(iii) Suppose that ζp ∈ K. Then cdp(G
p
K) = 2, and every closed subgroup H ⊆ GpK

of infinite index is a free pro-p group.

Proof. First, since the maximal pro-p quotient GpK is an almost maximal pro-

p quotient of GK , assertions (i), (ii) follow immediately from [22, Thm. 1.7(ii)].

Assertion (iii) follows immediately from [22, Prop. 1.6(ii), (iii)], [27, Thm. 7.1.8(i)].

This completes the proof of Theorem 1.5.

Lemma 1.6. The maximal pro-p quotient GpK is a nonabelian infinite torsion-free

group.

Proof. First, we suppose that ζp /∈ K. Then GpK is a free pro-p group of rank

≥ 2 [cf. Theorem 1.4(i)]. Thus, we have nothing to prove. Next we suppose that

ζp ∈ K. Then it follows from Theorem 1.5(iii) that cdp(G
p
K) = 2 < ∞, hence,

in particular, that GpK is torsion-free. Thus, we conclude from Proposition 1.3

that GpK is a nonabelian infinite torsion-free group. This completes the proof of

Lemma 1.6.
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§2. The maximal pro-p quotients of the étale fundamental groups of

hyperbolic curves over p-adic local fields

Let p be a prime number; K a p-adic local field; X a proper hyperbolic curve over

K. Write OK for the ring of integers of K; k for the residue field of OK . Suppose

that

X has stable reduction over OK .

Write X for the stable model of X over OK .

In the present section, following [9], we review some group-theoretic properties

of ∆p

X
[cf. Notation and conventions] and its quotients.

Definition 2.1 ([9, Def. 2.3]).

(i) We shall write Irr(X) for the set of irreducible components of X ×OK
k;

(ii) We shall write ∆p,ét

X
for the maximal pro-p quotient of ΠX×OK

k;

(iii) Let v be an irreducible component of X ×OK
k. Then we shall write Dv (re-

spectively,Dp
v) for the decomposition subgroup [determined up to composition

with an inner automorphism] of ΠX×OK
k (respectively, ∆

p,ét

X
) associated to v;

(iv) We shall write ∆cmb
X

(respectively, ∆p,cmb

X
) for the quotient of ΠX×OK

k (re-

spectively, ∆p,ét

X
) by the normal closed subgroup topologically normally gen-

erated by the closed subgroups {Dw}w∈Irr(X) (respectively, {Dp
w}w∈Irr(X)).

Remark 2.1.1. The natural open immersion from XK to the stable model of XK

over the ring of integers of K induces natural surjections

∆X ↠ ΠX×OK
k, ∆p

X
↠ ∆p,ét

X
.

On the other hand, it follows immediately from the various definitions involved

that there exist natural surjections

ΠX×OK
k ↠ ∆cmb

X
, ∆p,ét

X
↠ ∆p,cmb

X
.

Next we review some well-known group-theoretic properties of ∆p

X
and ∆p,cmb

X
.

Proposition 2.2 ([25, Rem. 1.2.2, Prop. 1.4, Thm. 1.5], [9, Prop. 2.5], [10,

Lem. 2.1]).

(i) ∆p

X
is slim.

(ii) ∆p

X
is elastic.

(iii) ∆p,cmb

X
is a free pro-p group.

(iv) cdp(∆
p

X
) = 2, and every closed subgroup M ⊆ ∆p

X
of infinite index is a free

pro-p group.
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Remark 2.2.1. In [10, Lem. 2.1], Hoshi imposed the condition [on M ] that the

closed subgroup M ⊆ ∆p

X
is normal in order to assert that M is not topologically

finitely generated. However, we do not need this assertion, and the proof of [10,

Lem. 2.1] implies that every closed subgroup M ⊆ ∆p

X
of infinite index is a free

pro-p group.

Remark 2.2.2. In the remainder of the present paper, we do not apply Propo-

sition 2.2(ii), (iv). We reviewed these properties to observe the group-theoretic

similarities between GpK and ∆p

X
[cf. Theorem 1.5].

Next we recall the following well-known [but nontrivial] fact [cf. [9, Lem. 3.2],

[21, Lem. 1.1.5]].

Lemma 2.3. Let M be a free Zp-module equipped with the trivial GK-action;

X ↪→ X an open immersion over K [so X is a hyperbolic curve over K]. Recall

that GK acts naturally on (∆p
X)ab. Then every GK-equivariant homomorphism

(∆p
X)ab →M

factors through the composite of natural surjections

(∆p
X)ab ↠ (∆p

X
)ab ↠ (∆p,cmb

X
)ab

[cf. Remark 2.1.1].

Proof. First, we note that the image of the p-adic cyclotomic character GK → Z×
p

is open. On the other hand, if we replace K by a finite extension field of K, then

the kernel of the natural surjection (∆p
X)ab ↠ (∆p

X
)ab is isomorphic to a direct

sum of copies of Zp(1) as GK-modules, where “(1)” denotes the Tate twist. Thus,

we may assume without loss of generality that

X = X.

Next, since M is a free Zp-module equipped with the trivial GK-action,

it suffices to prove that every GK-equivariant homomorphism Ker((∆p

X
)ab ↠

(∆p,cmb

X
)ab) → Zp is trivial. Recall our assumption thatX has stable reduction over

OK . It follows from the theory of Raynaud extension [cf. [2, Chap. III, Cor. 7.3],

[15, Cor. 6.4.9]] that, if we replace K by a finite extension field of K, then there

exist an abelian variety A over K with good reduction and an exact sequence of

GK-modules

0 −→
⊕

Zp(1) −→ Ker((∆p

X
)ab ↠ (∆p,cmb

X
)ab) −→ Tp(A) −→ 0,

where Tp(A) denotes the p-adic Tate module of A.

Next we verify the following assertion:
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Claim 2.3.A. Every GK-equivariant homomorphism Tp(A) → Zp is trivial.

Indeed, in light of the duality theory of abelian varieties, it suffices to prove

that every GK-equivariant homomorphism

Zp(1) → Tp(A
∨)

is trivial, where A∨ denotes the dual abelian variety of A; Tp(A
∨) denotes the

p-adic Tate module of A∨. However, since A∨ has good reduction over K [cf. [30,

§1, Cor. 2]], this follows formally from [14, Thm.]. This completes the proof of

Claim 2.3.A.

Finally, since the image of the p-adic cyclotomic character GK → Z×
p is

open, we conclude from Claim 2.3.A that every GK-equivariant homomorphism

Ker((∆p

X
)ab ↠ (∆p,cmb

X
)ab) → Zp is trivial. This completes the proof of Lemma

2.3.

Definition 2.4. Let Y be a hyperbolic curve over K.

(i) Suppose that Y is proper over K. Recall from [1, Cor. 2.7], that there exists

a finite extension K ⊆ L (⊆ K) such that YL has stable reduction over the

ring of integers of L. Fix such a finite extension K ⊆ L (⊆ K). Then we shall

write

∆cmb
Y

def
= ∆cmb

YL
, ∆p,cmb

Y
def
= ∆p,cmb

YL

[cf. Definition 2.1(iv)]. Here we note that it follows immediately from the

various definitions involved that

� ∆cmb
YL

(respectively, ∆p,cmb
YL

) is independent of the choice of L, and

� if Y has stable reduction over OK , then the two definitions of ∆cmb
Y

(respectively, ∆p,cmb
Y ) coincide.

