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Abstract

We investigate the wall-crossing phenomena for moduli of framed
quiver representations. As main motivating examples, we present framed
quivers for the type A flag manifolds, Nakajima quiver varieties of type
A, framed moduli of sheaves on the projective plane, the blow-up, and
the (−2)-curve, and the type A affine Laumon spaces. In particular,
we give the residue formula for the type A flag manifold as an example
of wall-crossing formula. We roughly explain the way developed by
Mochizuki, that is, the localization technique on the enhanced master
spaces, in the setting of framed quiver. Specifically, we examine the
wall-crossing formulas for integrals of Euler classes over the framed
quiver moduli spaces.

1 Introduction

A framed quiver representation is a quiver representation with a framing.
Moduli of framed quiver representations are studied and called framed quiver
moduli by Reineke [13]. These moduli spaces contain interesting example
with applications to the representation theory and integrable systems.

Mochizuki [4] developed wall-crossing formula for moduli of parabolic
Higgs bundles on algebraic surfaces. Nakajima-Yoshioka [6] interpreted this
theory in terms of quivers in the study of moduli of framed sheaves on the
blow up P̂2 along a point on P2. These are isomorphic to moduli of repre-
sentations over the framed quiver introduced in Example 2.5. In this note,
we give a brief summary and materials of [10] where we study wall-crossing
formulas for general framed quivers. Finally, we state the wall-crossing for-
mulas in Theorem 5.1 for integrals of Euler classes over the framed quiver
moduli.

2 Framed quiver representations

2.1 Setting

We consider Q = (Q0, Q1, Q2) a quiver with relations, where Q0 is the set
of vertices, Q1 the set of arrows, and Q2 the set of relations.

∗email: ohkawa.ryo@gmail.com The author appreciate for giving him the opportunity
of the talk and the report.
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• •ain(a) out(a)

A path is a consecutive arrows: p = aℓaℓ−1 · · · a2a1

• • • · · · • • •
aℓ aℓ−1 a2 a1in(p) out(p)

A relation is a linear combinations of paths

l =
∑

p : path
out(p)=i,in(p)=j

c(l)p · p

where c
(l)
p ∈ C ( c

(l)
p = {0,±1} in the following ). Set out(l) = i and

in(l) := j
For a finite dimensional Q0-graded vector space V =

⊕
v∈Q0

Vv, we con-
sider a Q-representation ρ = (ρa)a∈Q1 ∈

∏
a∈Q1

Hom(Vout(a), Vin(a)) over V .

For a relation l =
∑
c
(l)
p · p, we set

ρ(l) =
∑

c(l)p · ρ(p) : Vout(l) → Vin(l)

where ρ(p) = ρaℓ ◦ ρaℓ−1
◦ · · · ◦ ρa2 ◦ ρa1 for a path p = aℓaℓ−1 · · · a2a1. Set

RepQ(V ) =

ρ ∈
∏
a∈Q1

Hom(Vout(a), Vin(a))
∣∣∣ ρ(l) = 0 for any l ∈ Q2


We assume that there exists ∞ ∈ Q0 called framing vertex such that
dimV∞ = 1. A pair (Q,∞) is called a framed quiver.

For I = Q0 \ {∞}, we take a generic ζ = (ζi)i∈I ∈ RI and set ζ∞ =
−
∑

i∈I ζi dimVi. We set ζ(S) =
∑

v∈Q0
ζv dimSv for any S =

⊕
v∈Q0

Sv.

Definition 2.1. A Q-representation ρ is said to be ζ-semisable if and only
if we have ζ(S) ≤ 0 for any sub-representation 0 6= S ⊊ V of ρ.

We set

M ζ
Q(α) =M ζ(α) = {ρ ∈ RepQ(V ) : ζ-semistable}/

∏
i∈I

GL(Vi),

where α = (dimVv)v∈Q0 ∈ (Z≥0)
Q0 .

2



2.2 Example of framed quivers

We use the following diagram:

i
•

r

=

i
•
· · ·

r arrows

∞

i
•

r

=

i
•
· · ·

r arrows

∞

This induces actions of diaonal torus (C∗)r ⊂ GL(Cr) via the natural
GL(Cr)-action on HomC(Cr, Vi) and HomC(Vi,Cr) Some examples are pre-
sented by the following diagrams.

