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A B S T R A C T

Fiber-reinforced composite materials, exemplified by CFRP, offer the possibility of achieving lightweight, high-
stiffness, and high-strength structures by continuously and evenly distributing fibers. While topology and
orientation optimization methods have been developed for anisotropic materials in the past, there remains
a gap in design methods that consider manufacturability, especially for continuous fiber materials. In this
study, we propose a design method that takes into account manufacturability, focusing on the aspects of
continuity and uniformity in fiber-reinforced composite optimum design. Specifically, we introduce a two-stage
optimization approach. In the first stage, we conduct concurrent optimization of topology and fiber orientation.
We utilize a level-set function to represent topological configuration, while for orientation, we introduce
a ‘‘double angle vector’’, which enables us to consider fiber properties such as angular periodicity. These
design variables are updated by solving partial differential equations based on reaction–diffusion equations.
In the second stage, leveraging the optimal orientations obtained in the first stage, we optimize the path-line
generation for the manufacture of continuous fiber materials. We introduce a scalar function representing
path lines and formulate an optimization problem to ensure that the path lines are both evenly spaced and
continuous. The update of design variables in this state is also achieved via solving the partial differential
equation. Through the development of this two-stage optimization method, we aim to create an optimal
structure with manufacturable continuous fiber materials, incorporating both the topology and fiber orientation
that satisfy the requirements of continuity and uniformity.
1. Introduction

The material properties significantly influence the performance of
a mechanical product. In other words, intensifying the material prop-
erties improves the product’s overall performance. Developing new
artificial materials is an appealing strategy for enhancing the perfor-
mance of mechanical products, as natural materials like steel have
limitations in terms of rigidity, weight, and other properties. Fiber-
reinforced composites, exemplified by Carbon Fiber-Reinforced Plastics
(CFRP), consist of a structure in which reinforcing fibers are embedded
within the matrix material. They have found extensive applications,
ranging from everyday essentials to heavy machinery products, serving
as a viable alternative to metals due to their lightweight, high strength,
and rigidity when subjected to loads in the direction of the fibers.

However, fiber-reinforced composites exhibit orthotropic material
properties, implying that they possess exceptional strength and stiffness
along the fiber direction but relatively low properties in the direc-
tion perpendicular to the fibers. Consequently, when designing and
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manufacturing products, it is imperative to consider the orientation of
the fibers. For instance, components produced through injection mold-
ing are layered to create parts with pseudo-isotropic properties. This
method offers advantages in terms of manufacturing cost, ease of fab-
rication, and avoidance of stiffness reduction in specific directions [1].
Despite these advantages, this laminating approach introduces a mis-
alignment between the fiber orientation and principal stress directions.
Furthermore, composites manufactured via injection molding incor-
porate discontinuous short fibers and particle structures, which are
cost-effective and easy to process but exhibit relatively lower stiffness
and strength when compared to continuous-fiber composites [2,3].
Manufacturing methods that continuously arrange fibers in a controlled
manner, such as Automated Fiber Placement (AFP) [4] or Tailored
Fiber Placement (TFP) [5], have been developed to address these
challenges and enable the design of higher-performance products. The
fibers manufactured by these methods are required to be distributed
continuously and evenly. In this paper, we focus on constructing an
vailable online 13 January 2024
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optimum design method for the structural configuration and fiber
arrangement for continuous fibers fabricated by TFP.

As has been discussed above, the orthotropic design of continuous-
fiber composite materials is promising to improve the mechanical
performance of various industrial products. Therefore, the capability
to predict the structural response of fiber composites can significantly
benefit from design and optimization. However, to date, most designs
are still limited to rather simple structures, which impede the full
exploitation of continuous-fiber composite materials. In stark contrast
to empirical designs, structural optimization is a powerful numerical
method combining mathematical and physical rationale with simu-
lations to deliver innovative structures that can maximize functional
performances. One of the most effective design methods for structures
composed of continuous-fiber composites is the simultaneous optimiza-
tion of topology and orientation of anisotropic elastic materials. This
allows us to combine the advantages of topology optimization [6],
known to have a very high degree of design freedom, with fiber orien-
tation optimization. In terms of practical use, one plausible approach
involves generating the structure through topology optimization and
subsequently utilizing trajectory software to design the orientation of
continuous fibers. Conversely, concurrent optimization of structural
configuration and fiber arrangement enables more enhanced product
designs by considering the mutual influence between the structure
and angles during the optimization process, thus potentially leading to
higher performance.

Continuous Fiber Angle Optimization (CFAO) [7–9] is an approach
utilized for designing fiber arrangements, involving continuous updates
of the orientation angles. However, these methods tend to demonstrate
a strong dependency on initial angle values, which presents obstacles to
their integration with topology optimization; thus Stegmann and Lund
developed the discrete material optimization method as an alternative
approach [10]. Zhou et al.. constructed the multi-component topology
and material orientation design method, aiming to determine contin-
uous fibers for each component and conduct simultaneous topology
and angle optimization for the fibers [11]. While this method ensures
manufacturability by maintaining continuity for each component, they
require predetermined component numbers, leading to reduced design
flexibility. Luo et al. [12] proposed a relatively versatile simulta-
neous optimization method by extending Blasques’s approach [13].
However, it does not account for the uniformity required in manu-
facturing methods like TFP (Tailored Fiber Placement), necessitating
post-processing steps. Brampton et al. focused on the manufacturability
of Automated Fiber Placement (AFP) and developed a design method
solely for angles [14]. Yet, it requires initial angles or preconditioning
and is not suitable for simultaneous optimization with topology. Amidst
these approaches, Li et al. achieved fiber uniformity by imposing local
constraints [15]. However, it incurs high computational cost which
results in challenges for practical designs, such as multi-loading prob-
lems where the principal stress direction does not align with the fiber
orientation.

To address the aforementioned challenges, we propose an integrated
two-step approach for topology optimization and fiber arrangement
in continuous-fiber composites. The first stage focuses on the con-
current optimization of the structural configuration and anisotropic
elastic materials through a level set-based topology optimization and an
orientation optimization without considering manufacturability. The
structural configuration is represented using a level-set function, which
defines a clear boundary surface. On the other hand, a ‘‘double an-
gle vector’’ is introduced as a design variable for the orientation of
constructing optimal anisotropic elastic materials. Optimization can be
performed in a way that is less likely to suffer from a local optimum
solution by utilizing this vector field, a modification of the orientation
representation proposed by Nomura et al. [16], rather than directly
applying the orientation angle to a design variable. Furthermore, we
incorporate the concept of the direction [17,18] for orientation opti-
2

mization. This direction tensor is defined as the self-diagonal product
of unit direction vectors forming an orientation angle with respect to
the reference axis, resulting in a more concise formulation of the elastic
tensor compared to using the rotation matrix. The partial differential
equations based on the reaction–diffusion equation are formulated
for simultaneously updating both design variables, i.e., for updating
the topology and orientation. While the first phase yields optimal
orientations at each node, it does not ensure manufacturability for
fabricating continuous fibers. Continuous fibers produced via TFP must
be manufactured with continuous and equal spacing between them.
In the second phase, we interpret the obtained results from the first
stage and reconstruct the manufacturable fiber paths. We note that the
design results obtained through the dehomogenization method in the
prior works reveal several limitations [19]. Specifically, the mapping
employed for deforming the periodic cell in dehomogenization meth-
ods is approximately conformal. While this conformity is well-suited
for compliance minimization problems characterized by perpendicu-
lar bars, it may prove less effective when applied to fiber-reinforced
composite designs, where fibers are not necessarily required to align
at right angles. In contrast to this, in the fiber reconstruction stage,
we introduce a scalar function as a design variable with contour lines
representing the optimal fiber paths. We formulate an optimization
problem such that the gradient of the scalar function is orthogonal
to the given vector or tensor field, and the magnitude of the gradi-
ent remains almost constant. These techniques enable us to generate
equidistant and continuous fiber paths within the composite structures,
thereby maximizing their mechanical performance. The design variable
is updated through an adjoint-based optimizer, which is the solution of
the reaction–diffusion equation, similar to the first stage. This consis-
tent updating scheme for design variables offers advantages in terms of
ease of implementation and parameter studies.

