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Abstract

Large slice thickness or slice increment causes information insufficiency of Computed

Tomography (CT) data in the longitudinal direction, which degrades the quality of CT-based

diagnosis. Traditional approaches such as high-resolution computed tomography (HRCT)

and linear interpolation can solve this problem. However, HRCT suffers from dose increase,

and linear interpolation causes artifacts. In this study, we propose a deep-learning-based

approach to reconstruct densely sliced CT from sparsely sliced CT data without any dose

increase. The proposed method reconstructs CT images from neighboring slices using a U-

net architecture. To prevent multiple reconstructed slices from influencing one another, we

propose a parallel architecture in which multiple U-net architectures work independently.

Moreover, for a specific organ (i.e., the liver), we propose a range-clip technique to improve

reconstruction quality, which enhances the learning of CT values within this organ by enlarg-

ing the range of the training data. CT data from 130 patients were collected, with 80% used

for training and the remaining 20% used for testing. Experiments showed that our parallel U-

net architecture reduced the mean absolute error of CT values in the reconstructed slices by

22.05%, and also reduced the incidence of artifacts around the boundaries of target organs,

compared with linear interpolation. Further improvements of 15.12%, 11.04%, 10.94%, and

10.63% were achieved for the liver, left kidney, right kidney, and stomach, respectively,

using the proposed range-clip algorithm. Also, we compared the proposed architecture

with original U-net method, and the experimental results demonstrated the superiority of our

approach.
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1 Introduction

In recent years, machine learning algorithms such as convolutional neural networks (CNNs),

the U-net architecture, and generative adversarial networks have been widely applied to image

processing and pattern recognition [1–4]. As they have become more popular, researchers

have started to apply them to Computed Tomography (CT) image processing [5–10]. For

example, Gupta et al. proposed a CNN-based algorithm that uses neural networks to replace

the projector in sparse-view CT reconstruction [6]. Similarly, U-net architecture has recently

been applied to sparse-view reconstruction of CT images [8]. Besides sparse-view reconstruc-

tion, super-resolution reconstruction of CT data is also a popular research topic [14].

As we know, many famous methods for super-resolution imaging have been proposed

recently [11–14]. Some of them especially deep-learning-based ones have been already applied

to CT data, which improved the image resolution (from less to more pixels) of 2D CT slice in

the axial plane [14]. When we compared these super-resolution imaging techniques with the

main issue we mentioned above (sparsely sliced CT problem), we found that they have one

thing in common. The super-resolution imaging aims at improving the resolution in the axial

plane by creating more pixels, while our goal is to improve the resolution in the longitudinal

direction by creating more slices (densely sliced CT reconstruction from sparsely sliced CT

data). Although creating a whole slice is much more difficult than creating a new pixel, this

kind of study would be worthwhile because longitudinal resolution plays an important role on

disease diagnosis [15, 16]. However, we found that there are rare researches related to deep-

learning-based resolution enhancement in the longitudinal direction. Park et al. used a 3D

deep network to reduce the slice thickness. However, their model has fixed patterns and is dif-

ficult to be applied to other data or applications [17]. In our previous research, we used the U-

net architecture to reconstruct one middle CT slice from two neighboring slices [18]. Our

results showed that the U-net architecture outperformed linear interpolation in terms of mean

absolute error (MAE). However, the simple network architecture used in the previous work

allowed only one middle slice to be reconstructed [18]. This limits its use in real applications,

in which two or more slices may be required to be reconstructed.

In this study, we propose a deep-learning-based framework which can achieve densely

sliced CT reconstruction in the longitudinal direction without any dose increase. Differently

from our previous work [18], the proposed approach adopts a parallel architecture that could

reconstruct multiple new slices. It contains multiple networks with U-net architecture [2].

These U-net architectures share the same input but output different CT slices. As a variant of

CNNs, the U-net architecture has been widely used in medical image segmentation [19–24].

Its layers are arranged into a U-shaped architecture, containing down-sampling and up-sam-

pling processes. It extracts both global and local features from the input image [2], improving

performance in processing medical images [25]. The parallel architecture is proposed to create

multiple CT slices and prevent them from influencing one another.