Example 2.2 (Flag manifold).

b0

1
•

r W = Cr

b1
2
• b2 · · · bN−2

N − 1
• bN−1

N
•

In this case, we have

RepQ(V ) = HomC(V1,W )×
N−1∏
i=1

HomC(Vi+1, Vi),

and for a stability parameter ζ = (1, . . . , 1) ∈ ZI , the stable locus consists
of (bk)

N−1
k=0 ∈ RepQ(V ) such that bk is injective for all k = 0, 1, . . . , N − 1.

Thus we have an isomorphism

M ζ(α) ∼= Fl(W ; d1, . . . , dN ), (bk)
N−1
k=0 7→ F• = (im(b0 · · · bk))N−1

k=0 ,

where Fl(W ; d1, . . . , dN ) is the flag manifold parametrizing the flags F• in
W with dimFi = dimVi = di.

Example 2.3 (Quiver variety of type An).

1
•

r1

W1 = Cr1

2
•

r2

W2 = Cr2

· · ·
N − 1

•

rN−1

WN−1 = CrN−1

N
•

rN

WN = CrN

z w

B1

B2
z w

B1

B2
z w

B1

B2
z w

B1

B2
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The set Q2 of relations are

−B2B1 + zw ∈ EndC(V1)

B1B2 −B2B1 + zw ∈ EndC(V2)

...

B1B2 −B2B1 + zw ∈ EndC(VN−1)

B1B2 + zw ∈ EndC(VN ).

They are examples of Nakajima quiver varieties introduced in [5]. Here
framed quivers Q are associated to the Dynkin quiver of type A. When r2 =
· · · = rn = 0 and ζ = (1, . . . , 1) ∈ RI , they are isomorphic to the cotangent
bundle T ∗Fl(W1; d1, . . . , dN ) of the flag manifold Fl(W1; d1, . . . , dN ).

Example 2.4 (Framed moduli space on P2 (Jordan quiver)).

B1 B2
•
z w

r

Q2 : B1B2 −B2B1 + zw

These framed quiver also give an example of the Nakajima quiver varieties
associated to the Jordan quiver. When ζ < 0, the framed moduli are isomor-
phic to the moduli spaces of framed sheaves on P2 with the rank r and the
second Chern class dim V . In [7], we study wall-crossing phenomena to give
functional equations of Nekrasov functions associated to the fundamental
matter theory.

Example 2.5. [Framed moduli space on the blowup P̂2]

B1

B2

d

z w

• •

r

Q2 : B1dB2 −B2dB1 + zw

This is the first motivating example studied in [6] to apply wall-crossing
formula to the setting of framed quiver moduli. When ζ = (−1,−1), the
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framed quiver moduli M ζ(α) are isomorphic to the moduli spaces of framed
sheaves on the projective plane P2 with the Chern classes determined from
r and (dimVi)i∈I . On the other hand, when ζ approach enough to the ray
R>0(−1, 1) from the below, the framed quiver moduli M ζ(α) is isomorphic
to the moduli space of framed sheaves on the blow-up P̂2 of one point on
P2 with the Chern classes compatible with the morphism P̂2 → P2. This
situation is used to deduce blow-up formula in [6].

Example 2.6 (Framed moduli space on (−2)-curve).

•

z w

r1

•

w z

r2

B1

B1

B2

B2

Q2 : B1B2 −B2B1 + zw

These framed quivers give the Nakajima quiver varieties associated to the

Dynkin quiver of type A
(1)
1 . This is analogous situation to the previous

example. When ζ = (−1,−1), the framed quiver moduli M ζ(α) are isomor-
phic to the moduli spaces of framed sheaves on the quotient stack [P2/± 1]
with the Chern classes determined from (r1, r2) and (dimVi)i∈I . On the
other hand, when ζ approach enough to the ray R>0(−1, 1) from the be-
low, the framed quiver moduli M ζ(α) is isomorphic to the moduli space of
framed sheaves on the (−2)-curve with the Chern classes corresponding via
the derived Mckay equivalence. In [8], we study wall-crossing phenomena to
give functional equations among the generating functions over these moduli
spaces as a refinement of the derived Mckay equivalence.

Example 2.7 (Chainsaw quiver variety (Affine Laumon space)).