The remainder of this paper is organized as follows. In Section 2,
first, we describe the governing equations for the underlying physics.
Then we overview the basic concept of the level set-based topology
optimization method. Next, the mathematical and physics frames for
the parameterization of the orthotropic materials and fiber orienta-
tion of anisotropic material are presented. After that, we formulate
the two optimization problems. One is for the simultaneous struc-
tural configuration and fiber arrangement optimization of stiffness
maximization. The other is for the design optimization of generat-
ing fiber path lines. Section 3 illustrates the implementation details
together with the optimization algorithms. In Section 4, we present
several numerical examples to maximize the stiffness under multi-
loading conditions, confirming the validity and effectiveness of the
proposed methodology. Specifically, concerning the design of fiber
path lines, our numerical examples not only demonstrate the efficiency
of the proposed method but also showcase its low dependency on ini-
tial values through optimization computations initiated from multiple
initial conditions. Lastly, the conclusion is provided in Section 5.

2. Formulation

This section shows the mathematical formulations and the opti-
mization methods adopted in this study. First, the governing equations
describing the linear elastic problem are presented, and the variables
and equations are made dimensionless. Next, we introduce the method-
ology for simultaneous optimization of topology and orientation for
anisotropic elastic materials, which can be applied to the stiffness
maximization problem with multi-loading. Finally, we formulate an op-
timization problem for placing of nearly equally spaced and continuous
fibers throughout the structure of the elastic body.

2.1. Governing equations

The deformation of an elastic body is expressed in terms of a
state variable defined in the domain 𝛺 to be computed, namely the

distribution of displacement 𝒖 = 𝒖(𝒙). This study deals with a problem



Composites Part C: Open Access 13 (2024) 100432Y. Fujimoto et al.
Fig. 1. Concept of topology optimization.
in which the body force, 𝒃̄ = 𝒃̄(𝒙), is applied in the domain 𝛺, the
traction, 𝒕̄ = 𝒕̄(𝒙), is applied on the boundary 𝛤𝑡, and the displacement
𝒖̄ = 𝒖̄(𝒙) is fixed on the boundary 𝛤𝑢. The state variable satisfies the
following governing equations.

𝛁 ⋅ 𝝈̃ + 𝒃̄ = 𝟎 in 𝛺, (1)

𝒕 = 𝒕̄ on 𝛤𝑡, (2)

𝒖 = 𝑢̄ on 𝛤𝑢; (3)

𝝈̃ = ̃̃𝑪 ∶ 𝝐̃. (4)

Eq. (1) is the equilibrium equation for elastic bodies where Eq. (4) is
the constitutive equation, i.e., Hooke’s law. 𝝈̃ = 𝝈̃(𝒙) is Chauchy’s stress
tensor, and 𝒕 = 𝝈̃ ⋅ 𝒏 = 𝒕(𝒙) is the stress vector on the boundary 𝛤𝑡, 𝒏
is the outward unit normal vector on the boundary 𝛤 = 𝛤𝑡 ∪ 𝛤𝑢 = 𝜕𝛺.
̃̃𝑪 = ̃̃𝑪(𝒙) is the elastic tensor, and 𝝐̃ = {(∇𝒖) + (∇𝒖)T}∕2 = 𝝐̃(𝒙) is the
strain tensor.

All variables and expressions in this paper are made dimensionless
before numerical implementation. Nondimensionalization allows us to
determine various parameters required for numerical implementation
of the optimization problem, independent of the different cases. Given
the representative length, 𝐿, the representative displacement, 𝑈 , and
the representative Young’s modulus, 𝐸0, the position coordinate, 𝒙, the
displacement, 𝒖, the strain tensor, 𝝐̃, the stress tensor, 𝝈̃, and the stress
vector, 𝒕, are each nondimensionalized as follows,

𝒙 ←
𝒙
𝐿
, 𝒖 ←

𝒖
𝑈
, 𝝐̃ ←

𝝐̃
𝑈∕𝐿

, 𝝈̃ ←
𝝈̃

𝐸0𝑈∕𝐿
, 𝒕 ← 𝒕

𝐸0𝑈∕𝐿
, 𝐸 ←

𝐸
𝐸0
. (5)

The same symbols are then used again for the dimensionless variables
and the material properties.

2.2. Level set-based topology optimization method

A fixed design domain 𝐷 is introduced as shown in Fig. 1 and
material distribution in it is represented by using the characteristic
function 𝜒 as follows:

𝜒(𝒙) =
⎧

⎪

⎨

⎪

⎩

1 for 𝒙 ∈ 𝛺,

0 for 𝒙 ∈ 𝐷∖𝛺,
(6)

where 𝛺 represents the material domain and 𝐷∖𝛺 is the void domain.
However, this characteristic function is not guaranteed to be continuous
within the fixed design domain, 𝐷, which may result in discontinuous
structures. One way to solve this problem is to relax or regularize the
design space by introducing the level set-based method [20]. The level
set function, 𝜙(𝒙), is defined as follows:

⎧

⎪

⎪

⎨

⎪

⎪

0 < 𝜙(𝒙) ≤ 1 for 𝒙 ∈ 𝛺∖𝜕𝛺,

𝜙(𝒙) = 0 for 𝒙 ∈ 𝜕𝛺,

−1 ≤ 𝜙(𝒙) < 0 for 𝒙 ∈ 𝐷∖𝛺.

(7)
3

⎩

In this paper, we introduce the smoothed Heaviside function, 𝐻𝛿(𝜙)
defined as follows:

𝐻𝛿(𝜙) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 for − 1 ≤ 𝜙 < −𝛿,
1
2 + 15

16
𝜙
𝛿 − 5

8 (
𝜙
𝛿 )

3 + 3
16 (

𝜙
𝛿 )

5 for − 𝛿 ≤ 𝜙 ≤ 𝛿,

1 for 𝛿 < 𝜙 ≤ 1.

(8)

Then, we define the smoothed material distribution or density as 𝜌(𝜙) =
𝐻𝛿(𝜙). The Young’s modulus can be defined with the density, 𝜌(𝜙), as
follows:

𝐸(𝜌(𝜙)) = (1 − 𝑑)𝜌(𝜙) + 𝑑. (9)

Originally, the value of Young’s modulus is zero in the void domain
𝐷∖𝛺. In order to avoid the breakdown of the calculation for the
solution of the equilibrium equation for elastic bodies, we set the
positive constant value, 𝑑, which is small enough.

2.3. Orientation optimization

2.3.1. Elasticity tensor of orthotropic materials
This study deals with the deformation problem of elastic bodies with

two-dimensional orthotropic material properties. First, suppose that
a two-dimensional orthotropic elastic body is aligned along with the
coordinate system, meaning that the principal direction of this elastic
body corresponds to the first reference axis (𝑥-axis). Let ̃̃𝑪axis-alin be
the fourth rank elasticity tensor, then its Voigt expression 𝑪̃axis-align is
obtained by taking the inverse of the compliance matrix, 𝑺̃, as follows:

𝑪̃axis-align = 𝑺̃−1 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐸1
1 − 𝜈𝐴𝜈𝐻

𝜈𝐻𝐸𝐴
1 − 𝜈𝐴𝜈𝐻

0
𝐸2

1 − 𝜈𝐴𝜈𝐻
0

(sym.) 𝐺

⎤

⎥

⎥

⎥

⎥

⎦

∶=
⎡

⎢

⎢

⎣

𝐶1111 𝐶1122 0
𝐶2222 0

(sym.) 𝐶1212

⎤

⎥

⎥

⎦

, (10)

𝑺̃ =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1
𝐸1

−
𝜈𝐴
𝐸𝐴

0

1
𝐸2

0

(sym.) 1
𝐺

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (11)

where 𝐸1 and 𝐸2 are Young’s moduli of the elastic body in the principal
(along the reference axis) and secondary (orthogonal to the reference
axis) directions, respectively, and 𝐸𝐴 is their arithmetic mean (𝐸1 +
𝐸2)∕2. 𝜈𝐴 and 𝜈𝐻 are the arithmetic mean (𝜈12 + 𝜈21)∕2 and harmonic
mean {(𝜈−112 + 𝜈−121 )∕2}

−1 of two Poisson ratios 𝜈12 and 𝜈21, respectively.
𝐺 is the rigidity modulus. Generally, in a two-dimensional orthotropic
elastic body, the four independent properties are two Young’s moduli
𝐸 ,𝐸 , Poisson’s ratio 𝜈 (or 𝜈 ,) and the rigidity modulus 𝐺. But in
1 2 12 21
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Fig. 2. Model of fiber-reinforced composite material.

this research, 𝐺 is supposed to be dependent on the other properties,
given by the following expression.