(ii) Write Y for the smooth compactification of Y over K. Suppose that Y has

genus ≥ 2 [so Y is a proper hyperbolic curve over K]. Then we shall write

∆p,w
Y

for the kernel of the natural composite

∆p
Y ↠ ∆p

Y
↠ ∆p,cmb

Y
,

where the first arrow denotes the surjection induced by the natural open im-

mersion Y ↪→ Y ; the second arrow denotes the natural surjection [cf. Defini-

tions 2.1(ii), (iv), 2.4(i), Remark 2.1.1].
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§3. Semi-absoluteness of isomorphisms between the maximal pro-p

quotients of the étale fundamental groups of hyperbolic curves

over p-adic local fields

Let p be a prime number. In the present section we apply the group-theoretic prop-

erties of various pro-p groups reviewed in the previous sections to prove the semi-

absoluteness of isomorphisms between the maximal pro-p quotients of the étale

fundamental groups of hyperbolic curves [cf. Theorem 3.6 below, [22, Def. 2.4(ii)]].

Definition 3.1. Let K be a field of characteristic 0; X an algebraic variety over

K. Then we have an exact sequence of profinite groups

1 −→ ∆X −→ ΠX −→ GK −→ 1

[cf. [4, Exp. IX, Thm. 6.1]]. We shall say that X satisfies p-exactness if the above

exact sequence induces an exact sequence of pro-p groups

1 −→ ∆p
X −→ ΠpX −→ GpK −→ 1.

Remark 3.1.1. In the notation of Definition 3.1, it follows immediately from the

various definitions involved that the natural sequence of pro-p groups

∆p
X −→ ΠpX −→ GpK −→ 1

is exact without imposing any assumption on X. In particular, X satisfies p-

exactness if and only if the natural homomorphism ∆p
X → ΠpX is injective.

Remark 3.1.2. Let K be a field of characteristic 0; K ⊆ L a field extension;

X an algebraic variety over K that satisfies p-exactness. Then XL also satisfies

p-exactness. Indeed, this follows immediately from the facts that

� the natural homomorphism ∆XL
→ ∆X is an isomorphism [cf. [4, Exp. X,

Cor. 1.8]], which thus induces an isomorphism ∆p
XL

∼−→ ∆p
X ;

� the composite ∆p
XL

∼−→ ∆p
X → ΠpX factors as the composite of the natural

homomorphisms ∆p
XL

→ ΠpXL
and ΠpXL

→ ΠpX .

Lemma 3.2. Let K be a field of characteristic 0; X a hyperbolic curve over K.

Suppose that X satisfies p-exactness [cf. Definition 3.1]. Then it holds that ζp ∈ K.

Proof. First, we note that [K(ζp) : K] is coprime to p. Then, since X satisfies

p-exactness, by replacing ΠpX by a suitable open subgroup of ΠpX , we may assume

without loss of generality that X has genus ≥ 2. [Note that the existence of such an

open subgroup follows immediately from Hurwitz’s formula.] Next we note that

since X satisfies p-exactness, the natural outer representation GK → Out(∆p
X)
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[induced by the natural exact sequence of profinite groups 1 → ∆X → ΠX →
GK → 1] factors through the maximal pro-p quotient GK ↠ GpK . Write X for the

smooth compactification ofX overK. Then it follows immediately that the natural

outer representation GK → Out(∆p

X
) [induced by the natural exact sequence of

profinite groups 1 → ∆X → ΠX → GK → 1] also factors through the maximal

pro-p quotient GK ↠ GpK . In particular, the natural action of GK on

Hom(H2(∆p

X
,Zp),Zp)

induced by the natural outer action GK → Out(∆p

X
) factors through the maximal

pro-p quotient GK ↠ GpK . Observe that since X is a proper hyperbolic curve, it

holds that Hom(H2(∆p

X
,Zp),Zp) is isomorphic to Zp(1) as GK-modules, where

“(1)” denotes the Tate twist. Thus, we conclude that ζp ∈ K. This completes the

proof of Lemma 3.2.

Proposition 3.3. Let K be a p-adic local field; X a hyperbolic curve over K

that has genus ≥ 2; G a free pro-p group of finite rank, or a Demushkin group

isomorphic to the maximal pro-p quotient of the absolute Galois group of some

p-adic local field;

ϕ : ΠpX → G

an open homomorphism. Write i : ∆p
X → ΠpX for the natural homomorphism in-

duced by the natural injection ∆X ↪→ ΠX . Then

ϕ ◦ i(∆p,w
X ) = {1}

[cf. Definition 2.4(ii)].

Proof. Note that, for each finite extension K ⊆ L (⊆ K), the natural homo-

morphism i : ∆p
X → ΠpX factors as the composite of the natural homomorphism

∆p
X → ΠpXL

with the natural open homomorphism ΠpXL
→ ΠpX [induced by the

natural open injection ΠXL
↪→ ΠX ]. Thus, by applying the well-known stable re-

duction theorem [cf. [1, Cor. 2.7]], we may assume without loss of generality that

X has stable reduction over the ring of integers of K.

Next we observe that every open subgroup of G is also a free pro-p group of

finite rank or a Demushkin group isomorphic to the maximal pro-p quotient of

the absolute Galois group of some p-adic local field. Thus, we may also assume

without loss of generality that ϕ is surjective.

Then, since G is a pro-solvable group, to verify Proposition 3.3, it suffices to

verify the following assertion:

Claim 3.3.A. Let N ⊆ G be an open subgroup such that ϕ ◦ i(∆p,w
X ) ⊆ N . Then

the image of ϕ ◦ i(∆p,w
X ) via the natural surjection N ↠ Nab is trivial.
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Indeed, by replacing ΠpX by ϕ−1(N), we may assume without loss of generality

that N = G. Then we obtain a GK-equivariant homomorphism

(∆p
X)ab → Gab,

where Gab is endowed with the trivial action of GK . Thus, it follows immediately

from Lemma 2.3 that the image of ϕ ◦ i(∆p,w
X ) via the composite of the natural

surjections

f : G↠ Gab ↠ Gab/(Gab)tor

is trivial. In particular, since the abelianization of any free pro-p group is torsion-

free, we complete the proof of Claim 3.3.A in the case where G is a free pro-p

group of finite rank. Thus, we may assume without loss of generality that G is a

Demushkin group that equals GpK′ for some p-adic local field K ′. Write

� pa for the cardinality of (Gab)tor, i.e., the cardinality of the set of p-power

roots of unity ∈ K ′, where we note that a ≥ 1 [cf. Remark 1.1.1, Proposition

1.3, Theorem 1.4(i)];

� K ′ ⊆ L′ (⊆ K ′) for the unramified extension of degree pa.

In the remainder of the proof, we regard GpL′ as an open subgroup of G via the

natural open injection GpL′ ↪→ G. Here we note that since K ′ ⊆ L′ (⊆ K ′) is an

unramified extension, the natural quotient GpK′ ↠ GpK′/G
p
L′ factors through the

quotient of GpK′ by the inertia subgroup of GpK′ , which is torsion-free and abelian.

Therefore, the normal open subgroup GpL′ ⊆ G coincides with the pull-back of a

normal open subgroup of Gab/(Gab)tor via f . Then, since f ◦ϕ ◦ i(∆p,w
X ) = {1}, it

holds that

∆p,w
X ⊆ (ϕ ◦ i)−1(GpL′) ⊆ ∆p

X .

