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1 Introduction

Coupling is introduced by Ebeling [E06] between weight systems with (n + 1)
integers. Focusing on n = 3, and we can consider weight systems that define
simple K3 singularities. By Yonemura’s classification [Y90], there are 95 such
systems, let’s call them K3 weight systems, exist. By an appropriate compactifi-
cation, we get weight systems with 5 integers with which the weighted projective
space is a toric Fano 3-fold. Parametrized by the complete anticanonical linear
system, we obtain an example of K3 surfaces, called weighted K3 surfaces as a
hypersurface in the Fano 3-fold. Thus, we expect to proceed to a study of K3
surfaces, by using toric geometry as well as a standard lattice theory.
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Strongly coupling pairs among K3 weight systems are all classified by [E06].
Moreover, it is investigated in [E06] that there is a relation between the coupling
duality and Saito duality which concerns the reduced zeta function of some
isolated hypersurface singularities, as is summarized here: denote by ζ̃∗C(t) is

the Saito dual rational function of ζ̃C(t).

Theorem ([E06]). 1 Let (a, b) be a coupling pair with magic square C.
(i) The reduced zeta function associated to C has a formula:

ζ̃C(t) =
∏

J:special

(1− td/aJ )(−1)|J|+1·aJ ·| detCIJ |/d.

(ii) (Case n = 3, Corollary) If C is primitive, then, ζ̃ tC(t) = ζ̃∗C(t) holds. □

We are motivated by a strong desire to understand a geometric structure of
K3 surfaces, in particular, from a viewpoint of Picard lattices, an arithmetic
characteristic. However, it is quite rough to investigate only the lattices. Thus,
we would like to combine with some other objects. As is explained, there is
an example of K3 surfaces associated to an IHS, for which, we can construct
the Milnor lattice together with the Seifert form. In our study, we are intended
to understand a relation between the Picard lattice of the families of weighted
K3 surfaces, and the Milnor lattice of simple K3 singularity with the structure
Seifert form.

Motivated by [E06], we are interested in giving another interpretation of
coupling in terms of K3 surfaces. Indeed, there are many coupling pairs that
are out of application of Ebeling’s theorem, part (ii).

We consider the following two questions for coupling dual pairs of K3 weight
systems formed of (a1, a2, a3; d) and (b1, b2, b3;h) together with the families Fa

and Fb of weighted K3 surfaces.
Q.1 Are the pair of families Fa and Fb polytope-dual ?
Q.2 Does a polytope-dual pair extend to lattice-dual ?

The questions are partially affirmatively answered by the following theorems.

Main Theorem A ([M21]). Any strongly coupling pairs extend to the polytope-
dual of families except the cases where the projectivized weight systems are

• (1, 3, 4, 7; 15) (self-dual), (1, 3, 4, 4; 12) (self-dual), and

• the pair ((1, 1, 3, 5; 10), (3, 5, 11, 19; 38)). □

Main Theorem B ([M23’, M23]). For coupling dual pairs in [M21] except #’s
24, 27, 31 and 39 2, the associated families are lattice dual. □

We give a sketch of the proof for Main Theorems A and B in §3 following a
preliminary section where we discuss coupling duality, and polytope and lattice
dualities associated to weight systems. We summarize our main theorems by
giving Table 1 before Appendix, where we discuss Ebeling’s Theorem.

1See Appendix for notions used here.
2The numbering follows [E06].
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2 Preliminary

Coupling duality

We collect necessary definition from [E06] concerning on coupling duality.

Definition 2.1. An n-tuple (w1, . . . , wn) of integers is well-posed if 0 <
w1 ≤ · · · ≤ wn and gcd (w1, · · · , wn) = 1, and for any distinct (n− 1) integers,
gcd (wi1 , · · · , win−1

) = 1.
We call a tuple (w1, . . . , wn; v) a weight system if (w1, . . . , wn) is well-

posed and v ∈ Z>0. ■

Take weight systemsWa := (a1, a2, · · · , an ; d) andWb := (b1, b2, · · · , bn ; h).

Definition 2.2. A square matrix C = (cij)
n
i,j=1 of size n is called a weighted

magic square (associated to weight systems) if the following relations hold:

Ct(a1 a2 · · · an) = t(d d · · · d) and (b1 b2 · · · bn)C = (d d · · · d). ■

Let C = (cij) be the weighted magic square for Wa and Wb.