•

r1

•

r2

· · ·

rN

•B1 B1 B1

B1B2 B2 B2

z z z
w w w w

B1B2 −B2B1 + zw
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The framed quiver moduli spaces M ζ(α) are called the chainsaw quiver
variety. In particular, when ζ = (−1, . . . ,−1) ∈ RI , the framed quiver
moduli spaces M ζ(α) are called the affine Laumon spaces. In [12], we study
K-theoretic wall-crossing formula, and in particular, apply it to the case
where N = 2 and V2 = 0 to deduce some transformation formula for multiple
hypergeometric series. One of them gives another proof to the Kajihara
transformation formula [3, Theorem 1.1], which is a multiple generalization
of the Euler transformation formula for the Gauss hypergeometric series.
Furthermore in [12], we give a conjecture for general N and V that some
generating series of K-theoretic integrals over framed quiver moduli M ζ(α)
satisfies transformation formulas.

Example 2.8 (Affine Laumon space ( N = 2, r1 = r2 = 1)).

•

r1

•

r2

B1

B1
B2 B2

z z
w w

Q2 : B1B2 −B2B1 + zw

This is the special cases of the previous example. In [1], we showed the non-
stationary difference equation studied by Shakirov is gauge equivalent to
the qq-Painlevé VI equation introduced by Hasegawa, and conjectrued that
generating series of integrals over affine Laumon spaces gives a solution. In
[2], we showed that this conjecture is true describing generating series in
terms of the Jackson integrals satisfying the q-KZ equation, which is shown
to be equal to the truncated Shakirov equation.

However we want to pursue possibility for another proof of the conjecture
using K-theoretic wall-crossing formula developed in [12], and generalize it
to arbitrary N ≥ 2 and (ri)i∈I .

3 Residue formula

We give the residue formula for the type A flag manifold as an example of
wall-crossing formula.
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3.1 Projective space

First we explain outline of our computations for the special case. Let W =
Cr be a r-dimensional vector space, and set

Pr−1 = P(W ) = (W \ 0) /C∗.

We compute the Euler number of Pr−1 by Mochizuki method. Set M =
P(W ⊕ C), and consider C∗

ℏ-action defined by

[w1, . . . , wr, x] 7→ [w1, . . . , wr, e
ℏx]

for eℏ ∈ C∗
ℏ. The fixed points set P(W ⊕ C)C∗

ℏ is decomposed as

P(W ⊕ C)C
∗
ℏ = P(W ) t pt

ι→ M,

where P(W ) = {x = 0} and pt = {[0, . . . , 0, 1]}.
We introduce the equivariant Chow ring. For a variety X over C with

C∗
ℏ-action, We write bye A•

C∗
ℏ
(X) the C∗

ℏ-equivariant Chow ring of X.

Fact 3.1. When X = pt, we have

A•
C∗
ℏ
(pt) ∼= Z[ℏ],

where ℏ = c1(e
ℏ) for the weight space eℏ with the eigenvalue eℏ ∈ C∗

ℏ. The
weight space eℏ is regarded as a C∗

ℏ-equivariant vector bundle over pt.

We use the localization formula for the fixed points set XC∗
ℏ

ι→ X.

Fact 3.2. When X is smooth, we have the following:

(1) XC∗
ℏ =

⊔
JXJ for smooth XJ

(2) We have an isomorphism

ι∗ : A
•
C∗
ℏ
(XC∗

ℏ)⊗Q[ℏ, ℏ−1]] ∼= A•
C∗
ℏ
(X)⊗Q[ℏ, ℏ−1]].

(3) We have

(ι∗)
−1[X] =

∑
J

[XJ]

Eu(NJ)
,

where Eu(NJ) is the Euler class of the normal bundle NJ of XC∗
ℏ in X.

Using this fact, we define integral over smooth C∗
ℏ-variety X by localiza-

tion. For Π: X → pt and ΠJ : XJ → pt, we have the commutative diagram:

A•
C∗
ℏ
(X)⊗Z[ℏ] Q[ℏ, ℏ−1]]

Π∗(·)∩[X]
��

(ι∗)−1

∼=
// A•

C∗
ℏ
(XC∗

ℏ)⊗Z[ℏ] Q[ℏ, ℏ−1]]

∑
J ΠJ∗(·)∩[XJ]

��

A
C∗
ℏ• (pt)⊗Z[ℏ] Q[ℏ, ℏ−1]] A

C∗
ℏ• (pt)⊗Z[ℏ] Q[ℏ, ℏ−1]]
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We set ∫
X
c =