Thus, by applying Lemma 2.3 to the open homomorphism ϕ−1(GpL′) ↠ GpL′ , we

observe that the image of ϕ ◦ i(∆p,w
X ) (⊆ GpL′) via the composite of the natural

surjections

GpL′ ↠ (GpL′)
ab ↠ (GpL′)

ab/((GpL′)
ab)tor

is trivial. On the other hand, it follows immediately from the functoriality of the

reciprocity map [cf. [26, Chap. IV, Prop. 5.8]] that the image of ((GpL′)ab)tor via

the natural homomorphism

(GpL′)
ab → (GpK′)

ab = Gab

[induced by the inclusion GpL′ ⊆ GpK′ = G] is trivial. Thus, we conclude that the

image of ϕ ◦ i(∆p,w
X ) via the natural surjection G↠ Gab is trivial. This completes

the proof of Claim 3.3.A, hence of Proposition 3.3.
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Corollary 3.4. Let K be a p-adic local field; X a hyperbolic curve over K; I

a cuspidal inertia subgroup of ∆p
X ; G a free pro-p group of finite rank, or a De-

mushkin group isomorphic to the maximal pro-p quotient of the absolute Galois

group of some p-adic local field;

ϕ : ΠpX → G

an open homomorphism. Write i : ∆p
X → ΠpX for the natural homomorphism in-

duced by the natural injection ∆X ↪→ ΠX . Then

ϕ ◦ i(I) = {1}.

Proof. Let Y → XL be a finite étale Galois covering over some finite extension

K ⊆ L (⊆ K) such that the hyperbolic curve Y has genus ≥ 2. [Note that the

existence of such a covering follows immediately from Hurwitz’s formula.] Write

g : ΠpY −→ ΠpXL
−→ ΠpX

ϕ−→ G

for the composite of the open homomorphisms, where the first and second arrows

denote the open homomorphisms induced by the finite étale covering Y → XL and

the projection morphism XL → X;

iY : ∆p
Y → ΠpY

for the natural homomorphism induced by the natural injection ∆Y ↪→ ΠY . Then,

by applying Proposition 3.3 to the open homomorphism g, we conclude that, for

each cuspidal inertia subgroup IY of ∆p
Y , it holds that g ◦ iY (IY ) = {1}. On the

other hand, it follows immediately from the various definitions involved that there

exists a cuspidal inertia subgroup IY of ∆p
Y whose image in ∆p

X via the natural

homomorphism ∆p
Y → ∆p

X is an open subgroup of I. Thus, we conclude that

ϕ ◦ i(I) ⊆ G is a finite subgroup. However, since G is torsion-free [cf. Lemma 1.6],

it holds that ϕ ◦ i(I) = {1}. This completes the proof of Corollary 3.4.

Lemma 3.5. Let

1 −→ ∆ −→ Π −→ G −→ 1

be an exact sequence of profinite groups. Write

ρ : G→ Out(∆)

for the outer representation determined by the above exact sequence. Suppose that

Im(ρ) = {1}, and ∆ is center-free. Then there exists a unique section s : G ↪→ Π of
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the surjection Π↠ G such that s(G) (⊆ Π) commutes with ∆ (⊆ Π). In particular,

the inclusion ∆ ⊆ Π and the section s determine a direct product decomposition

∆×G ∼−→ Π,

which thus induces a splitting Π↠ ∆ of the inclusion ∆ ⊆ Π.

Proof. It suffices to prove that, for each g ∈ G, there exists a unique lifting g̃ ∈ Π of

g that commutes with ∆ (⊆ Π). However, the existence (respectively, the unique-

ness) follows immediately from our assumption that Im(ρ) = {1} (respectively, ∆

is center-free). This completes the proof of Lemma 3.5.

Next we prove our first main result [cf. Theorem A(ii) for hyperbolic curves

over p-adic local fields].

Theorem 3.6. Let K, K ′ be p-adic local fields; X, X ′ hyperbolic curves over K,

K ′, respectively;

α : ΠpX
∼−→ ΠpX′

an isomorphism of profinite groups. Then the following hold:

(i) Write Γ for the dual semi-graph associated to the special fiber of the stable

model of XK [over the ring of integers of K]. Suppose that the first Betti

number of Γ ≤ 1. Then α induces an isomorphism GpK
∼−→ GpK′ that fits into

a commutative diagram

ΠpX
∼−−−−→
α

ΠpX′y y
GpK

∼−−−−→ GpK′ ,

where the vertical arrows denote the natural surjections [determined up to

composition with an inner automorphism] induced by the structure morphisms

of the hyperbolic curves X, X ′.

(ii) Suppose that

X and X ′ satisfy p-exactness [cf. Definition 3.1].

Then α induces an isomorphism GpK
∼−→ GpK′ that fits into a commutative

diagram

ΠpX
∼−−−−→
α

ΠpX′y y
GpK

∼−−−−→ GpK′ ,
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where the vertical arrows denote the natural surjections [determined up to

composition with an inner automorphism] induced by the structure morphisms

of the hyperbolic curves X, X ′.

Proof. First, we verify assertion (i). Write k for the residue field of the ring of

integers of K; Xk for the special fiber of the stable model of XK . Let Yk → Xk be

an admissible covering over k [cf. [17, §2]] such that

� Yk has genus ≥ 2, and

� the first Betti number of ΓYk
≤ 1, where ΓYk

denotes the dual semi-graph

associated to Yk.

[Observe that, in light of our assumption that the first Betti number of Γ ≤ 1, such

an admissible covering may be constructed by gluing together suitable admissible

coverings of the irreducible [pointed] stable curves associated to the irreducible

components of Xk.] Write YK → XK for the connected finite étale covering over

K obtained by deforming the admissible covering Yk → Xk over k. Let K ⊆ L

(⊆ K) be a finite field extension such that

� the connected finite étale covering YK → XK over K descends to a connected

finite étale covering Y → XL over L, and

� the smooth compactification Y of Y has stable reduction over the ring of

integers of L [cf. [1, Cor. 2.7]].

Here we note that ∆p,cmb

Y
is isomorphic to the pro-p completion of the topological

fundamental group of ΓYk
. Then, since this topological fundamental group is free,

it follows immediately from the various definitions involved that the first Betti

number of ΓYk
coincides with rank∆p,cmb

Y
. Thus, in summary,

� Y is a hyperbolic curve over L of genus ≥ 2 whose smooth compactification

Y has stable reduction over the ring of integers of L, and

� rank∆p,cmb

Y
≤ 1. [In particular, ∆p,cmb

Y
is abelian.]

Then we obtain a commutative diagram of profinite groups

∆p
Y −−−−→ ΠpY −−−−→ GpL −−−−→ 1y y y

∆p
X −−−−→ ΠpX −−−−→ GpK −−−−→ 1

α

y≀

∆p
X′ −−−−→ ΠpX′ −−−−→ GpK′ −−−−→ 1,
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where the horizontal sequences are the natural exact sequences as in Remark 3.1.1;

the vertical arrows ∆p
Y → ∆p

X , ΠpY → ΠpX , and GpL → GpK denote the natural open

homomorphisms. Write

g : ΠpY → ΠpX
∼−→
α

ΠpX′ → GpK′

for the composite of the open homomorphisms that appear in the above commu-

tative diagram;

g|∆p
Y
: ∆p

Y → GpK′

for the composite of the natural homomorphism ∆p
Y → ΠpY with the homomor-

phism g. Then it follows immediately from the various definitions involved that

� Im(g) ⊆ GpK′ is an open subgroup;

� Im(g|∆p
Y
) ⊆ Im(g) is a topologically finitely generated normal closed subgroup.

Then, since GpK′ is elastic [cf. Theorem 1.5(ii)], it holds that Im(g|∆p
Y
) is trivial or

an open subgroup ofGpK′ . Recall that every open subgroup ofGpK′ is nonabelian [cf.

Lemma 1.6]. Thus, since ∆p,cmb

Y
is abelian, it follows immediately from Proposition

3.3 that Im(g|∆p
Y
) is trivial. Therefore, the image of the composite

∆p
X → ΠpX

∼−→
α

ΠpX′ → GpK′

of the homomorphisms that appear in the above commutative diagram is a finite

group. Then, since GpK′ is torsion-free [cf. Lemma 1.6], we observe that this image

is also trivial. In particular, the above commutative diagram induces a surjection

GpK ↠ GpK′ , whose kernel is topologically finitely generated. However, since GpK is

elastic, and GpK′ is infinite, it holds that this surjection is an isomorphism. This

completes the proof of assertion (i).