Moreover, we have found that most approaches process one CT slice as a whole unit during

image reconstruction [6]. However, for a specified organ, learning only the ROI (region of

interest) of the organ may be more effective than learning the whole CT slice. Therefore, we

also propose a range-clip technique that improves the reconstruction quality of a specified

organ by enlarging the range of CT values inside this organ during the training process. The

range is computed from training data alone, so it is not necessary to label the test data. This

technique aims to enhance learning in the ROI of the specified organ.

Note that the proposed parallel architecture for densely sliced CT reconstruction and

range-clip technique for organ enhancement are two independent methods. However, experi-

ment results showed that a combination of the two proposed algorithms achieved the best
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performance. This combination achieved densely sliced CT reconstruction in the longitudinal

direction without changing any CT device parameters such as slice thickness or pitch. Fig 1

shows the proposed CT slice reconstruction process, which has two contributions: (1) to

reconstruct densely sliced CT to improve the resolution in the longitudinal direction without

any dose increase, and (2) to interpolate middle slices to fill the gap between two adjacent CT

slices in the case that slice increment is larger than slice thickness.

2 Materials and methods

In this section, we first describe the proposed parallel U-net architecture for CT slice recon-

struction in the longitudinal direction, and then explains the range-clip technique for improv-

ing the reconstruction quality of each specified organ.

2.1 Parallel U-net architecture

Suppose we reconstruct 2m − 1 middle slices from pairs of adjacent slices. Let sequence φ rep-

resent the target dense CT slices after reconstruction, i.e., φ = {S1, S2, . . ., St−m, St−(m−1), . . .,

St, . . ., St+m−1, St+m, . . ., Sn} where t is the index of the sorted slices and n is the total number of

dense CT slices. The proposed approach is to reconstruct {St−(m−1), . . ., St, . . ., St+m−1} from

St−m and St+m to achieve the densely sliced CT reconstruction in the longitudinal direction.

The architecture of the proposed reconstruction algorithm is shown in Fig 2.

To prevent the different reconstructed slices from influencing one another, we adopt a par-

allel architecture with multiple U-net architectures. These U-net architectures are each used to

reconstruct its own target CT slice, using the same input slices. The image size of both the

input and output slices is 400 × 320 pixels. Each U-net architecture contains eight encoder and

Fig 1. CT slice reconstruction based on the proposed approach that reconstructs 2m − 1 middle slices from two adjacent slices. The green slices are newly

reconstructed ones. Then we copy the original slice as the first slice of the reconstructed data to generate the whole CT data.

https://doi.org/10.1371/journal.pone.0279005.g001
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seven decoder modules, respectively, as shown in Fig 3. A dropout layer is added in the last

layer of decoder module to reduce the influence of over-fitting.

We also implemented a learning technique that uses one U-net architecture to reconstruct

multiple slices. However, its accuracy was lower than that of the proposed parallel architecture

(comparison shown in the Results section). Compared with the original U-net method, the

proposed parallel approach learns the nonlinear relationships among multiple neighborhood

slices using multiple sets of parameters. As we mentioned above, the proposed architecture

can be used either to interpolate the middle slides to fill the gap, or to reconstruct slices to

reduce the slice thickness.

2.2 Organ-oriented reconstruction

In this section, we discuss slice reconstruction for a specific organ, which we name organ-

oriented reconstruction. The range of CT values across all human organs is wide. However,

for a certain organ, e.g. the liver, the range can be much narrower. It is possible to improve

the reconstruction quality of a certain organ if we focus on the range within it and then

enlarge this range. In this study, we used a CT dataset in which the ROI of each organ had

been labeled by board-certified radiation oncologists. Based on these labeled data, we

obtained an approximate distribution of the CT values for each organ and then assessed the

organ’s range.

Fig 2. Architecture of the proposed approach for CT slice reconstruction. The neural networks deduces multiple

middle slices from two neighboring slices. A parallel architecture is adopted to prevent the different target slices from

influencing one another, so that the target slices are computed separately.

https://doi.org/10.1371/journal.pone.0279005.g002

Fig 3. Outline of layers of each U-net shown in Fig 2. BN here means batch normalization layer.

https://doi.org/10.1371/journal.pone.0279005.g003
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Fig 4 shows the CT value range of the liver compared with that of the whole slice in the

training dataset. There may be foreign objects such as drainage tubes or surgical staples inside

the body, introducing noise to the distribution. Therefore, we manually checked the distribu-

tion for each organ. If noise was present, we removed it with filters manually. The range of all

CT values across the training data was normalized to [0, 1], and then the range [Rll, Rlh] of CT

values of pixels inside the liver was computed based on the labeled training data (0� Rll� 1, 0

