Moduli space of parabolic bundles and parabolic connections

Takafumi Matsumoto
Departmant of Mathematics, Graduate School of Science, Kobe University, D3

Rank two case

$\circ(C, \boldsymbol{t})$: an irreducible smooth projective curve over \mathbb{C} with n distinct points $\boldsymbol{t}=\left(t_{1}, \ldots, t_{n}\right)$
$\circ\left(L, \nabla_{L}\right)$: atr $\boldsymbol{\operatorname { t r }}$-connection over (C, \boldsymbol{t}) of rank one and degree $2 g-1$
$\circ M_{(C, t)}^{\alpha}\left(\boldsymbol{\nu},\left(L, \nabla_{L}\right)\right):=\left\{\left(E, \nabla, l_{*}\right) \mid \alpha\right.$-stable, $\left.(\operatorname{det} E, \operatorname{tr} \nabla) \cong\left(L, \nabla_{L}\right)\right\} / \sim$
$\circ P_{(C, t)}^{\alpha}(L):=\left\{\left(E, l_{*}\right) \mid \alpha\right.$-stable, $\left.\operatorname{det} E \cong L\right\} / \sim$
$\circ N:=\frac{1}{2} \operatorname{dim} M_{(C, t)}^{\alpha}\left(\boldsymbol{\nu},\left(L, \nabla_{L}\right)\right)=\operatorname{dim} P_{(C, t)}^{\alpha}(L)$
Theorem (Loray-Saito, Fassarella-Loray, Fassarella-Loray-Muniz, M) \qquad For a suitable $\boldsymbol{\alpha}$, the rational mal

$$
\operatorname{App} \times \operatorname{Bun}: M_{(C, t)}^{\alpha}\left(\boldsymbol{\nu},\left(L, \nabla_{L}\right)\right) \cdots \rightarrow \mathbb{P}^{N} \times P_{(C, t)}^{\alpha}(L)
$$

is birational.
Problem
Is App \times Bun also birational for higer rank case
In this poster, we investigate the moduli space of rank 3 parabolic bundles and parabolic logarithmic connections over \mathbb{P}^{1} with 3 points, which provides a counterexample of the problem.

Moduli space of parabolic connections

$\circ \nu=\left(\nu_{i, j}\right)_{0}^{1 \leq i \leq 3} 0 \leq 2 \in \mathbb{C}^{9}: \sum_{i=1}^{3} \sum_{j=0}^{2} \nu_{i, j}=-d \in \mathbb{Z}$
ν-parabolic connection
$L, \nabla, \imath_{*}=\left\{l_{i, *\}} \mid \leq i \leq\right\}$

- E : a vector bundle of rank 3 and degree d.
- $\nabla: E \rightarrow E \otimes \Omega_{\mathbb{P} 1}^{1}\left(t_{1}+t_{2}+t_{3}\right):$ a logarithmic connection
$\triangleright \nabla$ is locally written by

$$
\nabla=d+\sum_{i=1}^{3} \frac{A_{i}}{z-t_{i}} d z+\text { holomorphic, } A_{i} \in M_{3}(\mathbb{C}) \text {. }
$$

- $l_{i, *}$: a filtration $\left.E\right|_{t_{i}}=E \otimes k\left(t_{i}\right)=l_{i, 0} \supsetneq l_{i, 1} \supsetneq l_{i, 2} \supsetneq l_{i, 3}=0$ such that $\left(\right.$ res $\left._{t_{i}}(\nabla)-\nu_{i, j} \operatorname{iid}\right)\left(l_{i, j}\right) \subset$ $l_{i, j+1}$ for $1 \leq i \leq 3,0 \leq j \leq 2$
- $\boldsymbol{\alpha}=\left\{\alpha_{i, j}\right\}_{1 \leq j \leq 3}^{1 \leq \leq 3} \in(0,1)^{9}:$ a set of rational numbers satisfying $0<\alpha_{i, 1}<\alpha_{i, 2}<\alpha_{i, 3}<1$ for each $i=1,2,3$, and $\alpha_{i, j} \neq \alpha_{i^{\prime}, j^{\prime}}$ for $(i, j) \neq\left(i^{\prime}, j^{\prime}\right)$
α-stability
$\left(E, \nabla, l_{*}\right)$ is $\boldsymbol{\alpha}$-stable
$\stackrel{\text { det }}{\Longrightarrow}$
for any subbundle $0 \neq F \subsetneq E$ satisfying $\nabla(F) \subset F \otimes \Omega_{\mathbb{P} 1}^{1}\left(t_{1}+t_{2}+t_{3}\right)$, the inequality

$$
\frac{\operatorname{deg} F+\sum_{i=1}^{3} \sum_{j=1}^{3} \alpha_{i, j} d_{i, j}(F)}{\operatorname{rank} F}<\frac{\operatorname{deg} E+\sum_{i=1}^{3} \sum_{j=1}^{3} \alpha_{i, j}}{\operatorname{rank} E}
$$

holds, where $d_{i, j}(F):=\operatorname{dim}\left(F \mid t_{i} \cap l_{i, j-1}\right) /\left(F \mid t_{i} \cap l_{i, j}\right.$.
$\circ M_{3}^{\boldsymbol{\alpha}}(\boldsymbol{t}, \boldsymbol{\nu}):=\left\{\left(E, \nabla, l_{*}\right) \mid \boldsymbol{\alpha}\right.$-stable, $\left.\operatorname{deg} E=-2\right\} / \sim$