Next we verify assertion (ii). Note that GpK and GpK′ are torsion-free [cf.

Lemma 1.6]. Then, since X and X ′ satisfy p-exactness, by replacing ΠpX and ΠpX′

by suitable normal open subgroups, we may assume without loss of generality that

X and X ′ have genus ≥ 2. Moreover, by applying the proof of assertion (i), we

may assume without loss of generality that

rank∆p,cmb

X
≥ 2, rank∆p,cmb

X′ ≥ 2

[cf. Proposition 2.2(iii), Definition 2.4(i), (ii)]. In particular, ∆p,cmb

X
and ∆p,cmb

X′

are center-free.

Next, it follows from the well-known stable reduction theorem [cf. [1, Cor. 2.7]]

that there exists a finite Galois extension K ⊆ L (⊆ K) (respectively, K ′ ⊆ L′

(⊆ K ′)) such that
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� the smooth compactification of XL (respectively, X ′
L′) has stable reduction

over the ring of integers of L (respectively, L′);

� the natural outer action of GL on ∆cmb
X

(respectively, GL′ on ∆cmb
X′ ) is trivial;

� XL(L) ̸= ∅ (respectively, X ′
L′(L′) ̸= ∅).

Fix such finite Galois extensions K ⊆ L (⊆ K) and K ′ ⊆ L′ (⊆ K ′). Thus,

by applying Lemma 3.5, we obtain a natural surjection ΠX′
L′
↠ ∆cmb

X′ whose

restriction to ∆X′ coincides with the natural quotient ∆X′ ↠ ∆cmb
X′ [cf. Remark

2.1.1]. Write

� ΠwX′
L′

def
= Ker(ΠX′

L′
↠ ∆cmb

X′ ), where we note that the normal closed subgroup

ΠwX′
L′

⊆ ΠX′
L′

(⊆ ΠX′) is a normal closed subgroup of ΠX′ topologically

normally generated by the normal closed subgroup Ker(∆X′ ↠ ∆cmb
X′ ) ⊆ ΠX′

and the image of a section of the surjection ΠX′
L′
↠ GL′ determined by an

L′-valued point of X ′
L′ ;

� Πp,wX′
def
= Im(ΠwX′

L′
⊆ ΠX′

L′
⊆ ΠX′ ↠ ΠpX′). [In particular, Πp,wX′ ⊆ ΠpX′ is a

normal closed subgroup.]

Next we verify the following assertion:

Claim 3.6.A. The homomorphism ∆p,cmb

X′ → ΠpX′/Π
p,w
X′ induced by the natural

homomorphism ∆p
X′ → ΠpX′ is injective. In particular, there exists a commutative

diagram of profinite groups

1 −−−−→ ∆p
X′ −−−−→ ΠpX′ −−−−→ GpK′ −−−−→ 1y ψ

y y
1 −−−−→ ∆p,cmb

X′ −−−−→ ΠpX′/Π
p,w
X′ −−−−→ Gal(L′/K ′)p −−−−→ 1,

where the vertical arrows denote the natural surjections.

Note that there exists a natural exact sequence of profinite groups

1 −→ ∆cmb
X′ −→ ΠX′/ΠwX′

L′
−→ Gal(L′/K ′) −→ 1.

Write

ρ : Gal(L′/K ′) → Out(∆p,cmb

X′ )

for the composite of the outer representation Gal(L′/K ′) → Out(∆cmb
X′ ) deter-

mined by the above exact sequence with the homomorphism Out(∆cmb
X′ ) →

Out(∆p,cmb

X′ ) induced by the natural surjection ∆cmb
X′ ↠ ∆p,cmb

X′ . Recall that ∆p,cmb

X′

is center-free. Thus, it suffices to prove that the outer representation ρ factors

through the maximal pro-p quotient Gal(L′/K ′) ↠ Gal(L′/K ′)p. Observe that

since X ′ satisfies p-exactness, the composite GK′ ↠ Gal(L′/K ′)
ρ−→ Out(∆p,cmb

X′ )
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of the natural surjections factors through the maximal pro-p quotient GK′ ↠
GpK′ . Thus, we obtain the desired conclusion. This completes the proof of Claim

3.6.A.

Next we verify the following assertion:

Claim 3.6.B. α(∆p,w
X ) = ∆p,w

X′ [cf. Definition 2.4(ii)].

Indeed, by applying Proposition 3.3 to the composite ΠpX ↠ GpK′ of α with

the natural surjection ΠpX′ ↠ GpK′ , we observe that

α(∆p,w
X ) ⊆ ∆p

X′ .

Then it holds that

� (ψ ◦ α)−1(∆p,cmb

X′ ) ⊆ ΠpX is a normal open subgroup [cf. Claim 3.6.A];

� ψ ◦ α(∆p,w
X ) ⊆ ∆p,cmb

X′ [cf. the fact that α(∆p,w
X ) ⊆ ∆p

X′ , together with Claim

3.6.A].

Therefore, by applying Proposition 3.3 to the natural surjection

(ψ ◦ α)−1(∆p,cmb

X′ )↠ ∆p,cmb

X′

induced by ψ ◦ α, we observe that

ψ ◦ α(∆p,w
X ) = {1}.

Then, since α(∆p,w
X ) ⊆ ∆p

X′ , it follows from Claim 3.6.A that

α(∆p,w
X ) ⊆ ∆p,w

X′ .

On the other hand, by applying a similar argument [to the argument applied above]

to α−1, we also have α−1(∆p,w
X′ ) ⊆ ∆p,w

X . Thus, we conclude that α(∆p,w
X ) = ∆p,w

X′ .

This completes the proof of Claim 3.6.B.

Next, by applying Claim 3.6.B, we obtain a diagram of profinite groups

1 −−−−→ ∆p,cmb

X
−−−−→ ΠpX/∆

p,w
X −−−−→ GpK −−−−→ 1

β

y≀

1 −−−−→ ∆p,cmb

X′ −−−−→ ΠpX′/∆
p,w
X′

q′−−−−→ GpK′ −−−−→ 1,

where β denotes the isomorphism induced by α; q′ denotes the surjection induced

by the natural surjection ΠpX′ ↠ GpK′ . Suppose that

q′ ◦ β(∆p,cmb

X
) ̸= {1}.
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Then, since GpK′ is elastic, it holds that q′ ◦ β(∆p,cmb

X
) ⊆ GpK′ is a normal open

subgroup. On the other hand, since ∆p,cmb

X
is center-free, and the natural outer

action of GpL on ∆p,cmb

X
is trivial, it follows from Lemma 3.5 that we obtain a

commutative diagram of profinite groups

1 −−−−→ ∆p
X −−−−→ ΠpXL

−−−−→ GpL −−−−→ 1y y ∥∥∥
1 −−−−→ ∆p,cmb

X
−−−−→ ∆p,cmb

X
×GpL −−−−→ GpL −−−−→ 1∥∥∥ yh y

1 −−−−→ ∆p,cmb

X
−−−−→ ΠpX/∆

p,w
X −−−−→ GpK −−−−→ 1,

where ∆p,cmb

X
× GpL → GpL denotes the second projection; GpL → GpK denotes the

natural open homomorphism [induced by the natural open injection GL ⊆ GK ];

h denotes the open homomorphism determined by the natural open homomor-

phism ΠpXL
→ ΠpX [induced by the natural open injection ΠXL

⊆ ΠX ]. Write

s : GpL ↪→ ∆p,cmb

X
×GpL

for the section of the second projection ∆p,cmb

X
×GpL ↠ GpL that maps x ∈ GpL to

(1, x) ∈ ∆p,cmb

X
×GpL. Then, since

� Im(h ◦ s) ⊆ ZΠp
X/∆

p,w
X

(∆p,cmb

X
),

� ∆p,cmb

X
is center-free, and

� the homomorphism GpL → GpK is open,

it holds that the centralizer ZΠp
X/∆

p,w
X

(∆p,cmb

X
) is isomorphic to an open subgroup of

GpK . Recall from Theorem 1.4(ii), together with Lemma 3.2, that GpK and GpK′ are

Demushkin groups. In particular, the centralizer ZΠp
X/∆

p,w
X

(∆p,cmb

X
) is a Demushkin

group. On the other hand, it follows from the slimness of GpK′ , together with the

fact that q′ ◦ β(∆p,cmb

X
) is an open subgroup of GpK′ , that there exists an inclusion

β(ZΠp
X/∆

p,w
X

(∆p,cmb

X
)) = ZΠp

X′/∆
p,w

X′
(β(∆p,cmb

X
)) ⊆ ∆p,cmb

X′ .