� Rlh� 1, and Rll� Rlh). Finally, a linear function f(x) was established to change the CT value

for each pixel x, enlarging the range of the liver from [Rll, Rlh] to [0, 1]. The transformation

function f(x) is defined as

f ðxÞ ¼

0 if x < Rll

1 if x > Rlh

Bðx � CÞ if Rll � x � Rlh

8
><

>:
ð1Þ

In (1), C and B are constants that ensure that f(x) falls within the range of [0, 1] for liver

pixels. C and B are exclusively based on the training data, and their values change when the

range-clip is applied to other organs. Because the range of the liver is enlarged, the quality of

this region was improved after the range-clip processing. Although other regions outside the

liver may lose information when the above range-clip processing is performed, this did not

influence the final results because we also trained a model based on the original data to save

the information about non-liver regions. In other words, we trained the networks for recon-

structing the liver and non-liver regions using the range-clipped and original data,

Fig 4. Histograms of the whole CT image and the liver alone. The blue and red areas show the distributions of the

CT values across the whole slice and inside the liver. The X-axis is the normalized CT values, and the Y-axis is the

frequency.

https://doi.org/10.1371/journal.pone.0279005.g004
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respectively. Finally, we merged the outputs of both trained networks. To maintain consistency

during merging, we applied f to the test data before inputting them into the trained networks

and f−1 to the network’s output.

Similar to that for the liver, we can implement the proposed range-clip-based learning

method for other organs (e.g., lungs, kidneys, stomach). The designed training process is

shown in Fig 5. The range-clip technique aims to enhance learning within a specified organ by

exploiting the range features of the training data. It provides a chance to improve the recon-

struction quality by labeling the training data rather than the test data. The air contained in

the stomach occasionally influences the reconstruction quality. Therefore, we used filters

to exclude air areas inside the stomach before the organ-oriented CT reconstruction was

conducted.

In summary, The organ-oriented CT reconstruction is a combination of parallel U-net

architecture and range-clip technique, improving the learning of pixels within a specific organ

by exploiting its range feature.

2.3 Database detail

Our database contains 130 CT data from 130 patients. The CT data had a resolution of

1.0742 × 1.0742 × 2.5mm3, and their range was clipped to [−1000, 1000] HU (Hounsfield

units) for observing soft organs. Areas outside this range such as bones were not considered in

this study. For each CT series, labels indicating the liver, left kidney, right kidney, and stomach

regions were provided by board-certified radiation oncologists.

The proposed study is retrospective, and the patient data were obtained from Kyoto Uni-

versity Hospital, Kyoto, Japan. There was no specific inclusion/exclusion criteria for the

Fig 5. Training process of organ-oriented CT reconstruction. Each neural networks is trained for each specified

organ. The organ areas in the original output are then replaced with the results of these organ-oriented networks. HR:

high-quality result; LR: low-quality result. Here networks means the proposed parallel U-net architecture shown in

Fig 2.

https://doi.org/10.1371/journal.pone.0279005.g005
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participants. Patients participated voluntarily. Before providing their data, a written consent

form which included the introduction of the research, the description of the data detail, and

the agreement statement was obtained from each participant. In addition, we allowed opt out

for all participants.

This study followed all dictates of the Declaration of Helsinki and the Ethics Review Board

of Kyoto University Hospital, and the Faculty of Medicine approved the research (approval

number R1446).

3 Results

In this section, first we describe the experimental settings, and then introduce the evaluation

of the proposed parallel U-net architecture, and finally show the evaluation of the proposed

organ-oriented CT reconstruction.

3.1 Experimental settings

In this subsection, we describe the criteria used for performance evaluation, the experimental

parameters, and the properties of the data. In radiotherapy, errors in both CT values and

organ layouts influence the accuracy of dose calculation. Thus, we evaluated the proposed

approaches based on both the observed CT values and organ appearance. We used MAE to

evaluate the performance of CT value reconstruction and SSIM (structural similarity [26, 27])

to evaluate the appearance of the reconstructed slices.

In experiments, we evaluated the models’ performance at reconstructing one, two, three,

four, and five middle slices from each pair of adjacent slices (m = {1, 1.5, 2, 2.5, 3}, so that 2m
− 1 = {1, 2, 3, 4, 5}). How to decide the m value will be explained in the Discussion section.

