Non-commutative crystalline comparison theorem

Keiho Matsumoto

lightkun05260gmail.com Osaka University

1 Introduction

1.1 Setting

K: finite extension of \mathbb{Q}_p , \mathcal{O}_K : integral ring of K, k: residue field, $\mathcal{C} := \widehat{\overline{K}}, W := W(k)$

1.2 *p*-adic Hodge theory

In algebraic geometry, the concept of *period* refers to an entry of the matrix of the de Rham isomorphism:

$$H^*_{\mathrm{dR}}(M) \simeq H^*_{\mathrm{Sing}}(M;\mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{C}$$

for a complex algebraic variety M defined over a number field K. To study the *p*-adic analogue of the notion of periods, Fontaine introduces the *p*-adic period ring $B_{\rm crys}$. Building on Fontaine's work, Tsuji and Faltings proved the following.

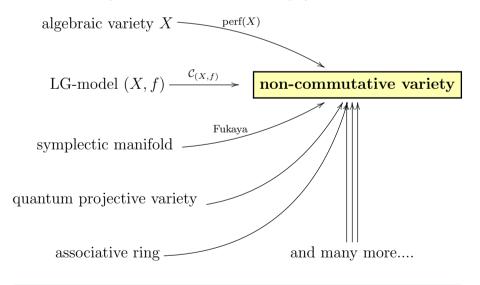
Theorem 1.1 (Tsuji, Faltings). Let X be a smooth proper variety \mathcal{O}_K . There is an isomorphism

 $H^i(X_k/W) \otimes_W B_{crys} \simeq H^i(X_{\mathcal{C}}; \mathbb{Z}_p) \otimes_{\mathbb{Z}_p} B_{crys}$

which is compatible with the G_K -actions, the Frobenius endmorphisms and the filtration. In particular, $G_K \curvearrowright$ $H^i(X_{\mathcal{C}}; \mathbb{Q}_p)$ is a crystalline representation.

1.3 Non-commutative variety

Let R be a commutative ring. Orlov and Kontsevich introduced non-commutative algebraic geometry in which an R-linear, idempotent-complete, small stable ∞ -category is studied as a noncommutative variety over R. Non-commutative algebraic geometry has been widely used in various areas of physics and mathematics.



Definition 1.2	(Orlov). A non-commutative variety \mathcal{T} over
	(Onlov). A non-commutative variety / over

variety X over R	NC variety \mathcal{T} over R	
$H^*_{\mathrm{dR}}(X/R)$	$\pi_*\mathrm{HP}(\mathcal{T}/R)$	
$H^*_{\mathrm{Sing}}(X,\mathbb{Z})$	$\pi_*K^{\mathrm{top}}(\mathcal{T})$	$R = \mathbb{C}$
$H^*_{\operatorname{Zar}}(X,\Omega^*_{X/R})$	$\pi_* \operatorname{HH}(\mathcal{T}/k)$	
$H^*_{\acute{e}t}(X,\mathbb{Z}_p)$	$\pi_*L_{K(1)}K(\mathcal{T})$	$(\operatorname{ch}(R), p) = 1$
$H^*_{ m crys}(X/W(R))$	$\pi_*\mathrm{TP}(\mathcal{T};\mathbb{Z}_p)$	$R = \mathbb{F}_{p^n}$

1.5 Comparison theorems

Some of comparison theorems between non-commutative cohomologies are previously known or expected. For a smooth proper NC variety \mathcal{T} over \mathbb{C} , Kontsevich expected that there is the *noncommutative Hodge decomposition*:

$$\pi_i \operatorname{HP}(\mathcal{T}/\mathbb{C}) \simeq \bigoplus_{n \in \mathbb{Z}} \pi_{i+2n} \operatorname{HH}(\mathcal{T}/\mathbb{C}),$$

and Kaledin proved it. For a smooth proper NC variety \mathcal{T} over $W(\mathbb{F}_{p^n})$, Scholze announced that there is the *non-commutative* Berthelot-Ogus isomorphism:

$$\pi_i \operatorname{TP}(\mathcal{T}_{\mathbb{F}_{p^n}};\mathbb{Z}_p) \simeq \pi_i \operatorname{HP}(\mathcal{T}/W(\mathbb{F}_{p^n})).$$

2 Non-commutative *p*-adic Hodge

Inspired by Kaledin and Scholze's results, we expected the following comparison theorem, which can be regarded as a non-commutative analogue of Theorem 1.1.

Conjecture 2.1 (M, 2022). Let \mathcal{T} be a smooth proper NC variety over \mathcal{O}_K . Then there is an isomorphism

 $\pi_i \operatorname{TP}(\mathcal{T}_k; \mathbb{Z}_p) \otimes_W B_{crys} \simeq \pi_i L_{K(1)} K(\mathcal{T}_{\mathcal{C}}) \otimes_{\mathbb{Z}_p} B_{crys}$

which is compatible with the G_K -actions, the Frobenius endmorphisms. In particular, $G_K \curvearrowright \pi_i L_{K(1)} K(\mathcal{T}_{\mathcal{C}}) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$ is a crystalline representation.

Example 2.2. If $\mathcal{T} = \operatorname{perf}(X)$ for a smooth proper variety X over \mathcal{O}_K , then the conjecture holds for \mathcal{T} by Theorem 1.1.

 \because There are the following canonical isomorphisms due to Thomason and Bhatt-Morrow-Scholze:

$$\pi_i L_{K(1)} K(\mathcal{T}_{\mathcal{C}}) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p \simeq \bigoplus_{n \in \mathbb{Z}} H^{i+2n}_{\acute{e}t}(X_{\mathcal{C}}, \mathbb{Q}_p(n))$$
$$\pi_i \mathrm{TP}(\mathcal{T}_k; \mathbb{Z}_p)[\frac{1}{p}] \simeq \bigoplus_{n \in \mathbb{Z}} H^{i+2n}_{\mathrm{cry}}(X_k/W[\frac{1}{p}])(n)$$

R admits a geometric realization if there are a derived scheme \mathcal{X} over R s.t. $\pi_0(\mathcal{X})$ is separated scheme of finite type over R and there is a fully faithful admissible inclusion $\mathcal{T} \hookrightarrow \operatorname{perf}(\mathcal{X})$.

In many cases, a smooth proper non-commutative variety is known (or expected) to admit a geometric realization.

1.4 Non-commutative cohomology

Tsygan and Connes defined cyclic periodic homology HP(A) for an associative ring A which can be regarded as the *non-commutative* de Rham cohomology. Similarly, there are non-commutative versions of Betti, étale, crystalline and Hodge cohomology groups for non-commutative variety \mathcal{T} over R:

3 Main result

We can prove a non-commutative version of Bhatt-Morrow-Scholze's comparison theorem. By using it and Du-Liu's prismatic (ϕ, \hat{G}) -mod theory, we have the following result.

Theorem 3.1 (M, 2023). Let \mathcal{T} be a smooth proper NC variety over \mathcal{O}_K . We assume that $\mathcal{T}_{\mathcal{C}}$ admits a geometric realization, then Conjecture 2.1 holds for \mathcal{T} .