Then, since ∆p,cmb

X′ is a free pro-p group [cf. Proposition 2.2(iii)], it holds that

the centralizer ZΠp
X/∆

p,w
X

(∆p,cmb

X
) is also a free pro-p group [cf. [28, Cor. 7.7.5]].

However, this contradicts Remark 1.1.1. Thus, we conclude that

q′ ◦ β(∆p,cmb

X
) = {1},

hence that

β(∆p,cmb

X
) ⊆ ∆p,cmb

X′ .
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Moreover, by applying a similar argument [to the argument applied above] to β−1,

we also have

β−1(∆p,cmb

X′ ) ⊆ ∆p,cmb

X
.

In particular, it holds that β(∆p,cmb

X
) = ∆p,cmb

X′ , which thus induces an isomor-

phism GpK
∼−→ GpK′ . This completes the proof of assertion (ii), hence of Theo-

rem 3.6.

§4. Semi-absoluteness of isomorphisms between the maximal pro-p

quotients of the étale fundamental groups of configuration spaces

associated to hyperbolic curves

In the present section we apply the results obtained in the previous sections [es-

pecially the semi-absoluteness of isomorphisms between the maximal pro-p quo-

tients of the étale fundamental groups of hyperbolic curves—cf. Theorem 3.6, [22,

Def. 2.4(ii)]] and some facts that appear in combinatorial anabelian geometry [es-

pecially the “mono-anabelian” reconstruction of the dimensions of configuration

spaces associated to hyperbolic curves obtained by Hoshi–Minamide–Mochizuki—

cf. [12, Thm. 1.6]] to prove the analogous assertion [i.e., the semi-absoluteness] for

higher-dimensional configuration spaces associated to hyperbolic curves.

Let p be a prime number. First, we recall the definition of configuration spaces

associated to hyperbolic curves.

Definition 4.1. Let n be a positive integer; K a field; X a hyperbolic curve over

K. Write

Xn
def
= X×n

∖( ⋃
1≤i<j≤n

∆i,j

)
,

where X×n denotes the fiber product of n copies of X over K; ∆i,j denotes the

diagonal divisor of X×n associated to the ith and jth components. We shall refer

to Xn as the nth configuration space associated to X.

Remark 4.1.1. In the notation of Definition 4.1, suppose that K is of charac-

teristic 0. Then it follows immediately from [25, Prop. 2.2(i)] that Xn satisfies

p-exactness if and only if X satisfies p-exactness.

Proposition 4.2. Let n be a positive integer; K a p-adic local field; X a hyperbolic

curve over K. Write Xn for the nth configuration space associated to X;

t
def
= max

{
s ∈ N | ∃ a closed subgroup of ΠpXn

isomorphic to Z⊕s
p

}
.

Suppose that

Xn satisfies p-exactness.
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Then the following hold:

(i) Suppose, moreover, that X is a proper hyperbolic curve over K. Then

� cdp(Π
p
Xn

) = n+ 3;

� n ≤ t ≤ n+ 1.

(ii) Suppose, moreover, that X is an affine hyperbolic curve over K. Then

� cdp(Π
p
Xn

) = n+ 2;

� t = n+ 1.

In particular, the following hold:

� X is proper if and only if cdp(Π
p
Xn

)− t ≥ 2.

� Let Π be a topological group isomorphic to ΠpXn
. Then there exists a functorial

group-theoretic algorithm

Π ⇝ n

for constructing the dimension n from Π.

Proof. Let ∆ be a pro-p surface group [cf. [25, Def. 1.2]—where we take “C” to be

the family of all finite p-groups]. Recall that, if ∆ is a free pro-p group (respectively,

not a free pro-p group), then cdp(∆) = 1 (respectively, cdp(∆) = 2). On the other

hand, since Xn satisfies p-exactness, it follows immediately from Theorem 1.5(iii),

Lemma 3.2, Remark 4.1.1, that cdp(G
p
K) = 2. Thus, the assertions concerning

cdp(Π
p
Xn

) follow immediately from [25, Prop. 2.2(i)], [28, Prop. 7.4.2(b)(i)].

Next we verify the following assertion:

Claim 4.2.A. n ≤ t ≤ n+ 1.

Indeed, it follows immediately from [12, Thm. 1.6] that n ≤ t, and there exists

a closed subgroup of GpK isomorphic to Z⊕t−m
p ⊕ T , where m denotes an integer

such that 0 ≤ m ≤ n; T denotes a finite group. Suppose that t ≥ n+2. Then there

exists a closed subgroup H ⊆ GpK such that

H ∼= Z⊕2
p .

In particular, H ⊆ GpK is an abelian closed subgroup. Moreover, since every open

subgroup of GpK is nonabelian [cf. Lemma 1.6], it follows from Theorem 1.5(iii)

that H is a free pro-p group. This contradicts the fact that H ∼= Z⊕2
p . Thus,

we conclude that t ≤ n + 1. This completes the proof of Claim 4.2.A, hence of

assertion (i).

Finally, in light of Claim 4.2.A, to complete the proof of assertion (ii), it

suffices to prove that there exists a closed subgroup of ΠpXn
isomorphic to Z⊕n+1

p .
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Write X log
n for the nth log configuration space associated to the hyperbolic curve

X [cf. [12, §0, Curves]—where we note that, in our notation, the interior of X log
n

may be identified with Xn]; (ΠXn
∼−→) ΠXlog

n
for the log étale fundamental group of

X log
n , relative to a suitable choice of basepoint [cf. [18, Thm. B]]. Write D ⊆ ΠXn

for the decomposition subgroup associated to a log-full point of X log
n [cf. [12,

Def. 1.1]], where we note that the existence of a log-full point follows from [12,

Props. 1.2(i), 1.3(i)], together with our assumption that X is affine. Then it follows

immediately from a [log] scheme-theoretic consideration that there exist a finite

extension K ⊆ L (⊆ K) and a natural exact sequence of profinite groups

1 −→
⊕

Ẑ(1) −→ D −→ GL −→ 1

[where “(1)” denotes the Tate twist], which induces [cf. our assumption that Xn

satisfies p-exactness] an exact sequence of pro-p groups

1 −→
⊕

Zp(1) −→ Dp r−→ GpL −→ 1.

Let I ⊆ GpL be a closed subgroup such that

� I ∼= Zp;
� the image of I via the natural open homomorphism GpL → GpK [induced by

the inclusion GL ⊆ GK ] is also isomorphic to Zp;
� the image of I via the p-adic cyclotomic character GpL → Z×

p is trivial [where

we note that ζp ∈ K ⊆ L—cf. Lemma 3.2, Remark 4.1.1].