Definition 2.3. (1) The magic square C is almost primitive if there exist
integers a0 and b0 such that |detC| = a0h = b0d. If a0 = b0 = 1, C is
primitive.

(2) A coupling pair is (Wa, Wb) together with an almost primitive C.

(3) The coupled pair (Wa, Wb) is said strongly coupled if

∀j, ∃i : cij = 0, and ∀i, ∃j : cij = 0. ■

Example 1. Let

Wa = (1, 2, 9 ; 18), Wb = (2, 3, 11 ; 24), and C =
(

9 0 1
2 8 0
0 0 2

)
.

We have

Ct
(
1 2 9

)
= t

(
18 18 18

)
,

(
2 3 11

)
C =

(
24 24 24

)
, and

detC = 144 = 18 · 8 = 24 · 6, ∴ |detC|/24 = 6, |detC|/18 = 8.

Moreover, C has at least one entry 0 in every row and column. Therefore, the
pair (Wa, Wb) together with C is strongly coupled.

In fact [Y90], the weight systems Wa and Wb are K3 weight systems, that
is, general quasi-homogeneous polynomials f(x, y, z), and f ′(x′, y′, z′) of degree
18, and 24, resp., of weights

wt(x, y, z) = (1, 2, 9), wt(x′, y′, z′) = (2, 3, 11)
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determine simple K3 singularities. And thus, their “projectivizations”, general
quasi-homogeneous polynomials F (W,X, Y, Z), and F ′(W ′, X ′, Y ′, Z ′) of degree
18, and 24, resp., of weights

wt(W,X, Y, Z) = (6, 1, 2, 9), wt(W ′, X ′, Y ′, Z ′) = (8, 2, 3, 11)

are birational to K3 surfaces. ■
Let (a, b) be a strongly coupling pair of K3 weight systems, and Fa, Fb

the families of weighted K3 surfaces parametrized respectively by the complete
anticanonical linear system |−KP(a)|, and |−KP(b)|. Here, the weighted pro-
jective spaces P(a) of weight a and P(b) of weight b are toric 3-folds that are
determined by polytopes ∆a, and ∆b. And there is a correspondence between
the linear system |−KP(a)| (resp. |−KP(b)|) and the set of lattice points in the
polytope ∆a (resp. ∆b).

Polytope and lattice dualities

We first discuss polytope duality.

Definition 2.4 (Polytope duality). The families Fa and Fb are polytope
dual if there exist reflexive polytopes ∆ and ∆′ such that

∆ ⊂ ∆a, ∆
′ ⊂ ∆b, and∆

′ ≃ ∆∗

hold. Here, ∆∗ is the polar dual of ∆. ■

Although it is “out of interest” for K3 surfaces, Definition 2.4 is motivated
by Batyrev’s theorem [B94].

Theorem 2.1 ([B94]). (1) The followings are equivalent:
(i) A polytope ∆ is reflexive. (ii) The toric variety P∆ is Fano.

(2) The families F∆ and F∆′ of Calabi-Yau varieties with ∆′ ≃ ∆∗ are mirror
pair in the sense that there is a duality between their Hodge diamonds. □

Note that if the pair (∆, ∆′) of polytopes gives a polytope duality extending
a strongly coupling pair (a, b), we have subfamilies of K3 surfaces F∆ ⊂ Fa,
and F∆′ ⊂ Fb.

We open a discussion on lattice duality by formulating the Picard lattice of
a family F∆ of K3 surfaces associated to a reflexive polytope ∆.

Definition 2.5 (toric contribution). The toric contribution is the value
defined by

L0(∆) :=
∑

Γ∈∆[1]

l∗(Γ)l∗(Γ∗),

where ∆[1] is the set of all edges in ∆, and l∗(Γ) is the number of all inner
lattice points in an edge Γ. ■
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Definition 2.6 (Picard lattice of a family). We denote by Pic (∆) the Picard
lattice of the family F∆, and Pic (∆)tor a sublattice of Pic (∆) that is generated
by the divisors which do not contribute the toric contribution. ■

Definition 2.7 (Lattice duality). The families F∆ and F∆′ are lattice dual
if the isometry

Pic (∆′)⊥ΛK3
≃ U ⊕ Pic (∆)tor

holds true. Here, ΛK3 := U⊕3 ⊕ E⊕2
8 is the K3 lattice. ■

Definition 2.7 is motivated by “Dolgachev-Nikulin mirror” by Dolgachev [D96]:
for (primitive) sublattices M and M ′ of ΛK3, two families of M -/M ′-polarized
K3 surfaces are mirror if the isometry M⊥

ΛK3
≃ U ⊕M ′ holds. In particular, ex-

tending the study in case of rank-one latticeM = ⟨2⟩ by [D96], we are interested
in more general primitive sublattices of ΛK3.