Description of $M_{3}^{\alpha}(\boldsymbol{t}, \boldsymbol{\nu})$

\qquad
Take $\boldsymbol{\alpha}=\left(\alpha_{i, j}\right)_{1 \leq i, j \leq 3}$ such that $0<\alpha_{i, j} \ll 1$ for any moving the anti-canonical divisor from a blow-up of \mathbb{P}^{2} at three points on each three lines meeting in a single point.

Moduli space of parabolic bundles

Parabolic bundle

- E : a vector bundle of rank 3 and degree d, and
$\bullet l_{i, *}$: a filtration $\left.E\right|_{t_{i}}=E \otimes k\left(t_{i}\right)=l_{i, 0} \supsetneq l_{i, 1} \supsetneq l_{i, 2} \supsetneq l_{i, 3}=0$.
Assumption
For any $1 \leq i \leq 3, j=1,2$,
$\alpha_{i, j+1}-\alpha_{i, j}=$ constant $=: w$
- $P^{w}(-2):=\left\{\left(E, l_{*}\right) \mid w\right.$-stable, $\left.\operatorname{deg} E=-2\right\} / \sim$
$\circ\left(E, l_{*}\right)$ is w-stable $\Longrightarrow E \cong \mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(-1) \oplus \mathcal{O}_{\mathbb{P}^{1}}(-1)$
Description of $P^{w}(-2)$
(1) If $0<w<2 / 9,4 / 9<w<1 / 2$, then $P^{w}(-2)=\emptyset$.
(2) If $2 / 9<w<1 / 3$, then a w-stable parabolic bundle $\left(E, l_{*}\right)$ fits into a nonsplit exact sequence

$$
0 \longrightarrow\left(\mathcal{O}_{\mathbb{P}^{1}}, \emptyset\right) \longrightarrow\left(E, l_{*}\right) \longrightarrow\left(\mathcal{O}_{\mathbb{P}^{1}}(-1)^{\oplus 2}, l_{*}^{\prime}\right) \longrightarrow 0,
$$

 3) If $1 / 3<w<4 / 9$, then a w-stable parabolic bundle $\left(E, l_{*}\right)$ is either type of the following: (1) $E \cong \mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(-1) \oplus \mathcal{O}_{\mathbb{P}^{1}}(-1)$, $\#\left\{i\left|\mathcal{O}_{\mathbb{P}^{1}}\right| t_{i} \subset l_{i, 1}\right\}=0, n\left(l_{*}^{\prime}\right)=1$, and the condition (*) holds.
(ii) $E \cong \mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(-1) \oplus \mathcal{O}_{\mathbb{P}^{1}}(-1)$, \#\{i| $\left.\mathcal{O}_{\mathbb{P}^{1} \mid t_{i}} \subset l_{i, 1}\right\}=1, n\left(l_{*}^{\prime}\right)=1$, and the condition (* holds.
In particular, $P^{w}(-2) \cong \mathbb{P}^{1}$. Here the condition $(*)$ is the following
(*) There is no subbundle $F \subset E$ such that $F \cong \mathcal{O}_{\mathbb{P}^{1}}(-1)^{\oplus 2},\left.l_{i, 2} \subset F\right|_{t_{i}}$ and $\left.F\right|_{t_{j}}=l_{j, 1}$ for some i and any $j \neq i$.

A coordinate of $P^{w}(-2)$
Assume that $2 / 9<w<1 / 3$. Wen we can take a homogeneous coordinate $(a: b)$ of $P^{w}(-2) \cong \mathbb{P}$
by

$$
\begin{gathered}
l_{1,2}=\mathbb{C}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), l_{1,1}=\mathbb{C}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)+\mathbb{C}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right), l_{2,2}=\mathbb{C}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right), l_{2,1}=\mathbb{C}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)+\mathbb{C}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right), \\
l_{3,2}=\mathbb{C}\binom{1}{1}, l_{3,1}=\mathbb{C}\left(\begin{array}{l}
a \\
1 \\
0
\end{array}\right)+\mathbb{C}\left(\begin{array}{l}
b \\
0 \\
1
\end{array}\right) . \\
\text { Compactification by parabolic Higgs fields }
\end{gathered}
$$

Parabolic Higgs field over $\left(E, l_{*}\right)$

- $\Phi: E \rightarrow E \otimes \Omega \Omega_{\mathbb{1}}^{1}\left(t_{1}+t_{2}+t_{3}\right):$ a homomorphism satisfying
$\left(\operatorname{res}_{t_{i}}(\Phi)\right)\left(l_{i, j}\right) \subset l_{i, j+1}$ for $1 \leq i \leq 3,0 \leq j \leq 2$.