WriteH ⊆ ΠpXn
for the image of r−1(I) via the natural homomorphismDp → ΠpXn

[induced by the inclusion D ⊆ ΠXn ]. Then it follows immediately from the various

definitions involved that H ∼= Z⊕n+1
p . This completes the proof of Proposition 4.2.

Remark 4.2.1. The fact that the dimension of Xn may be reconstructed, in

a purely group-theoretical way, from ΠpXn
was pointed out to the author of the

present paper by K. Sawada. More precisely, he explained to the author that such

a result may be obtained by applying a similar argument to the argument applied

in the proof of [29, Thm. 2.15]. However, since the above proof [of Proposition 4.2]

is a direct and easy application of the results obtained in [12, §1] [which is also

a direct and easy application of log geometry], the author decided to include this

proof in the present paper.

Proposition 4.3. Let K be a field of characteristic 0 that contains ζp (∈ K).

Suppose that K is either

� a Henselian discrete valuation field with infinite residues of characteristic p or
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� a Hilbertian field [i.e., a field for which Hilbert’s irreducibility theorem holds—

cf. [3, Chap. 12]].

Then GpK is elastic and not topologically finitely generated.

Proof. First, it follows from [16, Thm. C] that we may assume without loss of

generality that K is a Hilbertian field. Then, since K contains ζp, it follows from

[3, Cor. 16.2.7(b)] that GpK is not topologically finitely generated.

Next we verify the elasticity of GpK . Observe that it suffices to prove that

every topologically finitely generated normal closed subgroup of GpK is trivial [cf.

[3, Cor. 12.2.3]]. Let F ⊆ GpK be a topologically finitely generated normal closed

subgroup. Write K ⊆ Kp (⊆ K) for the maximal pro-p extension [so GpK =

Gal(Kp/K)]; KF ⊆ Kp for the subfield fixed by F . Here we note that Kp ⊊ K

[cf. [3, Cor. 16.2.7(a)]].

Suppose that KF ⊊ Kp. Then, since K ⊆ KF is a Galois extension, it follows

from [3, Thm. 13.9.1(b)], together with [3, Cor. 16.2.7(b)], that the extension

KF ⊊ Kp is not finite. Let KF ⊊ L be a finite extension such that L ⊊ Kp. Again,

by applying [3, Thm. 13.9.1(b)], we observe that L is a Hilbertian field, hence [cf.

[3, Cor. 16.2.7(b)]] that Gal(Kp/L) = GpL is not topologically finitely generated.

In particular, since KF ⊊ L is a finite extension, it holds that F = Gal(Kp/KF ) is

not topologically finitely generated. This is a contradiction. Thus, we conclude that

KF = Kp, hence that F = {1}. This completes the proof of Proposition 4.3.

Proposition 4.4. Let

∆ −→ Π −→ G −→ 1

be an exact sequence of profinite groups. Suppose that ∆ is topologically finitely

generated, and G is elastic and not topologically finitely generated. Write ∆ (⊆ Π)

for the image of the homomorphism ∆ → Π. Then ∆ (⊆ Π) may be characterized

as the maximal topologically finitely generated normal closed subgroup of Π. In

particular, there exists a functorial group-theoretic algorithm

Π ⇝ ∆, G

for constructing the closed subgroup ∆ and the quotient G of Π [where we regard

G as the quotient of Π via the surjection Π↠ G] from Π.

Proof. Note that since ∆ is topologically finitely generated, it holds that ∆ ⊆ Π is

a topologically finitely generated normal closed subgroup. On the other hand, since

G is elastic and not topologically finitely generated, every topologically finitely

generated normal closed subgroup of G is trivial. Thus, since the homomorphism
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Π↠ G is surjective, we conclude that ∆ (⊆ Π) may be characterized as the max-

imal topologically finitely generated normal closed subgroup of Π. This completes

the proof of Proposition 4.4.

Next we prove the following [cf. Theorem A(i)]:

Theorem 4.5. Let K, K ′ be fields of characteristic 0; X, X ′ smooth varieties

over K, K ′, respectively;

α : ΠpX
∼−→ ΠpX′

an isomorphism of profinite groups. Suppose that

� K is either a Henselian discrete valuation field with infinite residues of char-

acteristic p or a Hilbertian field;

� K ′ is either a Henselian discrete valuation field with residues of characteristic

p or a Hilbertian field;

� ζp ∈ K, ζp ∈ K ′.

Then α induces an isomorphism GpK
∼−→ GpK′ that fits into a commutative diagram

ΠpX
∼−−−−→
α

ΠpX′y y
GpK

∼−−−−→ GpK′ ,

where the vertical arrows denote the natural surjections [determined up to com-

position with an inner automorphism] induced by the structure morphisms of the

smooth varieties X, X ′.

Proof. First, it follows from Proposition 4.3, together with our assumptions on

K, that GpK is elastic and not topologically finitely generated. Next we consider a

diagram of profinite groups

∆p
X −−−−→ ΠpX −−−−→ GpK −−−−→ 1

α

y≀

∆p
X′ −−−−→ ΠpX′ −−−−→ GpK′ −−−−→ 1,

where the horizontal sequences are the natural exact sequences as in Remark 3.1.1.

Then, since ∆p
X′ is topologically finitely generated [cf. [16, Lem. 4.2]], it follows

immediately from Theorem 1.4(ii), Proposition 4.3, [16, Lem. 3.1], together with

our assumptions on K ′, that GpK′ is also elastic and not topologically finitely

generated. Thus, since ∆p
X and ∆p

X′ are topologically finitely generated [cf. [16,

Lem. 4.2]], it follows immediately from Proposition 4.4 that α induces an isomor-

phism GpK
∼−→ GpK′ . This completes the proof of Theorem 4.5.
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Proposition 4.6. Let n be a positive integer; K a p-adic local field; X a hyperbolic

curve over K. Write Xn for the nth configuration space associated to X; (ΠpX)×n

for the fiber product of n copies of ΠpX over GpK ;

f : ΠpXn
↠ (ΠpX)×n

for the natural surjection induced by the natural open immersion Xn ↪→ X×n

over K. Let G be a free pro-p group of finite rank, or a Demushkin group isomorphic

to the maximal pro-p quotient of the absolute Galois group of some p-adic local

field;

ϕ : ΠpXn
→ G

an open homomorphism. Then ϕ factors as the composite of f with an open ho-

momorphism (ΠpX)×n → G.

Proof. Write

h : ∆p
Xn

→ ΠpXn

for the natural homomorphism induced by the natural injection ∆Xn
↪→ ΠXn

. For

each positive integer j (≤ n), write

pj : Π
p
Xn
↠ ΠpXn−1

for the surjection that lies over GpK [determined up to composition with an inner

automorphism] induced by the natural projection morphism Xn → Xn−1 obtained

by forgetting the jth factor. For each pair of distinct positive integers i, j such

that 1 ≤ i, j ≤ n, let

Ii,j ⊆ ∆p
Xn

be an inertia subgroup associated to the diagonal divisor ∆i,j [cf. Definition 4.1].

To verify Proposition 4.6, it suffices to prove that ϕ ◦ h(Ii,j) = {1} for each

pair of distinct positive integers i, j such that 1 ≤ i, j ≤ n. Let K ⊆ L (⊆ K) be

a finite field extension such that the cardinality of X(L) ≥ n − 1; x1, . . . , xn−1 ∈
X(L) distinct L-rational points of X. Write Z ⊆ XL for the open subscheme

obtained by forming the complement of the closed subset {x1, . . . , xn−1} ⊆ XL.