3 Sketch of the Proof of Main Theorems

Main Theorem A

Step 1. If the isomorphism ∆a ≃ ∆∗
b holds, then, we may take ∆ = ∆a and

∆′ = ∆b, and stop here.

Step 2. Otherwise, we try to check a subpolytope ∆ of ∆a satisfies the conditions
(1) ∆ is reflexive, and (2) the polar dual ∆∗ ≃ ∃∆′ ⊂ ∆b.

Main Theorem B

Step 1. Let X := P∆. To find a lattice ⟨D1|−KX
, D2|−KX

, . . . , Dr|−KX
⟩Z

generated by the restrictions to −KX of linearly-independent toric divisors
D1, D2, . . . , Dr with or without divisors that contribute the toric contribu-
tion. We then compute the intersection numbers Di|−KX

.Dj |−KX
, which can

be achieved by a general theory of toric geometry.

Step 2. To prove the primitivity in ΛK3 of the lattice obtained in Step 1.
Case 1. If the discriminant group is of prime order, then, the claim is verified.
Case 2. Otherwise, use the following criterion by Nikulin:

Corollary 3.1 ([N80, Corollary 1.12.3]). Let L be an even unimodular lattice
of signature (l+, l−), and K be a sublattice with signature (t+, t−). The lattice
K is a primitive sublattice of L if
(1) l+ − l− ≡ 0 mod 8, (2) l− − t− ≥ 0 and l+ − t+ ≥ 0, and
(3) rkL − rkK > l(AK), where l(AK) is the length of the discriminant group
AK of K. □

Step 3. To prove the isometry Pic (∆′)⊥ΛK3
≃ U ⊕ Pic (∆)tor.

Case 1. If Pic (∆)tor and Pic (∆′) are well-known lattices such as of type
ADE, or “star-shaped” L′′

p,q,r, then, its orthogonal complement in ΛK3 is known.
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Case 2. We know at least the invariants of the lattices: the signature and
the discriminant number, and that the lattice is hyperbolic. Here we use the
following criterion of Nikulin’s:

Corollary 3.2 ([N80, Corollary 1.6.2]). The lattices K and K ′ are orthogonal
(in L), i.e., K⊥

L ≃ K ′ if and only if −qK ≃ qK′ for the discriminant forms. □

4 Conclusion, Further Study, and a Table

We have seen that coupling duality for K3 weight systems extends to polytope
duality and lattice duality in some cases. Therefore, we obtained meanings of the
coupling in terms of K3 surfaces; interpretations in classical mirror symmetry,
and in “Dolgachev-Nikulin mirror symmetry”.

We prospect to see a meaning of coupling duality in terms of Seifert form
on the Milnor lattice of the simple K3 singularity, in particular, zeta functions,
in case Ebeling’s theorem does not apply.

Remark 1. we obtained a numerical relation between the Seifert form for 3-
dimensional IHS and the Picard lattices of weighted K3 surfaces in [M23’].

Here is the summarizing table of our main theorems.

# b;h ∆′ Pic (∆′) Pic (∆)tor ∆ a; d

1. 1, 6, 14, 21; 42

(−1, 2,−1)
(−1,−1,−1)
(−1,−1, 1)
(6,−1,−1)

U ⊕ E8 U ⊕ E8

(−1, 2,−1)
(−1,−1,−1)
(−1,−1, 1)
(6,−1,−1)

1, 6, 14, 21; 42

2. 1, 3, 7, 10; 21 1, 6, 14, 21; 42

3. 1, 4, 9, 14; 28 1, 6, 14, 21; 42

4. 1, 5, 12, 18; 36 1, 6, 14, 21; 42

5. 1, 3, 7, 10; 21 1, 3, 7, 10; 21

6. 1, 4, 9, 14; 28 1, 3, 7, 10; 21

7. 1, 5, 12, 18; 36 1, 3, 7, 10; 21

8. 1, 4, 9, 14; 28 1, 4, 9, 14; 28

9. 1, 5, 12, 18; 36 1, 4, 9, 14; 28

10. 1, 5, 12, 18; 36 1, 5, 12, 18; 36

11.
12.
13.
14.