𝐺 = 𝐺𝐻 =

(

𝐺−1
1 + 𝐺−1

2
2

)−1

=
𝐸1𝐸2

𝐸1 + 𝐸2 + 𝜈21𝐸1 + 𝜈12𝐸2
. (12)

where 𝐺1 and 𝐺2 are rigidity moduli of two hypothetical isotropic
elastic bodies, expressed as 𝐺1 = 𝐸1∕2(1 + 𝜈12), and 𝐺2 = 𝐸2∕2(1 + 𝜈21),
respectively.

2.3.2. Orientation representation of anisotropic material with direction ten-
sor

Here is the definition of the fourth rank elasticity tensor ̃̃𝑪0 for two-
dimensional arbitrarily oriented orthotropic material. The elasticity
tensor ̃̃𝐶0 is expressed by using the components of the elastic tensor,
𝑪̃axis-align in Eq. (10) and the second rank direction tensor 𝑾̃ defined
later, as follows:
̃̃𝑪0

(

𝑾̃
)

=
(

𝐶1111 + 𝐶2222 − 2𝐶1122 − 4𝐶1212
) (

𝑾̃ ⊗ 𝑾̃
)

+ 𝐶1212

(

̃̃𝑱 + ̃̃𝑱T
)

+
(

𝐶2222 − 2𝐶1212
) (

𝑰̃ ⊗ 𝑰̃
)

+
(

−𝐶2222 + 𝐶1122 + 2𝐶1212
)

×
(

𝑰̃ ⊗ 𝑾̃ + 𝑾̃ ⊗ 𝑰̃
)

, (13)

where 𝑰̃ and ̃̃𝑱 are the second rank identity tensor 𝑰̃ ∶=
[

𝛿𝑖𝑗
]

and the
fourth rank identity tensor ̃̃𝑱 ∶=

[

𝛿𝑖𝑘𝛿𝑗𝑙
]

, respectively. Also, ̃̃𝑱T is one
of the transposes of ̃̃𝑱 and is defined as 𝑱T

𝑖𝑗𝑘𝑙 = 𝑱 𝑗𝑖𝑘𝑙.
Next, let us consider the second-order direction tensor 𝑾̃ , which is

the only variable contained in Eq. (13). When the fiber direction angle
of a two-dimensional orthotropic material is represented by 𝛼 = 𝛼(𝒙)
as shown in Fig. 2, one of the unit vectors in the direction along the
fiber is expressed as 𝒑 = [cos𝛼, sin𝛼]T = 𝒑(𝒙), which is named ‘‘direction
vector’’ in this paper. The second rank direction tensor 𝑾̃ = 𝑾̃ (𝒙) is
defined as the self-dyadic product of the unit vector 𝒑 as follows:

𝑾̃ = 𝒑⊗ 𝒑 =
[

cos2𝛼 sin𝛼cos𝛼
sin𝛼cos𝛼 sin2𝛼

]

, (14)

which is named ‘‘direction tensor’’ in this paper.
Here, we discuss the design variables for expressing this direction

tensor. A method such as the CFAO [7–9] (Continuous Fiber Angle
Optimization), in which the fiber direction angle, 𝛼, is directly assigned
as a design variable, can be a candidate. However, as claimed by
Stegmann et al. [10,21], the CFAO method has the disadvantage of
being prone to local optima. Furthermore, when handling direction
angles, there is the difficulty of performing proper regularization. The
elasticity tensor ̃̃𝑪0 for direction angle 𝛼 = 𝛼0 identifies with the cases of
𝛼 = 𝛼0±𝑛𝜋, due to the periodicity of angle. Hence, we adopted the idea
of the orientation representation for anisotropic materials proposed by
Nomura et al. [16]. The design variable is defined as the unit vector
𝝑 = [cos𝜃, sin𝜃]T = [𝜍, 𝜁]T = 𝝑(𝒙), where 𝜃 is set as the following
equation so that this design variable 𝝑 can be regarded to have the
period 2𝜋,

𝜃 = 2𝛼. (15)
4

The angle 𝜃 can be interpreted as the direction angle of the design
variables 𝝑 toward the reference axis, so this design variable 𝝑 is named
the ‘‘double angle direction vector’’ in this paper. From Eqs. (14) and
(15), the direction tensor 𝑾̃ (𝝑) can be expressed using 𝜃 as follows:

𝑾̃ (𝝑) = 1
2

[

1 + cos𝜃 sin𝜃
sin𝜃 1 − cos𝜃

]

. (16)

Note that the double direction angle 𝜃 is still periodic and difficult to
regularize in the optimization problem as the direction angle 𝛼. One
of the more appropriate design variables would be each component of
the double angle direction vector 𝝑 = [𝜍, 𝜁]T. Replacing cos𝜃 and sin𝜃 in
Eq. (16) with 𝜍 and 𝜁 , respectively, the elasticity tensor ̃̃𝑪0 = ̃̃𝑪0(𝑾̃ (𝝑))
can be expressed as:

𝑾̃ (𝝑) = 1
2

[

1 + 𝜍 𝜁
𝜁 1 − 𝜍

]

. (17)

Considering these orientation expressions and the shape representation
described in Section 2.2, and further combining Eqs. (9) and (13), we
obtain an expression that incorporates the design variable, 𝜙,𝝑 into the
elasticity tensor ̃̃𝑪 = ̃̃𝑪(𝜙,𝝑),
̃̃𝑪(𝜙,𝝑) = 𝐸(𝜌(𝜙)) ̃̃𝑪0(𝑾̃ (𝝑)). (18)

In this work, we relax some of the conditions that the double angle
direction vector 𝝑 originally should satisfy, and allow its norm to be
‖𝝑‖ ≤ 1 only during the process of optimization, as shown in Fig. 3. This
allows optimization to be performed flexibly by updating the double
angle direction vector 𝝑 in directions not only tangential to the unit
circle. We discuss the detail in the next section.

2.3.3. Relaxation of the conditions for the orientation design variables
Regarding the orientation representation of anisotropic materials

proposed in Section 2.3.2, direction vector 𝒑, double-angle direction
vector 𝝑, and direction tensor 𝑾̃ should satisfy the following funda-
mental conditions:

‖𝒑‖ =
√

cos2𝛼 + sin2𝛼 = 1, (19)

‖𝝑‖ =
√

𝜍2 + 𝜁2 =
√

cos2𝜃 + sin2𝜃 = 1, (20)

tr𝑾̃ = ‖𝑝‖2 = ‖𝝑‖2 = 1, (21)

det𝑾̃ = cos2𝛼sin2𝛼 − (cos𝛼sin𝛼)2 = 0. (22)

Eqs. (19) to (21) ensure that the norm of direction vector 𝒑 (or double-
angle direction vector 𝝑) is 1. These conditions should be satisfied in
the final stage of optimization, but not necessarily satisfied during the
intermediate process of optimization. As shown in Fig. 3, the norm
should rather be allowed to be less than 1 for numerical advantages. In
short, during the optimization procedure, we should permit tr𝑾̃ < 1,
although it corresponds to a reduction in the stiffness of the elastic
body. On the other hand, Eq. (22) ensures that the direction tensor
𝑾̃ is defined as a self-dyadic product of direction vector 𝒑, as in
Eq. (14). This condition should be always satisfied in the optimization
procedures. Considering these factors, the direction tensor is modified
as follows so that Eq. (22) is always valid during the optimization
process, and furthermore, the Eqs. (19) to (21) are also valid at the
end of the optimization.