The values of C and B in (1) for different organs are shown in Table 3, which were decided by

labeled training data.

Using the proposed method, we can reconstruct multiple middle slices from any pair of

adjacent slices. However, after reconstruction, the ground truth data need to correspond with

the input data if we intend to evaluate the proposed algorithm. To generate the ground truth

data, we used the CT data with all slices as the densely sliced CT series and created sparse ver-

sions for performance evaluation. Suppose that m = 3, which means that five slices are recon-

structed from two adjacent slices. We separate each original CT into two groups: φ1 = {S1, S7,

S13, . . ., Sn−12, Sn−6, Sn} and φ2 = {S2, S3, S4, S5, S6, . . ., S8, S9, S10, S11, S12, . . ., Sn−5, Sn−4, Sn−3,

Sn−2, Sn−1}, where φ1 is the sparse version and φ2 is the reconstructed target slices. Finally, the

densely sliced CT series can be reconstructed by merging φ1 and φ2. For other values of m, we

can regroup the data for the same evaluation.

For training, φ1 and φ2 were used as the input and output of the proposed parallel U-net

architecture, respectively. For testing, φ1 was used as the input to the neural network, and φ2

was used as the ground truth for evaluation. By comparing φ2 with the output of the trained

network in test mode, we can evaluate the proposed approaches’ reconstruction performance.

For more precise evaluation (e.g., to evaluate the reconstruction of nonexistent CT data with

slice thickness of less than 0.5 mm), clinical measurements by professional doctors are

required (see details in the Discussion section). Note that we used 80% (104 cases) of the data

for training, and the remaining 20% (26 cases) for testing in this study.

In this research, we used multiple U-nets architecture, which requires more GPU resources

than the single U-net one in the training phase. In our experiments, we used GeForce RTX

2080 whose memory is 11GB for training each U-net. We trained the multiple U-nets parallel

using multiple GPUs simultaneously, and it took about one hour. However, in the test, we

only used one GPU.
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3.2 Evaluation of the proposed parallel U-net architecture-based CT slice

reconstruction

First, we evaluated the performance of the proposed parallel U-net architecture at reconstruct-

ing one, two, three, four, and five (m = {1, 1.5, 2, 2.5, 3}) middle slices from pairs of adjacent

slices. Table 1 summaries the results: we found that m = 1 had the lowest MAE, whereas m = 3

had the highest MAE. In the following experiments, we use m = 3 as an example to compare

the proposed approach with other methods because m = 3 is the most challenging setting. The

MAE with m = 2 was slightly smaller than that with m = 1.5. We believe that the training of

m = 1.5 may have been influenced by the bias of the training data. However, MAE tended to

increase as the m value increased.

Second, we compared the proposed parallel U-net architecture with conventional linear

interpolation and the other method using one U-net architecture [2] to produce multiple slices

when m = 3. Table 2 presents a comparison between all three methods’ results for all recon-

structed CT slices. The proposed approach reduces the MAE by 22.05% and 6.09% compared

with linear interpolation and the other U-net method [2], respectively. Fig 6 shows the signifi-

cant differences between the MAE values given by the proposed approach, linear interpolation,

and the other U-net method [2] (all p< 0.01). The results demonstrate that a significant

improvement is achieved by the proposed parallel U-net architecture compared with both lin-

ear interpolation and the other U-net method [2]. Compared with the case that uses one U-net

architecture to reconstruct multiple slices, the proposed parallel strategy is better because

learning parameters to fit one slice is easier than to fit multiple slices.

3.3 Evaluation of the proposed organ-oriented CT slice reconstruction

We also evaluated the proposed parallel U-net architecture combined with the proposed

range-clip technique. Table 3 summarizes the MAE results for the liver, left kidney, right kid-

ney, and stomach, and Table 4 presents the SSIM results for the same organs. To highlight the

differences between the computed results and the ground truth, we implemented data normal-

ization before calculating the SSIM values for each slice. Tables 3 and 4 show that the proposed

parallel U-net architecture combined with the proposed range-clip technique achieved the best

results. Figs 7–10 show the significant differences of linear interpolation, the proposed parallel

U-net architecture, and the proposed organ-oriented method for the reconstruction of liver,

left kidney, right kidney, and stomach regions, respectively. From these figures, we can con-

clude that the proposed parallel U-net architecture significantly outperforms the linear

Table 1. Mean absolute error (MAE) of the reconstruction of one, two, three, four, and five slices by the proposed parallel U-net architecture.

