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Abstract. This article summarizes some of the results in joint papers [CKS19,
CKS21, CKS23] with Alex Chirvasitu and S. Paul Smith. We studied elliptic
algebras introduced by Feigin and Odesskii in 1989, which are noncommutative
graded algebras Qn,k(E, η) parametrized by an elliptic curve E, a point η ∈ E, and
coprime positive integers n > k. These algebras are a generalization of Sklyanin
algebras, recognized as important examples of Artin-Schelter regular algebras.
One of our main results is that Qn,k(E, η) has the same Hilbert series as the
polynomial ring in n variables when η is not a torsion point.
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1. Introduction

This article summarizes some of the results in joint papers [CKS19, CKS21,
CKS23] with Alex Chirvasitu and S. Paul Smith.

In 1989, Feigin and Odesskii [FO89, OF89] defined a family of graded algebras
Qn,k(E, η) called elliptic algebras. These algebras have played an important role in
noncommutative algebraic geometry, especially in the study of Artin-Schelter regular
algebras.

Let τ ∈ H be a complex number that is in the upper half plane, and define the
lattice Λ := Z + Zτ . Consider the elliptic curve E := C/Λ and fix a closed point
η ∈ E. Let n > k ≥ 1 be coprime integers. The algebra Qn,k(E, η) is defined
to be the graded C-algebra generated by n variables xi in degree one, indexed by
i ∈ Z/nZ, with n2 quadratic relations

(1.1)
∑

r∈Z/nZ

θj−i+(k−1)r(0)
θj−i−r(−η)θkr(η) xj−rxi+r = 0 (i, j ∈ Z/nZ),

where θα (α ∈ Z/nZ) are certain theta functions of order n that are quasi-periodic
with respect to the lattice Λ (see [CKS21, §2.2.5]). More precisely, they are holo-
morphic functions on C characterized by the following properties (up to common



scalar multiple):

θα(z + 1
n
) = e

2π
√

−1α
n θα(z),

θα(z + 1
n
τ) = e2π

√
−1(−z− 1

2n
− n−1

2n
τ)θα+1(z).

The zeros of θα are the points in −α
n

+ 1
n
Z + Zτ (all have multiplicity one), so the

denominator in the relations (1.1) can be zero when η is in 1
n
Λ (that is, η is an n-

torsion point). Nonetheless, there is a way to extend the definition to all η ∈ E, and
then, Qn,k(E, 0) is the polynomial ring in n variables ([CKS21, Proposition 5.1]).
So {Qn,k(E, η)}η∈E can be thought as a family of noncommutative deformations of
the polynomial ring.

These algebras have been studied from various perspectives. One significant as-
pect is that they are a rich source of Artin-Schelter regular algebras.

A graded C-algebra A generated by finitely many degree-one elements x1, . . . , xr

over A0 = C with relations f1, . . . , fs is called Artin-Schelter regular (or AS-regular
for short) of dimension n if

(1) the global dimension of A is n;

(2) Exti
A(C, A) ∼=

C if i = n,
0 if i ̸= n;

(3) the sequence {dimC Ai}∞
i=0 has polynomial growth.

Artin-Schelter [AS87] gave a partial classification of 3-dimensional AS-regular al-
gebras. Their first observation was that the 3-dimensional AS-regular algebras are
either of quadratic type or of cubic type, the former has 3 generators (in degree 1)
and 3 quadratic relations (as the polynomial ring in 3 variables does), and the latter
has 2 generators and 2 cubic relations.

Artin-Tate-Van den Bergh [ATVdB90] showed that one can associate a triple
(X, σ, L) to a 3-dimensional AS-regular algebra, where X is a scheme (a closed sub-
scheme of P2 or P× P), σ is an automorphism of X, and L is an invertible sheaf on
X, and that the algebra can be recovered from the associated triple. In this way,
the classification of 3-dimensional AS-regular algebras can be reduced to the classi-
fication of such triples. In the recent works by Itaba-Matsuno [IM21] and Matsuno
[Mat21], the classification of quadratic 3-dimensional algebras has been completed,
in the sense that they wrote down the relations for each isomorphism classes explic-
itly. We may associate a triple to a higher-dimensinal AS-regular algebra, but there
is no method to recover the algebra from the triple in general. Thus the classification
for AS-regular algebras of dimension ≥ 4 is not in sight.