∑
J

πJ∗
c|XJ

Eu(NJ)
,

for c ∈ A•
C∗
ℏ
(X). When X is proper over C, this is equal to the usual integral∫

X c = Π∗c ∩ [X].
We perform integral over X = P(W ). Let NP(W ), Npt be normal bundles

of P(W ), pt in M = P(W ⊕ C) respectively. Then we have

1

Eu(NP(W ))
=

1

ℏ+ c1(OP(W )(1))
=

1

ℏ
· 1

1 + c1(OP(W )(1))/ℏ

=
1

ℏ

(
1−

c1(OP(W )(1))

ℏ
+ · · ·

)
∈ A∗

C∗
ℏ
(M)⊗Q[ℏ, ℏ−1K

The localization formula implies∫
M
ψ =

∫
P(W )

ψ|P(W )

Eu(NP(W ))
+

∫
pt

ψ|pt
Eu(Npt)

.

Here the left hand side is in Q[ℏ], while the right hand side is in Q[ℏ, ℏ−1]].

Lemma 3.3. We have Res
ℏ=∞

∫
P(W )

ψ

Eu(NP(W ))
=

∫
P(W )

ψ.

Proof. We use the following:

1

Eu(NP(W ))
=

1

ℏ+ c1(OP(W )(1))

=
1

ℏ
−
c1(OP(W )(1))

ℏ2
+ · · ·

This implies ∫
P(W )

ψ = − Res
ℏ=∞

∫
pt

ψ|pt
Eu(Npt)

. (1)

Here Resℏ=∞ is an operator taking the coefficient in ℏ−1. We compute the
residue as follows. We notice{

V|pt = eℏ

Npt =W ⊗ e−ℏ.

This implies that the right hand side of (1) is equal to

− Res
ℏ=∞

ψ

(−ℏ)r
= (−1)r−1 · coefficients of ℏr−1 in ψ = ψ(ℏ) ∈ Q[ℏ, ℏ−1K

We want to apply this to ψ = Eu(TP(W )) ∈ K(P(W )). But we need
to lift ψ to the larger projective space M = P(W ⊕ C). From the Euler
sequence

0 → OP(W ) →W ⊗OP(W )(1) → TP(W ) → 0,

we have the following lemma.
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Lemma 3.4. We have

(W ⊗OM(1)−OM)
∣∣∣
P(W )

= TP(W ) in K(P(W )).

To define the Euler class of W ⊗OM(1)−OM in K(M), we introduce
a new equivariant parameter eθ ∈ C∗

θ.

Definition 3.5. Let α = [E] − [F ] ∈ KC∗
ℏ
(M) with C∗

ℏ-equivariant vector
bundles E,F on M. We define the Euler class for virtual vector bundle
α = E − F by

Euθ(α) =
crkE(E ⊗ eθ)

crkF (F ⊗ eθ)
∈ A∗

C∗
θ×C∗

ℏ
(M)⊗Q(θ)[ℏ][[ℏ−1]]

Set

ψ(θ, ℏ) = Euθ(W ⊗OM(1)−OM) ∈ A∗
C∗
θ×C∗

ℏ
(M)⊗Q(θ)[ℏ][[ℏ−1]].

Since ψ(θ, ℏ)|pt = Euθ(W ⊗ e−ℏ − 1), substituting ψ = ψ(θ, ℏ) into (1)
we have

χ(P(W )) = − Res
ℏ=∞

(−ℏ+ θ)r

θ
· 1

(−ℏ)r

= − Res
ℏ=∞

1

θ
· (ℏ− θ)r

ℏr
= −1

θ
· r(−θ) = r.

Here we used

Res
ℏ=∞

r∏
α=1

ℏ+ aα
ℏ+ bα

=

r∑
α=1

(aα − bα).