[In particular, Z is a hyperbolic curve over L.] Note that the distinct L-rational

points x1, . . . , xn−1 ∈ X(L) determine a morphism SpecL → Xn−1 over K. Note

also that, for each positive integer j (≤ n), there exists a natural isomorphism

Z ∼−→ Xn ×Xn−1
SpecL, where the fiber product is determined by the morphism

SpecL → Xn−1 and the natural projection morphism Xn → Xn−1 obtained by

forgetting the jth factor. Write cj : Z → Xn for the composite morphism [over

K] of the isomorphism Z ∼−→ Xn ×Xn−1
SpecL with the projection morphism



534 S. Tsujimura

Xn ×Xn−1
SpecL → Xn. Then there exists a commutative diagram of profinite

groups

∆p
Z −−−−→ ΠpZ −−−−→ GpL −−−−→ 1∥∥∥ y y

∆p
Z −−−−→ ΠpXn

pj−−−−→ ΠpXn−1
−−−−→ 1,

where the upper horizontal sequence denotes the exact sequence induced by the

structure morphism Z → SpecL; the right-hand vertical arrow denotes the homo-

morphism that lies over GpK [determined up to composition with an inner auto-

morphism] induced by the morphism SpecL→ Xn−1 over K; the middle vertical

arrow denotes the homomorphism that lies over GpK [determined up to composi-

tion with an inner automorphism] induced by the morphism cj : Z → Xn over K.

Note that h(Ii,j) (⊆ ΠpXn
) coincides with the image of a cuspidal inertia subgroup

of ∆p
Z via the homomorphism ∆p

Z → ΠpXn
that appears in the above commutative

diagram.

Write ϕZ : Π
p
Z → G (respectively, hZ : ∆

p
Z → G) for the composite of the

homomorphism ΠpZ → ΠpXn
(respectively, ∆p

Z → ΠpXn
) [that appears in the above

commutative diagram] with ϕ. If Im(hZ) = {1}, then we have nothing to prove.

If Im(hZ) ̸= {1}, then since G is elastic, and Im(hZ) (⊆ G) is a topologically

finitely generated normal closed subgroup of an open subgroup of G, it holds that

Im(hZ) ⊆ G is an open subgroup. In particular, ϕZ is an open homomorphism.

Thus, by applying Corollary 3.4 to ϕZ , we conclude that h(Ii,j) = {1}. This

completes the proof of Proposition 4.6.

Before proceeding, we recall the definition of fiber subgroups, which will be

of use in the proof of Theorem 4.8.

Definition 4.7 ([25, Def. 2.3(iii)]). Let n be a positive integer ≥ 2; i a positive

integer ≤ n; K an algebraically closed field of characteristic 0; X a hyperbolic

curve over K. Write

� Xm for the mth configuration space associated to X for each positive inte-

ger m;

� pi : Π
p
Xn
↠ ΠpXn−1

for the outer surjection induced by the projection morphism

Xn → Xn−1 obtained by forgetting the ith factor;

� qi : Π
p
Xn
↠ ΠpX for the outer surjection induced by the projection morphism

Xn → X associated to the ith factor.

Then we shall refer to Ker(pi) (respectively, Ker(qi)) as the fiber subgroup of ΠpXn

of length 1 (respectively, co-length 1) associated to i.



Semi-absoluteness of Isomorphisms 535

Finally, we prove the following [cf. Theorem A(ii)]:

Theorem 4.8. Let (n, n′) be a pair of positive integers; K, K ′ fields of character-

istic 0; X, X ′ hyperbolic curves over K, K ′, respectively. Write Xn (respectively,

X ′
n′) for the nth (respectively, the n′th) configuration space associated to X (re-

spectively, X ′). Let

α : ΠpXn

∼−→ ΠpX′
n′

be an isomorphism of profinite groups. Suppose that

� K and K ′ are either Henselian discrete valuation fields of residue character-

istic p or Hilbertian fields;

� Xn and X ′
n′ satisfy p-exactness.

Then the following hold:

(i) Let Π be a topological group isomorphic to ΠpXn
. Then there exists a functorial

group-theoretic algorithm

Π ⇝ n

for constructing the dimension n from Π. In particular, it holds that n = n′.

(ii) α induces an isomorphism GpK
∼−→ GpK′ that fits into a commutative diagram

ΠpXn

∼−−−−→
α

ΠpX′
ny y

GpK
∼−−−−→ GpK′ ,

where the vertical arrows denote the natural surjections [determined up to

composition with an inner automorphism] induced by the structure morphisms

of the configuration spaces Xn, X
′
n.

Proof. First, we verify assertion (i). Recall that ∆p
Xn

is topologically finitely gen-

erated [cf. [16, Lem. 4.2]]. On the other hand, since Xn satisfies p-exactness, it

follows immediately from Lemma 3.2, Remark 4.1.1, that K contains ζp. Thus,

we conclude from Proposition 4.3, together with our assumption on K, that Π is

topologically finitely generated if and only if K is a Henselian discrete valuation

field with finite residues of characteristic p [cf. Theorem 1.4(ii), [16, Lem. 3.1]].

Suppose that Π is topologically finitely generated. Then it follows from Propo-

sition 4.2 that there exists a functorial group-theoretic algorithm Π ⇝ n for con-

structing the dimension n from Π [cf. [16, Lem. 3.1]]. Next, suppose that Π is

not topologically finitely generated. Then it holds that GpK is elastic and not

topologically finitely generated [cf. Proposition 4.3]. In particular, since ∆p
Xn

is
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topologically finitely generated, by applying the functorial group-theoretic algo-

rithm that appears in Proposition 4.4 to Π, we obtain a closed subgroup ∆(Π)

of Π isomorphic to ∆p
Xn

. Thus, by applying [the functorial group-theoretic algo-

rithm that appears implicitly in] [12, Thm. 1.6], to ∆(Π), we obtain a functorial

group-theoretic algorithm Π ⇝ n for constructing the dimension n from Π. In

conclusion, since the condition that a topological group is topological finitely gen-

erated is group theoretic, we obtain a desired functorial group-theoretic algorithm.

This completes the proof of assertion (i).

Next we verify assertion (ii). Note that since Xn and X ′
n satisfy p-exactness,

it holds that K and K ′ contain ζp [cf. Lemma 3.2, Remark 4.1.1]. Then it follows

immediately from Theorem 4.5 that we may assume without loss of generality that

K and K ′ are p-adic local fields that contain ζp

[cf. [16, Lem. 3.1]].

Next, it follows from Theorem 3.6 that we may assume without loss of gen-

erality that n ≥ 2. Write ϕ : ∆p
Xn

→ GpK′ (respectively, ψ : ∆p
X′

n
→ GpK) for the

composite

∆p
Xn

−→ ΠpXn

∼−→
α

ΠpX′
n
−→ GpK′

(respectively,

∆p
X′

n
−→ ΠpX′

n

∼−−→
α−1

ΠpXn
−→ GpK),

where the first arrow denotes the injection [determined up to composition with

an inner automorphism] induced by the projection morphism (Xn)K → Xn (re-

spectively, (X ′
n)K′ → X ′

n); the final arrow denotes the surjection [determined up

to composition with an inner automorphism] induced by the structure morphism

X ′
n → SpecK ′ (respectively, Xn → SpecK).

Next we verify the following assertion:

Claim 4.8.A. Let (i, j) be a pair of integers such that 1 ≤ i, j ≤ n. Write Fi, Fj
for the fiber subgroups of ∆p

Xn
(respectively, ∆p

X′
n
) of length 1 associated to i, j,

respectively. Suppose that ϕ(Fi) ̸= {1} and ϕ(Fj) ̸= {1} (respectively, ψ(Fi) ̸= {1}
and ψ(Fj) ̸= {1}). Then Fi = Fj .

Since the proof of the non-resp’d case is similar to the proof of the resp’d case,

we verify the non-resp’d case only. Note that ϕ(Fi) and ϕ(Fj) are nontrivial topo-

logically finitely generated normal closed subgroups of GpK′ [cf. [25, Prop. 2.2(i)]].

