Ascending Chain Condition for Minimal Log Discrepancies for Generalized Fano Pairs

Weichung Chen
Gradute School of Mathematical Sciences
The University of Tokyo
weichung@g.ecc.u-tokyo.ac.jp

Introduction

Generalized pairs, as a generalization of log pairs, play an important role in Birkar's proof of the Borisov-Alexeev-Borisov conjecture (the BBAB theorem) [Birkar19, Birkar21a]. On the other hand, the ascending chain condition (ACC) for minimal log discrepancies (mld) is conjectured to hold for pairs with the coefficients of their boundaries in a fixed DCC set. The ACC conjecture and the lower semi-continuity conjecture for mlds imply the termination of flips [Shokurov].
Using the lower bound for the log canonical thresholds (lct) and the finiteness of mlds for bounded generalized pairs, we show the ACC conjecture holds for bounded generalized pairs. As a consequence, applying the BBAB theorem, the ACC for mlds for generalized Fano pairs holds.

Notation and Conventions

- We work over \mathbb{C}. Every variety is assumed to be normal, projective and \mathbb{Q}-factorial.
- A generalized pair $(X, B+M)$ consists of a variety X, an effective divisor B on X and a b-nef b-divisor M over X such that $K_{X}+B+M$ is \mathbb{R}-Cartier. Equivalently, M can be viewed as the image of a nef divisor M^{\prime} on a birational model X^{\prime} over X. We say the coefficients of M are in some set $I \subseteq \mathbb{R}_{\geq 0}$ if $M^{\prime}=\sum m_{i} M_{i}^{\prime}$ for some $m_{i} \in I$ and some Cartier divisors M_{i}^{\prime} on X^{\prime}.

BBAB Theorem (Birkar)

Let d be a natural number and let ϵ be a positive real number. Then the varieties X such that, with some generalized boundaries $B+M$,

- $(X, B+M)$ is generalized ϵ-lc of dimension d, and
- $-\left(K_{X}+B+M\right)$ is nef and big,
form a bounded family.

Lower bound of lct [Birkar21b]

Let d and n be natural numbers and let ϵ be a positive real number. Then there exist a positive real number t such that if $(X, B+M)$ is an ϵ-lc generalized pair of dimension d with

- $\operatorname{dim} X=d$,
- there is a very ample divisor A on X with $A^{d} \leq n$,
- $B+D+M+N$ is a generalized boundary for some effective divisor D on X and some b-nef b-divisor N over X, and
- $A-(B+D+M+N) \geq 0$,
then $(X, B+t D+M+t N)$ is generalized lc.

Finiteness of mlds [CGN]

Let d and k be natural numbers and let $I \subseteq \mathbb{R}_{>0}$ be a finite set. Then the set of mlds $\{\operatorname{mld}(X, B+$ $M)\}$ with

- $\operatorname{dim} X=d$,
- the coefficients of B and M are in I, and
- $k K_{X}$ is Cartier
finite.

Acc for mlds for generalized Fano pairs

Let d be a natural number and let $0 \in I \subseteq \mathbb{R}_{\geq 0}$ be a DCC set. Then the set of $\operatorname{mlds}\{\operatorname{mld}(X, B+M)\}$ with

- $\operatorname{dim} X=d$,
- the coefficients of B and M in I, and
- $-\left(K_{X}+B+M\right)$ is nef and big
satisfies ACC.
Sketch of Proof.

1. It is enough to show this for a sequence $\left\{\left(X_{i}, B_{i}+M_{i}\right)\right\}_{i=1}^{\infty}$ of such generalized pairs.
2. We may assume that $\left\{a_{i}:=\operatorname{mld}\left(X_{i}, B_{i}+M_{i}\right)\right\}_{i=1}^{\infty}$ is strictly increasing. We may assume that $\left(X_{i}, B_{i}+M_{i}\right)$ is generalized ϵ-lc for every i for some fixed positive real number ϵ.
3. Applying the BBAB theorem, this then implies that the generalized pairs $\left(X_{i}, B_{i}+M_{i}\right)$ form a bounded family.
4. There exists a positive real number t such that $\left(X_{i},(1+t) B_{i}+(1+t) M_{i}\right)$ is generalized lc for each i.
5. The numbers of terms in both B_{i} and M_{i} are bounded. So we may assume that $B_{i}=$ $\sum_{j=1}^{k} b_{i j} B_{i j}$ and $M_{i}^{\prime}=\sum_{j=1}^{k} m_{i j} M_{i j}^{\prime}$ for some real numbers $b_{i j}, m_{i j} \in I$, some integral divisors $B_{i j}$ on X_{i} and some Cartier divisors $M_{i j}^{\prime}$ on a model X^{\prime} over X.
6. We may assume that $\left\{b_{i j}\right\}_{i=1}^{\infty}$ and $\left\{m_{i j}\right\}_{i=1}^{\infty}$ are non-decreasing for all j. Let $b_{0 j}=\lim _{i \rightarrow \infty} b_{i j}$ and $m_{0 j}=\lim _{i \rightarrow \infty} m_{i j}$ for each j.
7. Let $\hat{B}_{i}=\sum_{j=1}^{k} b_{0 j} B_{i j}$ and $\hat{M}_{i}^{\prime}=\sum_{j=1}^{k} m_{0 j} M_{i j}^{\prime}$ for each i. Then $B_{i}+M_{i} \leq \hat{B}_{i}+\hat{M}_{i} \leq$ $\left(1+c_{i} t\right)\left(B_{i}+M_{i}\right)$ for some $c_{i} \geq 0$ with $=\lim _{i \rightarrow \infty} c_{i}=0$.
8. This implies that $\operatorname{mld}\left(\mathrm{X}_{\mathrm{i}}, \hat{\mathrm{B}}_{\mathrm{i}}+\hat{\mathrm{M}}_{\mathrm{i}}\right) \in\left[\left(1-c_{i}\right) a_{i}, a_{i}\right]$.
9. We may assume that $\left\{\operatorname{mld}\left(X_{i}, \hat{\mathrm{~B}}_{\mathrm{i}}+\hat{\mathrm{M}}_{\mathrm{i}}\right)\right\}_{i=1}^{\infty}$ is strictly increasing, which contradicts the finiteness of mlds.

References

[Birkar19] C. Birkar, Anti-pluricanonical systems on Fano varieties, Ann. of Math. (2) 190 (2019), no. 2, 345-463.
[Birkar21a] C. Birkar, Singularities of linear systems and boundedness of Fano varieties, Ann. of Math. (2) 193 (2021), no. 2, 347-405.
[Birkar21b] C. Birkar, Boundedness and volume of generalised pairs, arXiv:2103.14935.
[CGN] Weichung Chen, Yoshinori Gongyo, Yusuke Nakamura, On generalized minimal log discrepancy, to appear in J. Math. Soc. Japan.
[Shokurov] V. V. Shokurov, Letters of a bi-rationalist. V. Minimal log discrepancies and termination of log flips, Tr. Mat. Inst. Steklova 246 (2004), no. Algebr. Geom. Metody, Svyazi i Prilozh., 328-351; English transl., Proc. Steklov Inst. Math. 3 (246) (2004), 315-336.