When k = 1, Qn,1(E, η) are known as Sklyanin algebras, and have been consid-
ered as important examples of quadratic Artin-Schelter regular algebras. The name
comes from the appearance of Q4,1(E, η) in Sklyanin’s papers on the quantum scat-
tering inverse method [Skl82]. The list of 3-dimensional quadratic Artin-Schelter
regular algebras of Artin-Schelter [AS87] or Artin-Tate-Van den Bergh [ATVdB90]
suggests that Q3,1(E, η) are the most “standard” family among those algebras.

In 1992, Smith-Stafford [SS92] showed that Q4,1(E, η) is a 4-dimensional AS-
regular algebra, and that it is a noetherian domain that has the same Hilbert series



as the polynomial ring in 4 variables. This result was generalized by Tate and Van
den Bergh [TVdB96] to Qn,1(E, η) for arbitrary n; they showed that Qn,1(E, η) is
n-dimensional AS-regular and has many other good homological properties shared
with a polynomial ring in n variables.

When k > 1, not much was known about Qn,k(E, η). Thus, Alex Chirvasitu, S.
Paul Smith, and the author initiated a project to investigate these algebras. This
leads to the results that we will review in later sections.

2. Hilbert series and AS-regularity

Feigin-Odesskii ([FO98, Ode02], for example) claimed that the algebras Qn,k(E, η)
have the same Hilbert series as the polynomial ring in n variables (namely (1− t)−n)
for generic η, and provided some ideas for the proof. We made the statement more
precise, and gave a complete proof for that.

Theorem 2.1 ([CKS23, Theorem 1.1]). Assume that η ∈ E is not a torsion point.
(1) The Hilbert series of Qn,k(E, η) is the polynomial ring in n variables.
(2) Qn,k(E, η) is a Koszul algebra whose global dimension is n.

We will briefly sketch the proof for the first statement. The key fact is that the
defining relations for Qn,k(E, η) come from a certain solution to the quantum Yang-
Baxter equation. Let V be the degree-one part of the algebra Qn,k(E, η), namely
the vector space with basis {xi}i∈Z/nZ. Define the linear operator Rη(z) : V ⊗C V →
V ⊗C V by

Rη(z)(xi ⊗ xj) := θ0(−z) · · · θn−1(−z)
θ1(0) · · · θn−1(0)

∑
r∈Z/nZ

θj−i+r(k−1)(−z + η)
θj−i−r(−z)θkr(η) xj−r ⊗ xi+r.

The family of operators {Rη(z)}z∈C satisfies the quantum Yang-Baxter equation with
one spectral parameter :

Rη(u)12Rη(u + v)23Rη(v)12 = Rη(v)23Rη(u + v)12Rη(u)23

on V ⊗C V ⊗C V , where A12 := A ⊗ idV and A23 := idV ⊗ A for an operator A on
V ⊗C V . This solution is essentially Belavin’s elliptic solution ([Bel80]; see [CKS23,
§1.3]).

It is easy to see that the space for quadratic relations for Qn,k(E, η) is the image
of Rη(η), that is, Qn,k(E, η) is the tensor algebra TCV modulo the ideal generated
by Im Rη(η).

We construct an operator Fd(−η) on V ⊗d by composing some operators of the
form id⊗s

V ⊗ Rη(z) ⊗ id⊗t
V for various z and s + t + 2 = d, and show that

(2.1)
∑

s+t+2=d

V ⊗s ⊗ Im Rη(η) ⊗ V ⊗t ⊆ Ker Fd(−η),

where the left-hand side is the space of degree-d relations for Qn,k(E, η). We do not
present the construction of Fd(−η) here but F2(−η) = Rη(−η) in the case of d = 2.
(2.1) can be deduced using the fact that Rη(z) satisfies the quantum Yang-Baxter
equation, with some additional observation on Rη(z) combined.