3.2 Flag manifold

Here we present the residue formula as an application of our wall-crossing
formula to the framed quiver:

b0

1
•

r

b1
2
• b2 · · · bN−2

N − 1
• bN−1

N
•

We set W = Cr, V1 = Cd1 , V2 = Cd2 , . . . , VN = CdN with r ≥ d1 ≥ · · · ≥ dN ,
and fix stability parameters ζ1 = ζ2 = · · · = ζN = 1 as in Example 2.2. For
the Q0-graded vector space V =

⊕N
k=1 Vk ⊕ V∞, we have

M ζ
Q(V ) = Hominj

C (V1,W )×
N−1∏
k=1

Hominj
C (Vk+1, Vk)/G,
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where Hominj(U1, U2) denotes the set of injective C-linear maps U1 → U2

for vector spaces U1 and U2. The tautological bundle

Vi = Hominj
C (V1,W )×

m−1∏
k=1

Hominj
C (Vk+1, Vi)× Vk/G

corresponds to the i-th universal flag for i = 1, . . . , N via the isomorphism
M ζ
Q(V ) ∼= Fl(W ; d1, . . . , dN ) in Example 2.2.
We consider a linear map π : Q[ℏ1, . . . , ℏdN ] → A•

T(M(W,V/VN )) defined
by

π(ℏℓ11 · · · ℏℓdNdN ) =

dN∏
i=1

hℓi−dN−1+1(VN−1)

where hℓ is the complete symmetric function of degree ℓ.

Theorem 3.6 (Zielenkievicz [14], O [11]). Let f be a symmetric polynomial.
Then we have∫

Mζ
Q(V )

f(VN )

= (−1)dN (dN−1+1) · π

f(ℏ1, . . . , ℏdN )∏
i ̸=j

(ℏj − ℏi)

 .

As an application of this theorem, we deduce the Jacobi-Trudi formula.
For partition λ = (λ1, λ2, . . . , ) of length ℓ(λ) ≤ n, set

Sλ(x1, . . . , xn) =
det(x

λj+n−j
i )1≤i,j≤n

det(xn−ji )1≤i,j≤n
.

When N = 1 and r = d1 ≥ ℓ(λ), by Theorem 3.6 we have

Sλ(a1, . . . , ar) =

∫
Mζ

Q(V )
Sλ(V1)

= det
1≤i,j≤r

(hλj−j+i).

4 Enhancement of quiver

For a general framed quiver Q = (Q,∞), we present localization techniques
developed in [4] and [6]. Fix β ∈ (Z≥0)

I and choose one vertex ∗ ∈ I =
Q \ {∞} such that β∗ 6= 0, we define an enhancement Q̃ = (Q̃0, Q̃1, Q̃2) of
Q as follows :

Q̃0 = Q0 t {∗(k) | k = 1, 2, . . . , L} (L ≥ dimV∗)

Q̃1 = Q1 t {∗(k) → ∗(k + 1)}Lk=1, (∗(L+ 1) = ∗)
Q̃2 = Q2
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For example, take N as ∗ in Example 2.2, then the enhanced quiver Q̃ is
presented as follows :

r

1
• b1

2
• b2 · · · bN−2

N − 1
• bN−1

N
•
• ∗(L)
• ∗(L− 1)

...

• ∗(1)

We consider a Q̃0-graded vector space Ṽ = V ⊕
⊕L

k=1 Ṽ∗(k), where V =⊕
v∈Q0

Vv is Q0-graded vector space with (dim Vv)v∈Q0 = α ∈ (Z≥0)
Q0 . We

set dim Ṽ∗(1) ≤ 1, dim Ṽ∗(N) = α0,

dim Ṽ∗(k−1) ≤ dim Ṽ∗(k) ≤ dim Ṽ∗(k−1) + 1 (k = 2, . . . , N − 1),

and
I =

{
k ∈ [L]

∣∣∣dim Ṽ∗(k) − dim Ṽ∗(k−1) = 1
}
.

We write by FlX(E , I) thet full-flag bundle of E consisting of F• of a bundle
E on a variety X such that

{k ∈ Z≥0 | dimFk/Fk−1 = 1} = I.

We may have repetitions in F•, but dim(Fk/Fk−1) ≤ 1. We always put
F0 = 0.

4.1 (ζ̄ , ℓ)-stability

We consider a pair (ρ, F•) ∈ RepQ(V )×Fl(V0, I) where Fl(V0, I) is the full-
flag manifold of V0. Take a dimension vector β = (βi)i∈I ∈ (Z≥0)

I with β0 6=
0, (0 ∈ I), and a generic stability parameter

ζ̄ ∈ β⊥ = {ζ ∈ RI |
∑
i∈I

ζiβi = 0}.