𝑾̃ =
min(‖𝝑‖, 1)

2‖𝝑‖

[

‖𝝑‖ + 𝜍 𝜁
𝜁 ‖𝝑‖ − 𝜁

]

, (23)

tr𝑾̃ = min(‖𝝑‖, 1) ≤ 1, (24)

det𝑾̃ = 0. (25)

Note that when dealing with the stiffness maximization problem, it is
expected that tr𝑾̃ will naturally converge to 1 in the final stage of the
optimization. Since the ‘‘min’’ function is used for 𝑾̃ in Eq. (23), there
is a problem of non-differentiability at ‖𝝑‖ = 1.
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Fig. 3. Cartesian representation and its relaxation.
Then, as in the discussion in Eq. (8), we replace min(‖𝝑‖, 1) with
𝐻𝛿(‖𝝑‖ − 1∕2, 1∕2) as follows:

𝑾̃ = 1
2‖𝝑‖

𝐻𝛿(‖𝝑‖ −
1
2
, 1
2
)
[

‖𝝑‖ + 𝜍 𝜁
𝜁 ‖𝝑‖ − 𝜍

]

, (26)

= 1
‖𝝑‖

{ 1
4
+ 15

16
(‖𝝑‖ − 1

2
) − 5

2
(‖𝝑‖ − 1

2
)3

+ 3(‖𝝑‖ − 1
2
)5}

[

‖𝝑‖ + 𝜍 𝜁
𝜁 ‖𝝑‖ − 𝜍

]

, (27)

Finally, we penalize the norm of the double-angle direction vector 𝝑 to
be upper bounded with 1, as explained in Section 2.4.2.

2.4. Design problem of stiffness maximization

2.4.1. Mathematical optimization model
Let us consider the stiffness maximization problem, which is one

of the most general optimal design problems for elastic materials. The
optimization problem considered in this paper is formulated as a multi-
loading problem. In other words, we assume that a single elastic body
is subjected to different 𝑛 ways of loads, and consider an optimization
problem that attempts to obtain a set of design variables, 𝜙 and 𝝑
that yields great performance for all of them. Subject to the governing
equations, Eqs. (1) to (4) and the upper bounded volume constraint of
the material, the mean compliance minimization problem of the elastic
body is formulated as follows:

minimize
𝜙,𝝑

𝐹 [𝜙,𝝑] = max
(

𝐹1, 𝐹2,… , 𝐹𝑛
)

+ 𝑓𝜙 + 𝑓𝝑, (28)

𝐹𝑖[𝜙,𝝑] = ∫𝐷
𝒃̄𝑖 ⋅ 𝒖𝑖d𝐷 + ∫𝛤𝑡𝑖

𝒕̄𝑖 ⋅ 𝒖d𝛤 − ∫𝛤𝑢𝑖
𝒕𝑖 ⋅ 𝒖̄𝑖d𝛤 ,

(29)

𝑓𝜙[𝜙] =
𝜏𝜙
2 ∫𝐷

‖𝛁𝜙‖2d𝐷, (30)

𝑓𝝑[𝝑] =
𝜏𝝑
4 ∫𝐷

{𝛁𝝑 + (𝛁𝝑)T} ∶ {𝛁𝝑 + (𝛁𝝑)T}d𝐷, (31)

subject to 𝐺[𝜙] = ∫𝐷
𝜌d𝐷 − 𝑉 ≤ 0, (32)

∫𝐷
𝝈̃𝑖 ∶ ̂̃𝝐𝑖d𝐷 + ∫𝐷

𝒃̄𝑖 ⋅ 𝒖̂𝑖d𝐷 = ∫𝛤𝑡
𝒕̄𝑖 ⋅ 𝒖̂𝑖d𝛤 . (33)

We deal with the multi-loading problem of minimizing the maxi-
mum of the 𝑛 principal objective functionals 𝐹𝑖 defined in Eq. (29).
In the right hand side of Eq. (29), the first term represents the min-
imization of the work done by the body force 𝒃̄𝑖 on the elastic body
in the domain 𝐷, the second term represents the minimization of the
displacement 𝒖𝑖 at the boundary with fixed stress, 𝛤𝑡𝑖 , and the third
term represents the maximization of the stress 𝒕𝑖 at the boundary with
fixed displacement, 𝛤𝑢𝑖 . 𝑓𝜙 and 𝑓𝝑 are auxiliary objective functionals
for regularizing the design variables 𝜙 and 𝝑, respectively. Eq. (32)
represents the upper bounded volume constraint of the material, and 𝑉
is its upper bound. Eq. (33) is the weak form of the governing equation
for an elastic body subjected to multiple loads, where 𝒖̂𝑖 is the vector
of a test function and ̂̃𝝐 is defined as ̂̃𝝐 = {(∇𝒖̂ ) + (∇𝒖̂ )T}∕2.
5

𝑖 𝑖 𝑖 𝑖
2.4.2. Updating scheme for design variables
We describe in detail how to update the design variables 𝜙 and

𝝑 for the optimization problem of stiffness maximization. First, the
constrained optimization problem outlined in Section 2.4.1 is replaced
with an unconstrained optimization problem by the Lagrange multiplier
method.

Letting 𝐹𝑗 = 𝐹𝑗 [𝜙(𝒙),𝝑(𝒙)] be the maximum of 𝑛 principal ob-
jective functionals 𝐹𝑖’s shown in Eq. (29), and defining Lagrangian
 =  [𝜙(𝒙),𝝑(𝒙); 𝜆𝐺] using 𝐹𝑗 , the upper volume constraint func-
tional 𝐺 in Eq. (32), and its Lagrange multiplier 𝜆𝐺, the unconstrained
optimization problem is expressed as follows:

minimize
𝜙,𝝑

 [𝜙(𝒙),𝝑(𝒙); 𝜆𝐺] = 𝐹𝑗 [𝜙(𝒙),𝝑(𝒙)] + 𝜆𝐺𝐺[𝜙(𝒙)]. (34)

At this time, the Karush-Kuhn–Tucker (KKT) condition is expressed as
follows:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑆𝜙(𝒙; 𝜆𝐺) =
𝛿 [𝜙(𝒙),𝝑(𝒙); 𝜆𝐺]

𝛿𝜙(𝒙)
= 𝑆𝜙𝐹𝑗 (𝒙) + 𝜆𝐺𝑆𝜙𝐺 (𝒙) = 0,

𝑺𝝑(𝒙; 𝜆𝐺) =
𝛿 [𝜙(𝒙),𝝑(𝒙); 𝜆𝐺]

𝛿𝝑(𝒙)
= 𝑺𝝑𝐹𝑗

(𝒙) + 𝜆𝐺𝑺𝝑𝐺 (𝒙) = 𝟎,

𝜆𝐺𝐺[𝜙(𝒙)] = 0, 𝜆𝐺 ≥ 0, 𝐺[𝜙(𝒙)] ≤ 0.