The m value m = 1 m = 1.5 m = 2 m = 2.5 m = 3

Number of target slices (2m − 1) 2m − 1 = 1 2m − 1 = 2 2m − 1 = 3 2m − 1 = 4 2m − 1 = 5

MAE (mean absolute error: HU) 10.55 15.89 15.07 16.43 18.03

https://doi.org/10.1371/journal.pone.0279005.t001

Table 2. Comparison between linear interpolation, U-net architecture [2], and the proposed parallel U-net architecture: The bold numbers show the best results.

MAE (mean absolute error: HU); m = 3 Slice 1 Slice 2 Slice 3 Slice 4 Slice 5 Average

Linear interpolation 18.11 25.75 27.87 25.77 18.16 23.13

U-net architecture [2] 16.18 20.78 21.92 21.11 16.03 19.20

Proposed parallel U-net architecture 15.60 18.67 20.04 21.50 14.34 18.03

Improvement (Proposed vs. U-net) 3.58% 10.15% 8.58% -1.85% 10.54% 6.11%

Improvement (Proposed vs. Interpolation) 13.86% 27.50% 28.09% 16.57% 21.04% 22.06%

https://doi.org/10.1371/journal.pone.0279005.t002
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interpolation. Then, the proposed organ-oriented method furthermore improves the recon-

struction quality for all the specified organs.

Figs 11 and 12 shows some examples of comparisons of the proposed organ-oriented recon-

struction and parallel U-net architecture-based reconstruction with the reconstruction of lin-

ear interpolation. The window size in Figs 11 and 12 was adjusted to [−400, 400] for soft

tissues.

A comparison of the slices reconstructed by the proposed methods with the ground truth

shows that some details are lost. This is because we reconstructed CT slices that originally

Table 3. Mean absolute error (MAE): Comparison between the proposed U-net architecture-based method and the organ-oriented approach.

MAE (mean absolute error: HU); m = 3 Parameters Slice 1 Slice 2 Slice 3 Slice 4 Slice 5

Proposed parallel U-net architecture:liver N/A 14.25 13.24 13.90 14.66 13.50

Proposed organ-oriented method:liver C = 0.400;B = 4.545 10.91 12.07 12.87 12.14 10.97

Improvement for liver N/A 23.44% 8.84% 7.41% 17.19% 18.74%

Proposed parallel U-net architecture:left kidney N/A 15.52 15.86 17.48 16.97 13.27

Proposed organ-oriented method:left kidney C = 0.418;B = 4.762 12.95 14.53 15.51 14.99 12.30

Improvement for left kidney N/A 16.56% 8.39% 11.27% 11.67% 7.31%

Proposed parallel U-net architecture:right kidney N/A 15.63 15.84 17.43 16.61 13.53

Proposed organ-oriented method:right kidney C = 0.440;B = 6.250 12.80 14.54 15.24 14.98 12.72

Improvement for right kidney N/A 18.11% 8.21% 12.56% 9.81% 5.99%

Proposed parallel U-net architecture:stomach N/A 26.14 33.52 37.84 35.15 25.46

Proposed organ-oriented method:stomach C = 0.320;B = 4.000 23.60 31.48 34.20 26.62 24.58

Improvement for stomach N/A 9.72% 6.09% 9.62% 24.27% 3.46%

https://doi.org/10.1371/journal.pone.0279005.t003

Fig 6. Comparison among linear interpolation, the other U-net method [2], and the proposed parallel U-net

architecture (all p< 0.01). Vertical axis shows the absolute errors of the reconstructed slices.

https://doi.org/10.1371/journal.pone.0279005.g006
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did not exist at all, leading to rarity of information to facilitate detail reconstruction. How-

ever, the slices reconstructed by the proposed methods are of higher quality than those cre-

ated by linear interpolation. Although the results of linear interpolation contain many

details, they are artifacts, which caused the blur of organ boundaries, and consequently

Table 4. Structural similarity (SSIM): Comparison between the proposed U-net architecture-based method and the organ-oriented approach.