We will consider the limit η → 0. It is easy to see that the map η 7→ Rη(η)
is holomorphic on C so taking the limit is essentially substitution η = 0, but we
should note that the limit of Rη(η) may be, and actually is, different from the limit
of Rη(−η). This is because the map (η, z) 7→ Rη(z) is not holomorphic on C2.
Taking the limit η → 0, the image of the operator Rη(η) becomes the space of
quadratic relations for Qn,k(E, 0), which is the polynomial ring in n variables, so
the dimension of the left-hand side of (2.1) becomes the dimension of the space of
degree-d relations for the polynomial ring, which is nd −

(
n+d−1

d

)
. On the other hand,

it can be observed by a direct computation that

lim
η→0

Fd(−η) =
d−1∏
m=1

m! ·
∑

σ∈Sd

σ,

where the symmetric group Sd acts on V ⊗d by permuting tensorands. So the di-
mension of the right-hand side of (2.1) also becomes nd −

(
n+d−1

d

)
.

For a continuous family of operators, the dimension of the image attains the
largest value on a Zariski-open subset, so the dimension of the left-hand side of
(2.1) has the same property, and hence it is ≥ nd −

(
n+d−1

d

)
for a general point η.

Similarly, the dimension of the kernel attains the smallest value on a Zariski-open
subset, so the dimension of the right-hand side of (2.1) is ≤ nd −

(
n+d−1

d

)
for general

η. Since we have the inclusion (2.1) for all η, it follows that (2.1) is an equality for
general η and, in that case, they have dimension nd −

(
n+d−1

d

)
. Moreover,

(2.2) dim
∑

s+t+2=d

V ⊗s ⊗ Im Rη(η) ⊗ V ⊗t ≤ nd −
(

n + d − 1
d

)
≤ dim Ker Fd(−η)

for all η. We have to show that the inequalities in (2.2) are equalities whenever η is
not a torsion point. Since the treatment for general d is complicated [CKS23, §6.4],
we will focus on the case d = 2 here. In this case, (2.1) is

Im Rη(η) ⊆ Ker Rη(−η)
and we already know from (2.2) that

(2.3) dim Im Rη(η) ≤
(

n

2

)
≤ dim Ker Rη(−η).

Thus it suffices to compute the dimension of Ker Rη(z) for all z ∈ C (by the rank-
nullity theorem). The key observation for this is that, for all p ∈ C,
(2.4) dim Ker Rη(p) ≤ multp det Rη(z),
where the right-hand side is the multiplicity of the function z 7→ det Rη(z) at z = p.
(2.4) is not specific to Rη(z) and can be shown elementarily ([CKS23, Lemma 4.1]).
By looking at the definition of Rη(z), we notice that the function z 7→ det Rη(z) is
a theta function of order n4 with respect to Λ, and hence has exactly n4 zeros in
each fundamental parallelogram for Λ. So we obtain
(2.5)

∑
p

dim Ker Rη(p) ≤
∑

p

multp det Rη(z) = n4,



where p runs over a fundamental parallelogram. The final step is to show that
this is an equality when τ is not a torsion point. By (2.3), we already know that
dim Ker Rη(−η) ≥

(
n
2

)
, and a similar argument shows that dim Ker Rη(η) ≥

(
n+1

2

)
.

We observe that Rη(z+ζ) has the same rank as that of Rη(z) for all ζ ∈ 1
n
Λ ([CKS23,

Proposition 2.6]), so dim Ker Rη(−η + ζ) ≥
(

n
2

)
and dim Ker Rη(η + ζ) ≥

(
n+1

2

)
for

all ζ ∈ 1
n
Λ. There are n2 such ζ in the fundamental parallelogram for Λ. If η /∈ 1

2n
Λ,

then { η+ζ | ζ ∈ 1
n
Λ } and { −η+ζ | ζ ∈ 1

n
Λ } have no intersection, so the dimensions

of the kernels add up to (at least)(
n

2

)
· n2 +

(
n + 1

2

)
· n2 = n4.