(35)

Originally, 𝑆𝜙𝐹𝑗 (𝒙), 𝑺𝝑𝐹𝑗
(𝒙) and 𝑆𝜙𝐺 (𝒙), 𝑆𝝑𝐺 (𝒙) are the functional

derivatives of objective functional 𝐹𝑗 [𝜙(𝒙),𝝑(𝒙)] and constraint func-
tional 𝐺[𝜙(𝒙)], respectively, by the design variable 𝜙(𝒙), 𝝑(𝒙). In this
research, they are partially replaced with alternative expressions. Here,
𝑆𝜙𝐹𝑗 , 𝑺𝝑𝐹𝑗

, 𝑆𝜙𝐺 , 𝑆𝝑𝐺 can be represented as follows:

𝑆𝜙𝐹𝑗 (𝒙) = −𝜖𝑗 (𝒙) ∶ ̃̃𝑪(𝒙) ∶ 𝜖𝑗 (𝒙), (36)

𝑺𝝑𝐹𝑗
(𝒙) = −𝜖𝑗 (𝒙) ∶

𝜕 ̃̃𝑪(𝒙)
𝜕𝝑(𝒙)

∶ 𝜖𝑗 (𝒙), (37)

𝑆𝜙𝐺 (𝒙) =
𝛿𝐺[𝜙(𝒙)]
𝛿𝜌(𝒙)

= 1, (38)

𝑺𝝑𝐺 (𝒙) =
𝛿𝐺[𝜙(𝒙)]
𝜹𝝑(𝒙)

= 𝟎. (39)

𝑆𝜙𝐹𝑗 in Eq. (36) is the design sensitivity for the level-set based topology
optimization following the lead of Yamada et al. [20]. 𝑺𝝑𝐹𝑗

in Eq. (37)
is the design sensitivity for the orientation optimization, which is also
derived via the adjoint variable method as Eq. (36). 𝑆𝜙𝐺 and 𝑺𝝑𝐺 in
Eqs. (38) and (39), respectively, are the functional derivatives with
respect to 𝜌 and 𝝑 of the volume upper bound constraint functional
𝐺 in Eq. (32).

The candidate for the optimal solution of the mean compliance
minimization problem is the design variable 𝜙, 𝝑 that satisfies the
KKT condition, but it is difficult to find this optimal solution directly
from the condition in Eq. (35). Hence, we employ the time evolution
equation to obtain the optimal solution. In other words, a fictitious
time 𝑡 is introduced, proper initial values are given, and the level-set
function is temporally updated according to the following reaction–
diffusion equation to obtain candidate design variables 𝜙, 𝝑 that can
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Fig. 4. Penalization for the norm of double-angle direction vector.
be the optimal solution. In solving the time evolution equation, ap-
propriate Neumann or Dirichlet boundary conditions are imposed on
𝛤 = 𝜕𝐷. Moreover, adding the auxiliary terms described later, the time
evolution equation can be expressed as a reaction–diffusion equation
as follows:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑚𝜙
𝜕𝜙(𝒙, 𝑡)
𝜕𝑡

= −𝑆𝜙(𝒙, 𝑡) + 𝜏𝜙∇2𝜙(𝒙, 𝑡) + 𝑃𝜙[𝜙(𝒙, 𝑡)] in 𝐷,

𝜕𝜙(𝒙, 𝑡)
𝜕𝑛

= 0 on 𝛤 ,

𝑚𝝑
𝜕𝝑(𝒙, 𝑡)
𝜕𝑡

= −𝑺𝝑(𝒙, 𝑡) + 𝜏𝝑𝛁 ⋅ (𝛁𝝑(𝒙, 𝑡) + {𝛁𝝑(𝒙, 𝑡)}T) + 𝑷 𝝑[𝝑(𝒙, 𝑡)] in 𝐷,

𝜕𝝑(𝒙, 𝑡)
𝜕𝑛

= 𝟎 on 𝛤 ,

(40)

where 𝑚𝜙, 𝑚𝝑 on the left-hand side of the first and third equations are
constants. The second term on the right hand side of the first equation is
the sensitivity of the auxiliary objective functional 𝑓𝜙 for 𝜙 in Eq. (30),
and the second term on the right side of the third equation is the
sensitivity of the auxiliary objective functional 𝑓𝜃 for 𝝑 in Eq. (31). 𝜏𝜙
and 𝜏𝝑 are the regular coefficients for each design variables. They are
well-known parameters that can be used to control the complexity of
the optimal structures [22]. The third terms 𝑃𝜙 and 𝑷 𝝑 on the right side
of the first and third equations are the penalty terms. These terms are
introduced so that the design variable 𝜙 and 𝝑 are updated within the
upper bound of the norm of 𝜙 and 𝝑 as far as possible, and expressed
as follows:

𝑃𝜙[𝜙(𝒙, 𝑡)] = 𝛬𝜙{𝜙lub(𝒙, 𝑡) − 𝜙(𝒙, 𝑡)}; 𝜙lub(𝒙, 𝑡) =
𝜙(𝒙, 𝑡)

max(1, |𝜙|) , (41)

𝑷 𝝑[𝝑(𝒙, 𝑡)] = 𝛬𝝑{𝝑mub(𝒙, 𝑡) − 𝝑(𝒙, 𝑡)}; 𝝑mub(𝒙, 𝑡) =
𝝑(𝒙, 𝑡)

max(1, ‖𝝑‖) . (42)

The coefficients 𝛬𝜙, 𝛬𝝑(≫ 1) on the right hand side of Eqs. (41) and
(42) are parameters that adjust the contribution of the penalty term
to the overall reaction–diffusion equation, Eq. (40). The larger the
contribution of the penalty term 𝑃𝜙, the more exactly the level set
function 𝜙 satisfies −1 ≤ 𝜙 ≤ 1, which makes diffusion by 𝑓𝜙 in
Eq. (30) work only at the interface between the material and void
domain. Similarly, the larger the contribution of the penalty term 𝑷 𝝑,
the closer its norm approaches to 1 while maintaining the orientation
of double-angle direction vector 𝝑, as shown in Fig. 4.

2.5. Design problem of generating fiber path lines

2.5.1. Mathematical optimization model
We show how to display the actual fiber arrangement by path

lines which are generated from the distribution of the double-angle
direction vector 𝝑 obtained by the structural optimization method
described in Section 2.4.1. This method is effective in the design phase
of mechanical products made of fiber-reinforced composites such as
CFRP. Generated fiber arrangement is both highly rigid and easy to
6

manufacture, because the fibers can be controlled to be equally spaced
and continuous and not to intersect each other.

The path line of fibers is obtained by attributing it to an optimiza-
tion problem. A scalar function 𝜓 = 𝜓(𝒙) is defined as a design variable
of the optimization problem in the fixed design domain, 𝐷. Then, let
this scalar function 𝜓 be optimized so that its contours follow the given
vector field (or tensor field). Given the direction tensor 𝑾̃ = 𝒑⊗𝒑, this
can be done by optimizing the scalar function 𝜓 so that 𝛁𝜓 ⋅ 𝒑 → 0 (or
(𝛁𝜓 ⋅ 𝒑)2 = {(𝛁𝜓)(𝛁𝜓)T} ∶ 𝑾̃ → 0).

The above optimization problem is formulated as follows:

minimize
𝜓

𝐹𝜓 [𝜓] = 𝐹orth + 𝐹df + 𝑓𝜓 , (43)

𝐹orth[𝜓] =
𝐶orth
2 ∫𝐷

𝜌
(

{(𝛁𝜓)(𝛁𝜓)T} ∶ 𝑾̃
)

d𝐷, (44)

𝐹df[𝜓] =
𝐶df
4 ∫𝐷

𝜌(1 − ‖∇𝜓‖2)2d𝐷, (45)

𝑓𝜓 [𝜓] =
𝜏𝜓
2 ∫𝐷

‖𝛁𝜓‖2d𝐷, (46)

where 𝐹orth is the objective functional that requires the gradient vector
of the scalar function 𝜓 to be orthogonal to direction tensor 𝑾̃ . 𝐹df
is the objective functional that requires the scalar function 𝜓 contours
to be equally spaced. Note that in these two objective functionals, the
integrand on the right-hand side is multiplied by the density function
𝜌, since the objective in this study is to design the fiber arrangement in
the material domain 𝛺 by scalar function 𝜓 . 𝑓𝜓 is an auxiliary objective
functional that intends to regularize the design variable 𝜓 . When the
optimization is performed with the objective functionals in Eqs. (43)
to (46), however, only the gradient 𝛁𝜓 of the scalar function 𝜓 can be
determined. In other words, if certain 𝜓 = 𝜓 ′(𝒙) is a candidate solution
of the above optimization problem, then 𝜓 = 𝜓 ′(𝒙) + 𝜓0 should also
be a candidate. To avoid this problem, we assign the point constraint
𝜓(𝒙0) = 𝜓0 at 𝒙 = 𝒙0 in the domain.