SSIM (Structral similarity); m = 3 Slice 1 Slice 2 Slice 3 Slice 4 Slice 5

Proposed parallel U-net architecture: liver 0.866 0.822 0.812 0.780 0.884

Proposed organ-oriented method: liver 0.885 0.839 0.821 0.810 0.883

Improvement for liver 2.19% 2.07% 1.11% 3.85% -0.11%

Proposed parallel U-net architecture: left kidney 0.511 0.382 0.353 0.320 0.534

Proposed organ-oriented method: left kidney 0.542 0.411 0.384 0.391 0.552

Improvement for left kidney 6.07% 7.59% 8.78% 22.19% 3.37%

Proposed parallel U-net architecture: right kidney 0.512 0.387 0.360 0.328 0.539

Proposed organ-oriented method: right kidney 0.542 0.421 0.393 0.394 0.552

Improvement for right kidney 5.86% 8.79% 9.17% 20.12% 2.41%

Proposed parallel U-net architecture: stomach 0.616 0.493 0.469 0.440 0.641

Proposed organ-oriented method: stomach 0.637 0.511 0.485 0.490 0.649

Improvement for stomach 3.41% 3.65% 3.41% 11.36% 1.25%

https://doi.org/10.1371/journal.pone.0279005.t004

Fig 7. Comparison of linear interpolation, the proposed parallel U-net architecture, and the proposed organ-oriented method

(all p< 0.01). Vertical axis shows the absolute errors of the liver region in the reconstructed slices.

https://doi.org/10.1371/journal.pone.0279005.g007
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leading to incorrect dose calculation. In contrast, the proposed parallel U-net architecture

reduces these artifacts, and the proposed organ-oriented method achieves a further improve-

ment. The combination of the two proposed methods achieves more correct boundaries than

linear interpolation, which is important to dose calculation in radiotherapy surgeries. When

we compare the difference color-maps, we find that the proposed method also improves the

reconstruction quality inside the organs. Although obtaining slice reconstruction results that

exactly match the ground truth is impossible, the proposed method reduces the artifacts

around each organ more effectively than linear interpolation does. Rows 3–6 in Fig 12 shows

that the proposed method can reconstruct the shape of organs in situations where linear

interpolation fails.

4 Discussion

In this section, we discuss several issues related to the proposed study.

4.1 Limitations of the proposed approach

The proposed method cannot be evaluated for reconstructing CT data with slice thickness of

less than 0.5 mm because we do not have ground truth data for comparison. However, evalua-

tions based on clinical measurements during surgery are possible. In future work, we plan to

invite professional doctors to evaluate the proposed method in clinical situations. Another lim-

itation is that some details inside the organs are lost in the reconstructed CT slices. This is

Fig 8. Comparison among linear interpolation, the proposed parallel U-net architecture, and the proposed organ-oriented

method (all p< 0.01). Vertical axis shows the absolute errors of the left kidney region in the reconstructed slices.

https://doi.org/10.1371/journal.pone.0279005.g008
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because reconstructing data which do originally not exist is difficult. However, the proposed

approach could provide more precise organ boundaries compared with other methods, which

can still contribute to dose calculation.

4.2 How to decide the value of m in Fig 1

The larger the m value is, the more middle slices are reconstructed, and the more densely sliced

in the longitude direction. Nevertheless, noise also increases as the spatial resolution of CT

data is improved [28]. To facilitate a valid reconstruction, we need to make a trade-off between

the m value and the magnitude of pixel-wise noise. In this study, we simply set a threshold μ to

restrain the m value: when the maximum pixel-wise MAE exceeded μ, the increase of m was

stopped.

4.3 Person-dependent vs. Person-independent learning

The proposed approach for CT slice reconstruction is person-independent, which means that

the range of each organ used in the proposed range-clip method is an approximation rather

than a precise value. This is because we used the pixel values within the organs of one group of

persons to predict the range for other different persons. However, based on the proposed

approach, we could develop a person-dependent model to achieve more precise ranges for

organs by simply changing the types of training data. Both person-independent and person-

dependent learning methods have their own advantages. In person-independent learning, it

Fig 9. Comparison among linear interpolation, the proposed parallel U-net architecture, and the proposed organ-oriented

method (all p< 0.01). Vertical axis shows the absolute errors of the right kidney region in the reconstructed slices.

https://doi.org/10.1371/journal.pone.0279005.g009
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saves time because we can use one model to deal with all samples. On contrary, we can achieve

more accurate ranges of each organ in person-dependent learning but need more time in

training because we need to change training data for each sample. Since person-dependent

reconstruction would entail a different research objective from this study, we will pursue this

in our future work.