Therefore (2.5) is an equality and so is (2.4).
We also have a result on the AS-regularity:

Theorem 2.2 ([CKS23, Theorem 1.2]). Qn,k(E, η) is n-dimensional AS-regular for
all but countably many η ∈ E.

This result is of weaker form than Theorem 2.1 in the sense that we cannot detect
the points where Qn,k(E, η) is (possibly) not AS-regular. Nevertheless, this fact tells
us that elliptic algebras provide a large family of AS-regular algebras.

3. Point modules

The statements of Theorem 2.1 and Theorem 2.2 do not involve the number k at
all, so the reader may wonder how different Qn,k(E, η) are from Qn,1(E, η). In fact,
they are quite different, and looking at the structure of point modules is one way to
observe this.

For a graded C-algebra A generated by finitely many degree-one elements
x1, . . . , xr over A0 = C, a point module is a graded (right) A-module M such that

(1) dimC Mi =

1 if i ≥ 0,
0 if i < 0;

(2) M is generated in degree zero, that is, M = M0A.
Considering point modules for a given algebra was essential in the work of Artin-

Tate-Van den Bergh [ATVdB90]. Indeed, in the triple (X, σ, L) constructed from a
3-dimensional AS-regular algebra A, the closed points of the scheme X parametrizes
the isomorphism classes of point modules over A. Such X is called the point scheme
of A. The point scheme can be defined for A that is not necessarily 3-dimensional
AS-regular. It is defined to be an inverse limit of schemes (more precisely, an inverse
limit of sets, each of which has a natural scheme structure), but the inverse system
often stabilizes, which makes the inverse limit an actual scheme.

The point scheme of the Sklyanin algebras Qn,1(E, η) are understood when η is a
general point. For all n ≥ 3, except for n = 4, the point scheme is the elliptic curve
E ([Smi94]). When n = 4, the point scheme is the union of E and 4 additional
points. If we embed E into P3 as an elliptic normal curve of degree 4, those four



points are realized as the vertices (singular points) of the four singular quadrics that
contain E ([SS92]).

The point scheme for Qn,k(E, η) for k > 1 is not well-understood. Feigin-Odesskii
[OF89, FO98] claimed that the point scheme of Qn,k(E, η) is a finite product Eg

modulo an action of a finite group, where the number g is the length of the negative
continued fraction for n/k:

(3.1) n

k
= n1 − 1

n2 − 1
··· − 1

ng

(n1, . . . , ng are integers ≥ 2).

However, if k = 1, then g = 1, so according to this claim the point scheme of
Qn,1(E, η) should be a quotient of E, but this is not the case when n = 4, because
the point scheme has 4 additional points.

In [CKS19], we defined the action of a finite group explicitly and concluded that
the point scheme always contains the scheme described by Feigin-Odesskii. To
describe the action, let ε : Eg → Eg+1 be the injection defined by

ε(z1, . . . , zg) := (z1, z2 − z1, . . . , zg − zg−1, −zg).

and identify Eg with Im ε, which consists of those points in Eg+1 whose sum of
coordinates is zero. The symmetric group Sg+1 acts on Eg+1 by permutation, and
it induces the action on Im ε, hence on Eg. Define Σ to be the subgroup of Sg+1
generated by transpositions (i, i + 1) for all 1 ≤ i ≤ g satisfying ni = 2.

Theorem 3.1 ([CKS19, Theorem 1.2, Proposition 5.12]). For all η ∈ E, the point
scheme of Qn,k(E, η) contains Xn/k := Eg/Σ.

This reveals a significant difference between Qn,1(E, η) and Qn,k(E, η) for k > 1.
For example, if n = 5 and k = 2, then the negative continued fraction is

5
2 = 3 − 1

2 ,

so g = 2 and (n1, n2) = (3, 2). A direct computation shows that X5/2 = E2/Σ is
the symmetric product S2E. So the point scheme of Q5,2(E, η) contains X5/2. In
contrast, when η ∈ E is a general point, the point scheme of Q5,1(E, η) is E, which
cannot contain S2E.
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