2.5.2. Updating scheme for design variables
We describe in detail how to update the design variable 𝜓 for the

optimization problem of generating fiber path lines. Similarly for the
optimization problem of producing fiber path lines, it is difficult to
directly obtain the best design variable 𝜓 from Eqs. (43) to (46). The
optimization problem is replaced with that of solving the time evolution
equation to update the design variable and find the optimal solution:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑚𝜓
𝜕𝜓(𝒙, 𝑡)
𝜕𝑡

= −𝑆𝐹orth (𝒙, 𝑡) − 𝑆𝐹df (𝒙, 𝑡) − 𝑆𝑓𝜓 (𝒙, 𝑡) in 𝐷,

𝜕𝜓(𝒙, 𝑡)
𝜕𝑛

= 0 on 𝛤 ,

𝜓(𝒙, 𝑡) = 𝜓0 at 𝒙 = 𝒙0.

(47)

Also in this time evolution equation, the Neumann boundary condition
is imposed like in Eq. (40). The third equation provides a point con-
straint for the design variable 𝜓(𝒙, 𝑡) to have fixed value 𝜓0 at 𝒙 = 𝒙0,
thereby preventing the optimization problem from being ill-posed. In
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Fig. 5. Flowchart of the mean compliance minimization problem.
Fig. 6. Flowchart of the generation problem for the fiber path lines.
Fig. 7. Design settings for the bridge problem.
addition, 𝑆𝐹orth , 𝑆𝐹df and 𝑆𝑓𝜓 in the right side of the first equation are
the sensitivity to the scalar function 𝜓 for the objective functionals
𝐹orth, 𝐹df and 𝑓diff shown in Eqs. (44) to (46), respectively, and can
be expressed as follows:

𝑆𝐹orth (𝒙) =
𝛿𝐹orth[𝜓(𝒙)]

𝛿𝜓(𝒙)
= −𝐶orth𝜌(𝒙)𝛁 ⋅ (𝑾̃ (𝒙) ⋅ {𝛁𝜓(𝒙)}), (48)

𝑆𝐹df (𝒙) = 𝐶df𝜌(𝒙)∇ ⋅ {(1 − |∇𝜓|2)∇𝜓}, (49)

𝑆𝑓𝜓 (𝒙) =
𝛿𝑓𝜓 [𝜓(𝒙)]
𝛿𝜓(𝒙)

= −𝜏𝜓𝛁2𝜓(𝒙). (50)
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3. Implementation details

3.1. Optimization algorithm for stiffness maximization problem

For the stiffness maximization problem shown in Section 2.4.1,
the flowchart of the algorithm in the proposed method is shown in
Fig. 5. First, we set the level set function 𝜙 = 𝜙init(𝒙) representing the
initial structure and the double-angle direction vector 𝝑 = 𝝑init(𝒙) =
|𝜍init(𝒙), 𝜁init(𝒙)|T representing the initial direction. Next, the governing
equations are solved by the finite element method and the objective
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Fig. 8. Optimal configuration for the bridge problem.
functional is evaluated. If the objective value is converged, the opti-
mization procedure is terminated. If not, the sensitivity to the level-set
function 𝜙 and the double-angle direction vector 𝝑 are calculated and
the design variables are updated simultaneously. It should be noted
here that although it is possible to update the two design variables
one by one, it has been reported that simultaneously updating the
design variables enables the convergence of the objective functionals
to smaller values and the derivation of superior optimized results [17].
The detail is discussed in a later section. Then, it returns to the steps
of solving the governing equations and evaluating the objective func-
tional. Iterating the above procedure, we obtain the level-set function
𝜙 = 𝜙opt(𝒙), which represents a candidate for the optimal structure,
and the double-angle direction vector 𝝑 = 𝝑opt(𝒙), which represents a
candidate for the optimal orientation. In this research, a series of these
optimization procedures were implemented in COMSOL Multiphysics
5.6 and the computations were performed.

3.2. Optimization algorithm for generating fiber path lines

For the problem of generating fiber path lines shown in Sec-
tion 2.5.1, the flowchart of the algorithm in the proposed method is
shown in Fig. 6. First, the initial distribution of the scalar function 𝜓 =
𝜓init(𝒙) is set, and then the optimized design variables, 𝜙opt and 𝝑, are
given. The two optimized design variables are not updated at all during
the process here, and handled as fixed quantities rather than design
variables in the optimization problem of producing fiber path lines de-
scribed in Eqs. (43) to (46). Next, the objective functional is evaluated.
When the objective functional has converged sufficiently to generate
equally spaced and continuous fiber path lines, the optimization is
terminated as an optimized configuration has been obtained. On the
other hand, if it is considered that the calculations have not converged,
the sensitivity to the scalar function 𝜓 is calculated and the design
variables are updated. The updating scheme is introduced in a later
section. It then goes back to the step of solving the governing equations
and evaluating the objective functional. Iterating the above procedure,
we obtain the optimal scalar function 𝜓 such that its contours are
equally spaced and continuous path lines with no intersections.

4. Numerical examples

In Section 4.1, we show the validity and effectiveness of our pro-
posed simultaneous optimization method via three numerical examples.
First, we computed the stiffness maximization problem with isotropic
material property for comparing our proposed method to a previous
work [20]. Next, we take the orthotropic material into account and
reproduce one example shown in Nomura et al. [16]. In this part, the
validity of our proposed method is verified by identifying the optimal
orientation and the direction of the principal stress under the single
8

loading problem. In contrast to this simple problem, the optimal
orientation cannot be predicted when multiple loadings are considered.
We show the efficiency of our proposed method via the multi-loading
problem. The common parameters for Section 4.1 are listed in Table 1.
Each parameter has been introduced in Section 2.4. Otomori et al. [22]
presented extensive numerical experiments to show the effect of these
parameters.

In Section 4.2, we design the fiber path lines considering the manu-
facturability based on the obtained optimal orientation results. First, we
demonstrate the superiority of our proposed method over the conven-
tional commercial software algorithm. Second, we examine the effect
of the initial guess on the path lines. The common parameters for
Section 4.2 are listed in Table 2. These parameters play the same role
as the level-set based topology optimization.

4.1. Stiffness maximization problem

4.1.1. Bridge structural problem
The fixed design domain 𝐷 and the boundary conditions in this

problem settings are shown in Fig. 7. The problem is nondimension-
alized according to Eq. (5). The size of the fixed design domain 𝐷 is
1 × 2. On the bottom boundary, the left part 𝛤𝑢0 is fixed, the right part
𝛤𝑢𝑟 is roller supported, and the boundary load 𝒕̄ = [0,−5]𝑇 is applied to
the center part 𝛤𝑡. We set the isotropic material property as follows:
𝐸1 = 𝐸2 = 1.0, and 𝜇12(= 𝜇21) = 0.31 in Eqs. (10) and (11). The
optimization problem can be described as follows,

minimize
𝜙

𝐹 [𝜙] = ∫𝛤𝑡
𝒕̄ ⋅ 𝒖d𝛤 +

𝜏𝜙
2 ∫𝐷

‖𝛁𝜙‖2d𝐷, (51)

subject to 𝐺[𝜙] = ∫𝐷
𝜌d𝐷 − 𝑉 ≤ 0, (52)

∫𝐷
𝝈̃ ∶ ̂̃𝝐d𝐷 = ∫𝛤𝑡

𝒕̄ ⋅ 𝒖̂d𝛤 . (53)

The maximum allowed volume is set to 𝑉 = 0.80, namely, 40% of the
fixed design domain 𝐷.