Then, since GpK′ is elastic [cf. Theorem 1.5(ii)], ϕ(Fi) and ϕ(Fj) are open subgroups

of GpK′ . Suppose that

Fi ̸= Fj .
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Write (∆p
X)×n for the direct product of n copies of ∆p

X . Then it follows immediately

from Proposition 4.6 that ϕ factors as the composite of the natural surjection

∆p
Xn
↠ (∆p

X)×n [induced by the natural open immersion (Xn)K ↪→ (XK)×n

over K] with a homomorphism (∆p
X)×n → GpK′ . In particular, it holds that ϕ(Fi)

commutes with ϕ(Fj). Then, since ϕ(Fi) and ϕ(Fj) are open subgroups of GpK′ ,

there exists an abelian open subgroup of GpK′ . This contradicts Lemma 1.6. Thus,

we conclude that Fi = Fj . This completes the proof of Claim 4.8.A.

Next we verify the following assertion:

Claim 4.8.B. There exists a fiber subgroup F ⊆ ∆p
Xn

(respectively, G ⊆ ∆p
X′

n
)

of co-length 1 associated to some positive integer ≤ n such that ϕ(F ) = {1}
(respectively, ψ(G) = {1}).

Indeed, Claim 4.8.B follows immediately from Claim 4.8.A, together with [25,

Prop. 2.4(vi)].

Let F ⊆ ∆p
Xn

be a fiber subgroup of co-length 1 such that ϕ(F ) = {1}
[cf. Claim 4.8.B]. In the remainder of the proof, for each pair of distinct positive

integers i, j such that 1 ≤ i, j ≤ n, we shall write

� pri : ∆
p
X′

n
→ ∆p

X′ for the surjection [determined up to composition with an

inner automorphism] induced by the projection morphismX ′
n → X ′ associated

to the ith factor;

� Gi
def
= Ker(pri);

� pri,j : ∆
p
X′

n
→ ∆p

X′
2
for the surjection [determined up to composition with an

inner automorphism] induced by the projection morphism X ′
n → X ′

2 associ-

ated to the ith and jth factors.

Next we verify the following assertion:

Claim 4.8.C. Suppose that there exists a positive integer i (≤ n) such that

α(F ) ⊆ Gi. Then, for each positive integer j such that i ̸= j ≤ n, it holds that

α(F ) ̸⊆ Gj .

Indeed, suppose that α(F ) ⊆ Gi ∩Gj . Note that it follows immediately from

[25, Prop. 2.2(i)], together with the various definitions involved, that

� pri,j(α(F )) ⊆ pri,j(Gi) is a topologically finitely generated normal closed sub-

group;

� pri,j(α(F )) ⊆ pri,j(Gi ∩Gj) ⊆ pri,j(Gi);



538 S. Tsujimura

� the closed subgroup pri,j(Gi∩Gj) ⊆ pri,j(Gi) is of infinite index [so the closed

subgroup pri,j(α(F )) ⊆ pri,j(Gi) is of infinite index];

� pri,j(Gi) is elastic [cf. [25, Thm. 1.5]].

Then these facts imply that pri,j(α(F )) = {1}. In particular, α(F ) is contained

in the maximal pro-p quotient of the étale fundamental group of an (n − 2)-

dimensional configuration space associated to a hyperbolic curve over an alge-

braically closed field of characteristic 0 [cf. [25, Prop. 2.4(i)]]. This contradicts [12,

Thm. 1.6]. Thus, we conclude that α(F ) ̸⊆ Gj . This completes the proof of Claim

4.8.C.

Next we verify the following assertion:

Claim 4.8.D. Suppose that there exists a positive integer i (≤ n) such that

α(F ) ⊆ Gi. Then α(F ) = Gi.

Indeed, for each positive integer j such that i ̸= j ≤ n, it follows from Claim

4.8.C that prj(α(F )) is a nontrivial topologically finitely generated normal closed

subgroup of ∆p
X′ , hence an open subgroup of ∆p

X′ [cf. [25, Thm. 1.5]]. Thus, Gj
and α(F ) generate topologically an open subgroup Mj ⊆ ∆p

X′
n
. Let l (≤ n) be a

positive integer such that ψ(Gl) = {1} [cf. Claim 4.8.B].

If l = i, then it holds that

F ⊆ α−1(Gi) ⊆ ∆p
Xn
.

If l ̸= i, then it holds that

� Ml ⊆ ∆p
X′

n
is an open subgroup;

� ψ(Ml) = {1}.

Thus, since GpK is torsion-free [cf. Lemma 1.6], we conclude that ψ(∆p
X′

n
) = {1},

hence that ∆p
X′

n
⊆ α(∆p

Xn
). In particular,

F ⊆ α−1(Gi) ⊆ ∆p
Xn
.

Note that α−1(Gi) ⊆ ∆p
Xn

is a topologically finitely generated normal closed

subgroup of infinite index [cf. [12, Thm. 1.6], [25, Prop. 2.4(i)]], and ∆p
Xn
/F ∼−→

∆p
X . Thus, by applying [25, Thm. 1.5], we conclude that F = α−1(Gi). This

completes the proof of Claim 4.8.D.

Next we verify the following assertion:

Claim 4.8.E. Suppose that, for each positive integer i (≤ n), α(F ) ̸⊆ Gi. Then

∆p
X′

n
= α(∆p

Xn
).



Semi-absoluteness of Isomorphisms 539

Indeed, we note that α(∆p
Xn

) ⊆ ΠpX′
n

is a topologically finitely generated

normal closed subgroup of infinite index [cf. Lemma 1.6]. Thus, since GpK′ is elastic

[cf. Theorem 1.5(ii)], it suffices to prove that ∆p
X′

n
⊆ α(∆p

Xn
).

Let l (≤ n) be a positive integer such that ψ(Gl) = {1} [cf. Claim 4.8.B].

On the other hand, since ∆p
X′ is elastic [cf. [25, Thm. 1.5]], it follows from our

assumption that α(F ) ̸⊆ Gi that pri(α(F )) is an open subgroup of ∆p
X′ for each

positive integer i (≤ n). Then the closed subgroups Gl ⊆ ∆p
X′

n
and α(F ) ⊆ ∆p

X′
n

generate topologically an open subgroup Nl ⊆ ∆p
X′

n
such that ψ(Nl) = {1}. Thus,

since GpK is torsion-free [cf. Lemma 1.6], we conclude that ψ(∆p
X′

n
) = {1}, hence

that ∆p
X′

n
⊆ α(∆p

Xn
). This completes the proof of Claim 4.8.E.

Finally, it follows from Claims 4.8.D, 4.8.E, together with Theorem 3.6(ii),

Remark 4.1.1, that ∆p
X′

n
= α(∆p

Xn
), hence, in particular, that α induces an iso-

morphism GpK
∼−→ GpK′ . This completes the proof of assertion (ii), hence of Theo-

rem 4.8.

Remark 4.8.1. In light of Theorems 4.5, 4.8, [5, Thm. 0.1], it is natural to pose

the following question:

Question. Let K, K ′ be fields of characteristic 0; X, X ′ smooth varieties over

K, K ′, respectively;

α : ΠpX
∼−→ ΠpX′

an isomorphism of profinite groups. Suppose that K and K ′ are either

� subfields of Henselian discrete valuation fields of residue characteristic p or

� Hilbertian fields.

Then does α induce an isomorphism GpK
∼−→ GpK′ via the natural surjections

ΠpX ↠ GpK and ΠpX′ ↠ GpK′?

However, at the time of writing of the present paper, the author does not even

know

whether or not the analogous assertions of Theorem 4.8 for hyperbolic

polycurves hold

[cf. [8, Def. 2.1(ii)]].
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