1, 4, 10, 15; 30

(−1,−1, 1)
(−1,−1,−1)
(λ,−1,−1)
(4, 0,−1)
(−1, 2,−1)

U ⊕ E7

(λ, µ) =
(5, 2), (6, 1)

U ⊕ A1 ⊕ E8

(−1,−1, 1)
(−1,−1,−1)
(4,−1,−1)
(0, 2,−1)
(−1, µ,−1)

1, 6, 8, 15; 30

15.
16.
17.
18.

1, 3, 8, 12; 24

(−1,−1, 1)
(−1,−1,−1)
(5,−1,−1)
(3,−1, 0)
(−1, 2,−1)

U ⊕ E6 U ⊕ A2 ⊕ E8

(−1,−1, 1)
(−1,−1,−1)
(3,−1,−1)
(0,−1, 1)
(−1, 2,−1)

1, 6, 8, 9; 24

19. 1, 4, 6, 11; 22

(−1,−1, 1)
(−1,−1,−1)
(λ1,−1,−1)
(3, 0,−1)
(0, 2,−1)
(−1, λ2,−1)

U ⊕ A1 ⊕ E7

(λ1, λ2;µ1, µ2) =
(3, 1; 4, 2), (4, 1; 4, 1), (3, 2; 3, 2)

U ⊕ A1 ⊕ E7

(−1,−1, 1)
(−1,−1,−1)
(µ1,−1,−1)
(3, 0,−1)
(0, 2,−1)
(−1, µ2,−1)

1, 4, 6, 11; 22

20. 1, 3, 5, 9; 18

(−1,−1, 1)
(−1,−1,−1)
(5,−1,−1)
(0, 2,−1)
(−1, 2,−1)

U ⊕A1⊕E6 A2 ⊕ L′′
2,4,5

(0,−1, 1)
(−1,−1,−1)
(2,−1,−1)
(2, 0,−1)
(−1, 2,−1)

1, 4, 6, 7; 18



On Dualities Related to Coupling by M. Mase vii

(continued from the previous page)

# b;h ∆′ Pic (∆′) Pic (∆)tor ∆ a; d

21. 1, 3, 5, 6; 15

(−1, 2,−1)
(0,−1, 1)
(−1,−1, 1)
(−1,−1,−1)
(4,−1,−1)

U ⊕A2⊕E6 A2 ⊕ L′′
3,3,4

(2,−1, 0)
(−1, 2,−1)
(0,−1, 1)
(2,−1,−1)
(−1,−1,−1)

1, 3, 5, 6; 15

22. 1, 4, 5, 10; 20
(4,−1,−1)
(−1,−1, 1)
(−1,−1,−1)
(−1, 3,−1)

L′′
2,5,5 L′′

2,5,5

(4,−1,−1)
(−1,−1, 1)
(−1, 1, 0)
(−1,−1,−1)

1, 4, 5, 10; 20

23. 1, 3, 4, 7; 15 1, 4, 5, 10; 20

24. 1, 3, 4, 7; 15 Not exist · · · · · · · · · · · · · · · · · · Not exist 1, 3, 4, 7; 15

25. 1, 3, 4, 8; 16

(3, 0,−1)
(−1,−1, 1)
(4,−1,−1)
(−1, 3,−1)
(−1,−1,−1)

L′′
3,4,4 L′′

2,5,6

(3,−1,−1)
(0,−1, 1)
(−1, 1, 0)
(−1,−1, 0)
(−1,−1,−1)

1, 4, 5, 6; 16

26. 1, 3, 4, 5; 13

(−1,−1, λ1)
(−1, 1, 0)
(0,−1, 1)
(−1,−1,−1)
(λ2,−1,−1)
(2, 0,−1)
(−1, λ3,−1)

U ⊕ L′
(10,−13)

(λ1, λ2, λ3;µ1, µ2, µ3) =
(1, 2, 2; 1, 2, 0), (0, 3, 2; 0, 3, 0),
(1, 3, 0; 0, 2, 2), (1, 3, 2; 0, 2, 0)

U ⊕ L(10,−13)

(−1,−1, µ1)
(−1, 1, 0)
(0,−1, 1)
(−1,−1,−1)
(µ2,−1,−1)
(2, 0,−1)
(−1, µ3,−1)

1, 3, 4, 5; 13

27. 1, 3, 4, 4; 12 Not exist · · · · · · · · · · · · · · · · · · Not exist 1, 3, 4, 4; 12