The optimal configuration by the proposed method is shown in
Fig. 8. We obtained the practically identical configuration with pre-
vious research by Yamada et al. [20], and confirmed that the topol-
ogy optimization using the level set-based method introduced to this
research has been performed adequately.

4.1.2. Cantilever beam problem
In order to show the validity of our proposed method, we present a

numerical example of a cantilever beam problem and compare it with
previous work [16]. This section considers the stiffness maximization
problem for the single loading case under the volume constraint. The
design settings are shown in Fig. 9, and the detail settings are as
follows. The size of the fixed design region 𝐷 is 1 × 2, the left side
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Table 1
Common parameter settings of the stiffness maximization problems in Section 4.1.

Symbol Value Description

𝛿𝜙 0.2 Transition width of the smoothed Heaviside function
𝑑 1.0 × 10−5 Ratio of Young’s modulus between material and void domains
𝜏𝜙 1.0 × 10−3 Regularization coefficient of the level-set function 𝜙
𝜏𝝑 1.0 × 10−3 Regularization coefficient of double-angle direction vector 𝝑
𝜙init 0.5 Initial value of the level-set function 𝜙
𝑚𝜙 0.25 Proportionality constant for the time derivative term of the level-set function 𝜙
𝑚𝝑 1.5 Proportionality constant for the time derivative term of the double-angle direction vector 𝝑
𝛬𝜙 1.0 × 102 Penalty coefficient of the level-set function 𝜙
𝛬𝝑 1.0 × 101 Penalty coefficient of the double-angle direction vector 𝝑
𝛥𝑥 0.05 Mesh size of the finite elements in the numerical computations
Table 2
Common parameter settings of the optimization problem for generating fiber path lines in Section 4.2.

Symbol Value Description

𝐶orth 1.0 Coefficients determining the contribution of primary objective functional 𝐹orth, Eq. (44)
𝐶df 0.2 Coefficients determining the contribution of primary objective functional 𝐹df, Eq. (45)
𝜏𝜓 1.0 × 10−3 Regularization coefficient of scalar function 𝜓 , Eq. (46)
𝑚𝜓 1.0 Proportionality constant for the time derivative term of scalar function 𝜓 , Eq. (47)
𝛥𝑥1 0.05 Finite element mesh size for the first numerical computation
𝛥𝑥2 0.02 Finite element mesh size for the second numerical computation
𝛥𝜓 1.5 × 10−2 Parameter that determines the interval to display the contours of scalar function 𝜓
𝜓0 0 Value of point constraint to be imposed to scalar function 𝜓
Fig. 9. Design settings for case 1: the cantilever problem under a vertical load.
Fig. 10. Optimal configuration with color chart.
boundary 𝛤𝑢1 is fixed, and boundary load 𝒕̄1 = [0,−1]𝑇 is applied to the
center of the right side 𝛤𝑡1 . We set the orthotropic material property
as follows: 𝐸1 = 1.0, 𝐸2 = 0.1 and 𝜇12 = 0.3, (𝜈21 = 𝜈12𝐸2∕𝐸1 =
0.03). The initial value of the double angle-direction vector 𝝑 is set to
[𝜍init(𝒙), 𝜁init(𝒙)]𝑇 = [0.25, 0.00]𝑇 . The optimization problem is described
as follows:

minimize
𝜙,𝝑

𝐹 [𝜙,𝝑] = ∫𝛤𝑡
𝒕̄1 ⋅ 𝒖d𝛤 +

𝜏𝜙
2 ∫𝐷

‖𝛁𝜙‖2d𝐷

+
𝜏𝝑 {𝛁𝝑 + (𝛁𝝑)T} ∶ {𝛁𝝑 + (𝛁𝝑)T}d𝐷, (54)
9

4 ∫𝐷
subject to 𝐺[𝜙] = ∫𝐷
𝜌d𝐷 − 𝑉 ≤ 0 (55)

∫𝐷
𝝈̃ ∶ ̂̃𝝐d𝐷 = ∫𝛤𝑡

𝒕̄1 ⋅ 𝒖̂d𝛤 . (56)

We set the upper volume constraint as 50% of the fixed design domain
𝐷, i.e., 𝑉 = 1.0.

The optimal result by the proposed method is shown in Fig. 10. The
color chart represents the direction angle in the range [−𝜋∕2, 𝜋∕2], and
the arrows clearly indicate the orientation at each point. Comparing
our result to that of the previous research by Nomura et al. [16], it can
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Fig. 11. Comparison between (a) optimal configuration and (b) the direction of the principal stress in case 1.
Fig. 12. Convergence history for optimization of case 1: objective functional 𝐹1 (Eq. (29)), constraint functional 102 × 𝐺 (Eq. (32)) and Lagrange multiplier 𝜆𝐺 (Eq. (35)).
be said that the structural configurations and orientations are almost
identical.

The optimal configuration and the distribution of the normalized
principal stress are shown in Fig. 11 and the convergence history of
the optimization is shown in Fig. 12. From these results, it can be
said that the distribution of orientation and the normalized principal
stresses are in pretty good agreement, and that a design solution with
high stiffness has been achieved. For brevity herein after, we name this
single-loading problem as case 1 and the optimal solution (Fig. 11(a))
as S1.

We consider the other design settings as case 2, which is shown
in Fig. 13. The boundary load to the center of right boundary 𝛤𝑡2 is
𝒕̄2 = [2, 0]𝑇 . The objective functional is defined as follows,

minimize
𝜙,𝝑

𝐹 [𝜙,𝝑] = ∫𝛤𝑡
𝒕̄2 ⋅ 𝒖d𝛤 +

𝜏𝜙
2 ∫𝐷

‖𝛁𝜙‖2d𝐷

+
𝜏𝝑
4 ∫𝐷

{𝛁𝝑 + (𝛁𝝑)T} ∶ {𝛁𝝑 + (𝛁𝝑)T}d𝐷. (57)

The other settings are identical with case 1.
The obtained optimal configuration and the distribution of the nor-

malized principal stresses are presented in Fig. 14, and the convergence
history of the optimization is plotted in Fig. 15. We obtained the
well-known optimal configuration and also obtained the reasonable
10
orientation angle, which identified with the direction of the principal
stress. This optimal solution (Fig. 14(a)) is named as S2.

4.1.3. Multi-loading problem
The optimal orientation does not identify with the principal stress

direction and the orientation cannot be predicted in multi-loading
problem. So, this section shows the efficiency of our proposed method
by applying it to the multi-loading problem combining cases 1 and 2
in Section 4.1.2. The optimization problem is defined as follows:

minimize
𝜙,𝝑

𝐹 [𝜙,𝝑] = max
(

∫𝛤𝑡
𝒕̄1 ⋅ 𝒖1d𝛤 , ∫𝛤𝑡

𝒕̄2 ⋅ 𝒖2d𝛤
)

+
𝜏𝜙
2 ∫𝐷

‖𝛁𝜙‖2d𝐷

+
𝜏𝝑
4 ∫𝐷

{𝛁𝝑 + (𝛁𝝑)T} ∶ {𝛁𝝑 + (𝛁𝝑)T}d𝐷,

(58)

subject to 𝐺[𝜙] = ∫𝐷
𝜌d𝐷 − 𝑉 ≤ 0 (59)

∫𝐷
𝝈̃1 ∶ ̂̃𝝐1d𝐷 = ∫𝛤𝑡

𝒕̄1 ⋅ 𝒖̂1d𝛤 . (60)

∫𝐷
𝝈̃2 ∶ ̂̃𝝐2d𝐷 = ∫𝛤𝑡

𝒕̄2 ⋅ 𝒖̂2d𝛤 . (61)



Composites Part C: Open Access 13 (2024) 100432Y. Fujimoto et al.
Fig. 13. Design settings for case 2: the cantilever problem under a horizontal load.
Fig. 14. Comparison between (a) optimal configuration and (b) the direction of the principal stress in case 1.
Fig. 15. Convergence history for optimization of case 2: objective functional 𝐹2 (Eq. (29)), constraint functional 102 × 𝐺 (Eq. (32)) and Lagrange multiplier 𝜆𝐺 (Eq. (35)).
Here, to regularize the optimization problem, the objective functionals
𝐹1 and 𝐹2 in Eq. (28) were normalized by the terminated objective
values, 𝐹1opt = 3.026 and 𝐹2opt = 0.807, respectively.