Definition 4.1. (ρ, F•) is said to be (ζ̄, ℓ)-stable if ρ : ζ̄-semistable, and

(1) If ζ̄(S) = 0, S∞ = 0 and S 6= 0, we have S0 ∩ Fℓ = 0, and

(2) If ζ̄(S) = 0, S∞ = C and S 6= V , we have Fℓ 6⊂ S0.

We write by M ζ̄,ℓ(α, I) moduli of (ζ̄, ℓ)-stable pair (ρ, F•) as above. We
have

M ζ̄,ℓ(α, I) ∼= FlMζ′ (α)(V0, I) (ℓ� α0, ζ ′ ∈ C′)

M ζ̄,0(α, I) ∼= FlMζ(α)(V0, I) (ζ ∈ C).

where Vi is the tautological bundle over M ζ(α) for each vertex i ∈ Q0.
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4.2 Enhanced master space

Fix ℓ ∈ I, and take (ζ+, η) ∈ C′ × (Q>0)
N ↔ (ζ̄, ℓ)-stability, and ζ− ∈ C

suitably.

M = MQ(V ) =
∏
a∈Q1

HomC(Vout(a), Vin(a)), L = LQ(V ) =
∏
l∈Q2

HomC(Vout(l), Vin(l))

M̃ = MQ̃(Ṽ ) = M×
N∏
k=1

HomC(Ṽ∗(k), Ṽ(0,k+1)) (Ṽ(0,N+1) = V0)

G = GṼ =
∏
i∈I

GL(Vi)×
N∏
k=1

GL(Ṽ∗(k)),

We consider a moment map µ : M → L corresponding to relations Q2. Take
ample G line bundle L± corrsponding to (ζ±, η)-stability. Set µ̂ : M̂ =

ProjSym(L− ⊕ L+)
projection−−−−−−→ M µ→ L, and M̂ss semi-stable locus with

respect to OM̂(1). We set M = [µ̂−1(0) ∩ M̂ss/G], and consder a C∗
ℏ-action

on M defined by

C∗
ℏ ↷ M : (A, F•, [x−, x+]) 7→ (A, F•, [e

ℏx−, x+]), (2)

We write byMC∗
ℏ the fixed points set, and setM± = [µ̂−1(0)ss∩ProjSym(L±)/G].

Proposition 4.2. We have

MC∗
ℏ = M+ tM− t

⊔
I♯∈Dℓ(I)

MI♯ ,

where Dℓ(I) = {I♯ ⊂ I | |I♯0| = d♯β0 for d♯ > 0, and min(I♯) ≤ ℓ}.

We have M− ∼= FlMζ− (α)(V, I), M+
∼= M ζ̄,ℓ(α, I), and MI♯ is étale

equivalent to

FlH
d♯
(V♯0/V∞′ , Ī♯)×M ζ̄,min(I♯)−1(α− d♯β, I♭)

where Hd♯ = M
ζ−
Q♯ (d

♯β + e∞′) for e∞′ = δv∞′ ∈ ZQ
♯
0 , and I♯ \min(I♯), I♭ =

I \ I♯. Here Q♯ is a new quiver associated to Q and a choice of ∗ ∈ Q0.
When we consider Example 2.2 and choose N as ∗, then Q♯ is presented

as follows :

1
• b1

2
• b2 · · · bN−2

N − 1
• bN−1

N
•

∞′

We consider the normal bundles N+, N−, NI♯ of the embeddings

ι+ : M+ → M, ι− : M− → M, ιI♯ : MI♯ → M.
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4.3 Integral

Set M0 = SpecΓ(µ−1(0),Oµ−1(0))
∏

i∈I GL(Vi). We assume the following two
conditions.

• There exists T = (C∗)ℓ-action on all moduli spaces and natural maps
to M0 are proper T-equivariant.

• T-fixed poins set MT
0 consists of one point.

Then we can take integrals in HT
• (M

T
0 ) = HT

• (pt) after localization.

Fact 4.3. We have

HT
• (pt)

∼= H•
T(pt)

∼= Z[x1, . . . , xℓ] =: A

where x1 = c1(Ct1), . . . , xℓ = c1(Ctℓ) and Ct1 , . . . ,Ctℓ are the weight spaces
for (t1, . . . , tℓ) ∈ T.∫

M : H•
T(M) → HT

• (M0) ⊗A S ∼= HT
• (M

T
0 ) ⊗A S ∼= S, φ 7→ Π∗(φ ∩ [M ])

for T-equivariant morphism Π: M →M0.