4.4 Supervised-learning vs. self-learning

As we mentioned above, the proposed approach is based on U-net, which is a supervised learn-

ing approach [2]. It has an encoding and decoding structure, and requires the labeled data for

training. We noticed that both the input and output of the proposed networks are from the

same CT data. The purpose of the proposed architecture is to let the networks learn the rela-

tionships and regulations in the target itself, which is similar to self-learning. Self-learning is

an unsupervised-learning, which is widely used in image clustering [29, 30]. It exploits the sim-

ilarity among samples and discrepancy between clusters to improve the clustering perfor-

mance [30]. In recent years, self-learning was also applied to CT data processing [31–33]. For

example, Xie et al. proposed a through-plane resolution CT imaging method based on Cycle-

GAN [31]. Fung et al. used self-supervised learning models for COVID-19 lung CT segmenta-

tion [32]. Niu et al. applied self-learning to reduce the noise of CT data [33]. These self-

learning approaches did not need labeled data for training. However, it maybe more difficult

for these methods to guarantee the quality of reconstruction than those supervised learning

Fig 10. Comparison among linear interpolation, the proposed parallel U-net architecture, and the proposed organ-oriented

method (all p< 0.01). Vertical axis shows the absolute errors of the stomach region in the reconstructed slices.

https://doi.org/10.1371/journal.pone.0279005.g010
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Fig 11. Examples of the comparison among the proposed U-net architecture-based approach, the proposed organ-oriented method, and

linear interpolation. From left to right, the images shown in grayscale are the ground truth, the result computed by linear interpolation, the

result deduced by the proposed parallel U-net architecture, and the result obtained by the proposed organ-oriented reconstruction. The images

shown in color maps are difference images between the compared methods’ results and the ground truth. In the color maps, dark blue

indicates the smallest difference and red indicated the largest difference. The window size is adjusted to [−400, 400] for soft tissues.

https://doi.org/10.1371/journal.pone.0279005.g011
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Fig 12. Examples of the comparison among the proposed U-net architecture-based approach, the proposed organ-oriented method, and

linear interpolation. From left to right, the images shown in grayscale are the ground truth, the result computed by linear interpolation, the

result deduced by the proposed parallel U-net architecture, and the result obtained by the proposed organ-oriented reconstruction. The images

shown in color maps are difference images between the compared methods’ results and the ground truth. In the color maps, dark blue

indicates the smallest difference and red indicated the largest difference. The window size is adjusted to [−400, 400] for soft tissues.

https://doi.org/10.1371/journal.pone.0279005.g012
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algorithms whose models can learn directly from the labeled data. Because we have the labeled

data for training, we adopted supervised learning in our research. Nevertheless, it will be an

interesting research to compare the proposed supervised learning with some self-learning

approaches such as CycleGAN [31]. We plan to do this kind of comparisons in our future

work.

4.5 A comparison with peer work

We compare the proposed approach with previously published works to show a difference.

There was a similar research study in which CT was reconstructed from large to small values

of slice thickness. It used 3D CNNs to reconstruct CT data from 3-mm (or 5-mm) to 1-mm

slice thickness [17]. There were only two patterns of CT reconstruction: 3-mm to 1-mm, and

5-mm to 1-mm. Unlike that work, the proposed approach improves the longitudinal direction

resolution by reconstructing internal slices between pairs of adjacent slices. Our approach is

based on 2D reconstruction of multiple slices. The number of target slices to be reconstructed

is not fixed, which makes the method more suitable for real applications. Furthermore, the

proposed method can be used for either large-to-small slice-thickness reconstruction or large-

to-small slice-increment reconstruction as shown in Fig 1.

4.6 Overlap issue

In the subsection, we discuss an interesting issue that two original slices overlap. In that case,

we cannot reduce the slice increment directly. However, we can reduce the slice thickness first,

and then the original overlapped slices can become non-overlap ones. Then we can reduce the

slice thickness further or increment to improve the resolution in the longitudinal direction

using the proposed approach.

5 Conclusion

In summary, we proposed a parallel U-net architecture to reconstruct CT slices from neigh-

boring slices. Experimental results demonstrate that this reconstruction is valid, with the U-

net architecture playing an important role. Moreover, we proposed a range-clip technique to

refine the reconstruction for each specified organ. The proposed approach could be used to

reduce the slice thickness or slice increment without any dose increase.
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