The obtained optimal result, the normalized principal stress distri-
bution, and the convergence history of the optimization are shown in
Figs. 16–18, respectively. The distribution of directions in the optimal
11
solution is different from the directions in cases 1 and 2. The conver-
gence history confirms that the objective functionals 𝐹1 and 𝐹2 are
stable enough to converge, and that the numerical computation has
been properly performed. As with the results in Section 4.1.2, the
optimal solution (Fig. 16) is named as M. We perform the crosscheck,
that is, the optimal results, S1, S2, and M, are evaluated via each
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Fig. 16. Optimal configuration for the multi-loading problem.
Fig. 17. Direction of the principal stress for the multi-loading problem.
Fig. 18. Iterative histories for multi-loading case: objective functional 𝐹1 , 𝐹2 (Eq. (29)),
constraint functional 102 × 𝐺 (Eq. (32)) and Lagrange multiplier 𝜆𝐺 (Eq. (35)).

terminated objective value in Table 3. The minimum values of 𝐹1 and
𝐹2 are obtained in S1 and S2, respectively. And, S1 has the worst value
for case 2, and S2 vice versa. On the other hand, the optimal result, M,
has enough small values for both the objective functional values 𝐹1 and
𝐹2.

As these numerical examples show, we successfully computed our
simultaneous optimization algorithm even in the complicated multi-
loading problem.
12
Table 3
Crosscheck for the objective values.

Case 𝐹1 (vs. vertical loading) 𝐹2 (vs. horizontal loading)

Configuration S1 3.026(minimum value) 2.235(+177.0%)
Configuration S2 10.765(+255.8%) 0.807(minimum value)
Configuration M 3.448(+13.9%) 0.916(+13.5%)

4.2. Optimization problem of generating fiber path lines

This section shows the validity of our proposed method for generat-
ing fiber path lines. The left center of the fixed design domain 𝐷 is set as
the origin 𝒙0 = [0, 0]T of the coordinate system, and a point constraint
𝜓(𝒙0) = 𝜓0 with a scalar function 𝜓 is imposed at 𝒙0. The initial
distribution 𝜓init of the scalar function 𝜓 is given, and optimization
is carried out with the finite element mesh size 𝛥𝑥1 until numerical
calculations converge. Then, its converged solution is set as the initial
value, and the optimization is performed again with the finite element
mesh size 𝛥𝑥2, which is smaller than 𝛥𝑥1. Finally, the terminated scalar
function 𝜓 is regarded as the optimal solution 𝜓opt, and its contour line
represents the fiber path lines.

We generated the fiber path lines for the three optimal results, S1,
S2 and M. The initial distribution of the scalar function 𝜓 is set as
𝜓init(𝒙) = |𝑦|. In order to show the effectiveness of our proposed
method, the design of fiber path lines generated by our proposed
method was compared to the streamlines automatically generated by
COMSOL Multiphysics for S1, S2, and M in Figs. 19–21. In these
examples, the fiber path lines made by the proposed method were
aligned along a given direction. Comparing (a) and (b), it can be
concluded that our constructed method is more capable of arranging
fibers with guaranteed equal spacing and continuity than the streamline
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Fig. 19. Comparison between (a) the proposed method and (b) algorithm of commercial software for the single vertical loading problem.
Fig. 20. Comparison between (a) the proposed method and (b) algorithm of commercial software for the single horizontal loading problem.
Fig. 21. Comparison between (a) the proposed method and (b) algorithm of commercial software for the multi-loading problem.
Table 4
Comparison of the objective functional values.

Case Stiffness maximization only After fiber arrangement

Configuration S1 𝐹1 = 3.026 𝐹1 = 3.108(+2.71%)
Configuration S2 𝐹2 = 0.807 𝐹2 = 0.817(+1.24%)
Configuration M 𝐹1 = 3.448𝐹2 = 0.916 𝐹1 = 3.512 (+1.86%)𝐹2 = 0.937 (+2.29%)
based results. The values of upsampled results were compared with the
results before being interpreted in Table 4. From the table, it can be
observed that the values of 𝐹1 and 𝐹2 before and after being interpreted
were quite close to each other with the maximum discrepancy of 2.71%.
On the other hand, the generated fiber path lines were almost equally
spaced and continuous.

Next, we ran the same algorithm for the optimal result, M, as input,
but using different initial distribution of the scalar function, 𝜓 , as
following three cases, 𝜓init(𝒙) =

√

𝑥2 + 𝑦2, 𝑥 and (−|𝑥| + |𝑦|)∕
√

2.
The results are shown in Fig. 22. The path lines of the fibers inside

the structure have a similar pattern for any initial distribution 𝜓init of
the scalar function 𝜓 , which are equally spaced and continuous.
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Through the above numerical examples in Section 4.2, we con-
cluded that our proposed method is capable of generating fiber path
lines with good manufacturability.

5. Conclusions

In the design of continuous fiber materials, ensuring an even and
continuous distribution of fibers is critical. Here, we propose an inte-
grated two-step approach for topology optimization and fiber arrange-
ment in continuous-fiber composites.

In the first phase, we formulated the structural shape and orien-
tation design problem with the objective of maximizing stiffness. To
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Fig. 22. Optimal configurations obtained by using different initial guesses: initial configuration (left) and optimal configuration (right).
achieve this, we employed a level set-based topology optimization
method for topological design, which resulted in clear boundaries
without grayscale. For angle design, we introduced a novel design
variable known as the ‘‘double angle vector’’ denoted as 𝝑, which signif-
icantly improved optimization by reducing the likelihood of converging
to a local optimum. Furthermore, we derived design sensitivities for
the concurrent optimization method and utilized reaction–diffusion
equations to update the design variables, 𝜙 and 𝝑.

Continuous fiber materials must be manufactured with continuous
and equal spacing between them. In the second phase, we proposed an
optimization problem to obtain manufacturable fiber paths based on
the results from the first stage. We introduced a scalar function, denoted
as 𝜓 , as a design variable and optimized it in a way that its contours
14
align with the optimal orientation angles. We also derived the design
sensitivity for drawing the path lines and employed reaction–diffusion
equations to update the design variable, 𝜓 . This consistent updating
scheme shared with the first stage offers advantages in terms of ease of
implementation and parameter studies.

We conducted numerical examples to show the validity and effi-
ciency of our proposed optimal design method. In Sections 4.1.1 and
4.1.2, we demonstrated the validity of our concurrent optimization
method by comparing it to two conventional methods. The first exam-
ple addressed the isotropic material problem, while the second example
pertained to anisotropic material, where we observed the alignment
of the optimum orientation results with the direction of the principal
stress, consistent with prior research. In Section 4.1.3, we tackled
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F

an optimization problem for a multi-loading case to demonstrate the
efficiency of our proposed method. We successfully obtained optimal
results that were not contingent on the principal stress directions. The
second phase of our method was employed to generate manufacturable
fiber path lines in Section 4.2. Based on the results of Sections 4.1.2 and
4.1.3, we successfully achieved even and continuous distribution of the
fiber path lines. Furthermore, we confirmed reduced dependency on
initial configurations compared to previous methods. Finally, through
the numerical examples, we demonstrated that our proposed method
efficiently achieves optimal designs considering the manufacturability
of continuous fibers.
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