∇_{0} : a $\boldsymbol{\nu}$-parabolic connection over $\left(E, l_{*}\right)$

$\circ \Phi_{0} \neq 0$: a parabolic Higgs field over $\left(E, l_{*}\right)$

$$
\nabla_{0}+\mathbb{C} \Phi_{0} \underset{\text { open }}{\subset} \mathbb{P}\left(\mathbb{C} \nabla_{0} \oplus \mathbb{C} \Phi_{0}\right)
$$

$\bigcirc M_{3}^{w}(\boldsymbol{t}, \boldsymbol{\nu})^{0}:=\left\{\left(E, \nabla, l_{*}\right) \mid\left(E, l_{*}\right) \in P^{w}(-2)\right\} / \sim$
$\circ \frac{3}{M_{3}^{w}(\boldsymbol{t}, \boldsymbol{\nu})^{0}}$: the compactification of $M_{3}^{w}(\boldsymbol{t}, \boldsymbol{\nu})^{0}$ by

Description of $\overline{M_{3}^{w}(\boldsymbol{t}, \boldsymbol{\nu})}$ \qquad
Assume that $2 / 9<w<1 / 3$. Then we have

$$
\overline{M_{3}^{w}(\boldsymbol{t}, \boldsymbol{\nu})^{0}} \cong \begin{cases}\mathbb{P}^{1} \times \mathbb{P}^{1} & \nu_{1,0}+\nu_{2,0}+\nu_{3,0} \neq 0 \\ \mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(-2)\right) \\ \nu_{1,0}+\nu_{2,0}+\nu_{3,0}=0 .\end{cases}
$$

Proof

$$
\left(\nabla_{\infty}(b), \Phi_{\infty}(b)\right) \cong\left(\nabla_{0}(a), \Phi_{0}(a)\right)\left(\begin{array}{cc}
1 & 0 \\
-\left(\nu_{1,0}+\nu_{2,0}+\nu_{3,0}\right) a^{-1} & a^{-2}
\end{array}\right)
$$

Assume that $2 / 9<w<1 / 3$ and $\nu_{1,0}+\nu_{2,0}+\nu_{3,0} \neq 0$.
Apparent map
There exists a unique filtration $E=: F_{0} \supset F_{1} \supset F_{2} \supset 0$ such that $F_{2} \cong \mathcal{O}_{\mathbb{P}^{1}}, F_{1} \cong \mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(-1)$, There exists a unique filtration $E=: F_{0} \supset F_{1} \supset F_{2} \supset 0$ such that $F_{2} \cong \mathcal{O}_{\mathbb{P}}, F_{1} \cong \mathcal{O}_{\mathbb{P}} \oplus \mathcal{O}_{\mathbb{P}}(-1)$,
and $\nabla\left(F_{2}\right) \subset F_{1} \otimes \Omega_{\mathbb{P}}^{1}\left(t_{1}+t_{2}+t_{3}\right)$. We define the apparent singularity $\operatorname{App}\left(E, \nabla, l_{*}\right)$ by the zero of the nonzero homomorphism

$$
\mathcal{O}_{\mathbb{P}^{1}}(-1) \cong F_{1} / F_{2} \stackrel{\nabla}{\rightarrow}\left(E / F_{1}\right) \otimes \Omega_{\mathbb{P}^{1}}^{1}(D(t)) \cong \mathcal{O}_{\mathbb{P}^{1}}
$$

- $V_{0}:=P^{w}(-2) \backslash\{(1: 0),(1: 1),(0: 1)\}$
- Bun: $\overline{M_{3}^{w}(\boldsymbol{t}, \boldsymbol{\nu})^{0}} \rightarrow P^{w}(-2),\left(E, \nabla, l_{*}\right) \mapsto\left(E, l_{*}\right)$

Then the morphism
App $\times \operatorname{Bun}: \operatorname{Bun}^{-1}\left(V_{0}\right) \longrightarrow \mathbb{P}^{1} \times V_{0}$
is finite and its generic fiber consists of three points.
Proof
$\operatorname{Bun}^{-1}\left(\left(E, l_{a, *}\right)\right)=\mathbb{P}\left(\mathbb{C} \nabla_{0}(a) \oplus \mathbb{C} \Phi_{0}(a)\right)$
$\operatorname{App}\left(\lambda \nabla_{0}(a)+\mu \Phi_{0}(a)\right)=\left(f_{1}(a ; \lambda, \mu)+f_{2}(a ; \lambda, \mu): t_{1} f_{1}(a ; \lambda, \mu)+t_{2} f_{2}(a ; \lambda, \mu)\right)$,
where $f_{1}(a ; \lambda, \mu), f_{2}(a ; \lambda, \mu)$ are homogeneous polynomials of degree 3 in variable λ, μ

References

1] T. Matsumoto, Moduli space of rank three logarithmic connections on the projective line with three poles, in preparation