4.4 Localization

We use the following commutative diagram

H•
C∗
ℏ×T(M)⊗C[ℏ] C((ℏ−1))

��

∼= // H•
C∗
ℏ×T(MC∗

ℏ)⊗C[ℏ] C((ℏ−1))

��

H
C∗
ℏ×T

• (M0)⊗C[ℏ] C((ℏ−1)) H
C∗
ℏ×T

• (M0)⊗C[ℏ] C((ℏ−1))

where the upper horizontal arrow is given by

ι∗+
Eu(N+)

+
ι∗−

Eu(N−)
+

∑
I♯∈Dℓ(I)

ι∗
I♯

Eu(NI♯)
,

and ℏ is the first Chern class in H•
C∗
ℏ
(pt) of the weight eℏ ∈ C∗

ℏ. From this

diagram, we have∫
M
φ =

∫
M+

φ|M+

Eu(N+)
+

∫
M−

φ|M−

Eu(N−)
+
∑
I♯

∫
M

I♯

φ|M
I♯

Eu(NI♯)
. (3)

Substitute φ = ψ̃ = ψ·Euθ(Θ(F•))
|I|! ∈ H•

C∗
ℏ×T(M) for ψ ∈ H•

C∗
ℏ×T(M)

∫
M ζ̄,ℓ(α,I)

ψ̃ −
∫
Mζ− (α)

ψ = − Res
ℏ=∞

∑
I♯∈Dℓ(I)

∫
M

I♯

ψ̃|M
I♯

Eu(NI♯)
,
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where Euθ(F) = Eu(F ⊗ Ceθ) for tℓ = eθ. The last summand is equal to

|I♭|!
|I|!

∫
M̃min(I)−1(Ṽ ♭)∫
FlH

d♯
(V♯

0/V∞′ ,Ī♯)

ψ · Euθ(Θ(F ♯
• ⊕F ♭

•))

N(V♭,V♯ ⊗ eℏ) · Eu(H(F ♯
•,F ♭

•))
, (4)

where

Θ(F•,F ′
•) =

∑
i>j

Hom
(
Fj/Fj−1,F ′

i/F ′
i−1

)
,

H(F•,F ′
•) = Θ(F•,F ′

•) + Θ(F ′
•,F•)

for two flags F•,F ′
• of sheaves. When F• = F ′

•, we set

Θ(F•) = Θ(F•,F•).

5 Application

Here we only consider integrals of equivariant Euler class as an application.
See [7], [8], and [9] for another application. Set

ΛQ(V) =
∑
a∈Q1

Hom(Vout(a),Vin(a))−
∑
l∈Q2

Hom(Vout(l),Vin(l))−
∑
i∈I

End(Vi),

β̄∞ =
∑
a∈Q1

out(a)=∞

βin(a) −
∑
a∈Q1

in(a)=∞

βout(a),

γ̃d(θ) = (dβ0 − 1)!

∫
H

d♯

Euθ(ΛQ♯(V ⊕ V∞′)).

For I, I′ ⊂ [α0] = {1, 2, . . . , α0}, set

s(I, I′) =
∣∣{(l, l′) ∈ I× I′ | l < l′}

∣∣ ,− ∣∣{(l, l′) ∈ I× I′ | l > l′}
∣∣ .

We define a rational expression Aα0(β̄∞) by

Aα0(β̄∞) =

⌊α0/β0⌋∑
j=1

∑
I1⊔···⊔Ij⊂[α0]

min(I1)>···>min(Ij)
|Ii|∈β0Z>0

j∏
i=1

(s(Ii,I>i)− β̄∞di)γ̃di(θ) (5)

where I>i = Ii+1 t · · · t Ij , and d1 = |I1|/β0, . . . , dj = |Ij |/β0 for each
collection (I1, . . . , Ij) satisfying the conditions in the second summation in
(5).

We set H±(α) =
∫
Mζ± (α)

Euθ(ΛQ(V)).
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Theorem 5.1 ([10]). We have

H+(α)−H−(α) =

⌊α0/β0⌋∑
k=0

Akβ0(β̄∞)

(kβ0)!
H−(α− kβ).

Corollary 5.2. When Q is associated to construct quiver varieties, then
wall-crossing term does not depend on r⃗ = (ri)i∈I .

Question 5.3. When β̄∞ = 0, does the coefficients of wall-crossing term
vanish?
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