28. 2, 3, 8, 11; 24
(1, 0, 0)
(0, 1, 0)

U ⊕ D4 ⊕ E8 U ⊕ D4

(−1,−1, 1)
(−1, 2,−1)

1, 2, 6, 9; 18

29. 2, 5, 14, 21; 42
(0, 0, 1)
(−3,−8,−12)

(7,−1,−1)
(−1,−1,−1)

1, 2, 6, 9; 18

30. 2, 3, 8, 13; 26

(1, 0, 0)
(0, 1, 0)
(0, 0, 1)
(1, 1, 1)
(−2,−6,−9)

L′′
2,4,5 ⊕ E6 U ⊕ A1 ⊕ A2

(−1,−1, 1)
(−1, 1,−1)
(−1,−1,−1)
(6,−1,−1)
(0, 2,−1)

1, 2, 4, 7; 14

31. 1, 2, 4, 5; 12

Case 1.
(0,−1, 1)
(−1,−1,−1)
(λ,−1,−1)
(−1, 2,−1)
. . . . . . . . . . . .

?? ??

Case 1.
(0, 1, 0)
(0, 0, 1)
(2, 2, 3)
v
. . . . . . . 2, 3, 10, 15; 30

Case 2.
(−1, 2,−1)
(−1,−1, 1)
(−1,−1,−1)
u, (0,−1, 1)

(λ; v) = (4; (−3,−8,−12)),
(5; (−2,−6,−9));

(u;w) = ((5,−1,−1);−−),
((3, 0,−1); (−1,−2,−4)),
((1, 1,−1); (−2,−5,−8))

Case 2.
(0, 1, 0)
(0, 0, 1)
(1, 1, 2), (0,−2,−3)
(−2,−6,−9),w

32. 1, 2, 2, 5; 10 (1, 0, 0)
(0, 1, 0)
(0, 0, 1)
(−2,−2,−5)

L′′
2,5,5 ⊕ E8

(
Z2,

(
2 1
1 −2

)) (−1,−1, 1)
(−1,−1,−1)
(4,−1,−1)
(−1, 4,−1)

2, 4, 5, 9; 20
33. 2, 6, 7, 15; 30 1, 2, 2, 5; 10
34. 2, 5, 6, 13; 26 1, 2, 2, 5; 10
47. 5, 7, 8, 20; 40 1, 1, 1, 2; 5

35.
36.
37.

1, 1, 4, 6; 12

(−1,−1, 1)
(−1,−1,−1)
(11,−1,−1)
(−1, 2,−1)

U U⊕2 ⊕ E
⊕2
8

(−1, 0, 0)
(0, 0, 1)
(2, 4,−1)
(1,−1, 0)

3, 5, 11, 14; 33

38.
40. 1, 1, 3, 5; 10

(−1,−1, 1)
(−1,−1,−1)
(9,−1,−1)
(0, 2,−1)
(−1, λ,−1)

U ⊕E7 ⊕E8
(λ; v,u) =
(2; (0,−2,−3), (−1,−3,−5)), (1; (−6,−4,−1), (−5,−3,−1))

U ⊕ A1

(1,0,0), (0,1,0)

(0,0,1), v, u 3, 4, 10, 13; 30

39. 1, 1, 3, 5; 10 Not exist · · · · · · · · · · · · · · · · · · Not exist 3, 5, 11, 19; 38

41.
42.
43.

1, 1, 3, 4; 9

(−1, 2,−1)
(−1,−1, 1)
(−1,−1,−1)
(8,−1,−1)
(0,−1, 1)

U ⊕ A2 U ⊕ E6 ⊕ E8

(1, 0, 0)
(0, 1, 0)
(0, 0, 1)
(−1,−3,−4)
(0,−2,−3)

3, 4, 11, 18; 36

44. 1, 1, 2, 4; 8

(−1,−1, 1)
(−1,−1,−1)
(7,−1,−1)
(−1, 3,−1)

U ⊕ ⟨−4⟩ U ⊕ L(15,−4)

(1, 0, 0)
(0,−1, 1)
(0, 0, 1)
(−1, 2,−6)

3, 4, 7, 10; 24

46. 1, 1, 1, 2; 5

(−1, 2, 0)
(−1,−1, 1)
(2,−1, 0)
(−1,−1,−1)
(4,−1,−1)
(−1, 4,−1)

(
2 1
1 −2

)
U ⊕ L16,5

(0, 0, 1)
(2,−3,−1)
(−1, 1, 0)
(0, 1, 0)
(1, 0, 0)

4, 5, 7, 9; 25

48.
49.

1, 1, 1, 3; 6

(−1,−1, 1)
(−1,−1,−1)
(5,−1,−1)
(−1, 5,−1)

U ⊕ ⟨−2⟩ ⊕ E
⊕2
8 ⟨2⟩

(1, 0, 0)
(0, 1, 0)
(0, 0, 1)
(−1, 3,−1)

5, 6, 8, 11; 30



On Dualities Related to Coupling by M. Mase viii

(continued from the previous page)

# b;h ∆′ Pic (∆′) Pic (∆)tor ∆ a; d

50. 1, 1, 1, 1; 4

(−1,−1, 3)
(−1,−1,−1)
(3,−1,−1)
(−1, 3,−1)

U ⊕ ⟨−4⟩ ⊕ E
⊕2
8 ⟨4⟩

(1, 0, 0)
(0, 1, 0)
(0, 0, 1)
(−1,−1,−1)

7, 8, 9, 12; 36

45. 3, 4, 7, 14; 28
(0, 0, 1)
(0, 1, 0)
(2,−2,−1)
(3,−4,−2)
(−2, 2,−1)

U ⊕ L(14,7) U⊕
(
Z2,

(−4 1
1 −2

)) (−1, 1, 0)
(0,−1, 1)
(−1,−1, 1)
(−1,−1,−1)
(6,−1,−1)

1, 1, 2, 3; 7

51. 2, 2, 3, 7; 14 2, 2, 3, 7; 14

Table 1: Polytope/Lattice duality associated to strongly coupling pairs

Remark 2. In Table 1, we denote by L(r,δ) and L
′
(r,δ) the even positive-definite

lattice of rank r and of discriminant δ.

Appendix

We review Ebeling’s two results in subsection 1.1: a formula for the reduced zeta
functions for a 3-dimensional IHS, and an interpretation of coupling in terms of
Saito dual function.

For a 3-dimensional IHS defined by a quasi-homogeneous polynomial f , the
Milnor lattice is the reduced homology group H̃∗(F) of the Milnor fibre

F := {(x1, x2, x3) ∈ C3|f(x1, x2, x3) = 1},

which admits a monodromy transformation induced by the natural C∗-action

θ : F → F; (x1, x2, x3) 7→ (e2πia1/dx1, e
2πia2/dx2, e

2πia3/dx3),

together with the induced homomorphism θ∗ on the Milnor lattice H̃∗(F).
The reduced zeta function of θ is defined by

ζ̃C(t) :=
∏
p≥0

(det (id− tθ∗|H̃p(F)
))(−1)p .

In the following, we define a notion “special” subset, the matrix CIJ , and
an integer aJ

3.
A subset J ⊂ {1, 2, 3} is special if there exists a subset I ⊂ {1, 2, 3} such

that |I| = |J |, and for all i ∈ I and j ∈ {1, 2, 3}\J , the (i, j)-th entry cij of C is
zero. Always ∅ and {1, 2, 3} are special. Let J be a special set. For I ⊂ {1, 2, 3},
define a matrix CIJ by

CIJ := (cij)
j∈J
i∈I , C∅ := (1).

Define an integer aJ by aJ := gcd (aj | j ∈ J). In particular, a∅ := d.

3See Theorem, part (i) in subsection 1.1.
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We review the definition of Saito dual rational function 4. In general, for
a rational function ψ(t) =

∏
l|h(1 − tl)αl , (αl ∈ Z), define the Saito dual

rational function ψ∗(t) by

ψ∗(t) =
∏
m|h

(1− tm)αh/m .

Example 2. Consider a strongly coupled pair considered in Example 1:

Wa = (1, 2, 9 ; 18), Wb = (2, 3, 11 ; 24).

By Ebeling’s formula, the reduced zeta functions ζ̃C(t) and ζ̃tC(t) are given by

ζ̃C(t) = (1− t)−1 · (1− t2) · (1− t18)7,

ζ̃tC(t) = (1− t)−1 · (1− t8) · (1− t24)3.

The Saito dual ζ̃∗tC(t) of the reduced zeta function ζ̃tC(t) is given by

ζ̃∗tC(t) = (1− t24) · (1− t3)−1 · (1− t)−3.

This is an example that cannot apply Ebeling’s Theorem, part (ii). ■
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