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1 Introduction

Geography of smooth Calabi–Yau 3-folds

A normal projective variety X over C is called Calabi–Yau if it has
at worst Gorenstein canonical singularities and satisfies

• KX ∼ 0, and

• H i(X,OX) = 0 for 0 < i < dimX.

In the case of a smooth Calabi–Yau 3-fold, the Hodge pair (h1,1, h2,1)
is both a topological invariant and a derived invariant.

Example 1.1 (Calabi–Yau hypersurfaces in toric varieties). In
2000, Kreuzer and Skarke provided the largest known dataset of
Hodge pairs (h1,1, h2,1) for smooth Calabi–Yau 3-folds, derived from
Calabi–Yau hypersurfaces in toric varieties:

h1,1h2,1

Problems on the geography of smooth Calabi–Yau 3-folds

• Do they form a bounded family?

• Does topological mirror symmetry conjecture hold? It
exchanges the Hodge numbers h1,1 and h2,1 ̸= 0.

• Are they all connected via geometric transitions?

• Is the ratio of Hodge pairs with odd h1,1 − h2,1 equal to
1/e ≒ 0.3679? (For Example 1.1, the ratio 0.3689 fails to
reject this hypothesis statistically.)

Trinity: contractions, geometric transitions, and inclusions

A geometric transition is an operation connecting two (families of)
smooth Calabi–Yau 3-folds via a birational contraction followed by a
flat deformation. More precisely, a geometric transition is described
as the composition ι ◦ p : X → X ′ of the following maps

X X X ′

B B B′

p ι

such that the squares in the diagram commute, where X → B
and X ′ → B′ are flat families of Calabi–Yau 3-folds over irreducible
analytic spaces whose general fibers are smooth and p is a birational
contraction over B shrunk if needed.

Example 1.2. A birational contraction of projective toric varieties
PΣ → PΣ′ often induces a geometric transition of Calabi–Yau hy-

persurfaces X∆ → X∆′ . Here, PΣ denotes a projective toric vari-
ety defined by a simplicial projective fan Σ, and ∆ is the New-
ton polytope of anticanonical hypersurfaces in PΣ. These data de-
fines a flat family X∆ → B. Note that it also induces the inclu-
sions G(Σ) ⊃ G(Σ′) and ConvG(Σ) ⊃ ConvG(Σ′) , where G(Σ) is
the set of primitive generators of one-dimensional cones in Σ and
ConvG(Σ) is the convex hull of G(Σ).

2 General results in toric geometry

From combinatorics to birational geometry

Let N ≃ Zd, and Nprim be the set of primitive lattice points of N .
We call a finite set A a primitive generating set of NR if A is a non-
empty subset of Nprim and ConeA = NR. For any complete fan Σ,
the set of ray generators G(Σ) is a primitive generating set.

Definition 2.1. A >· A′ denotes an inclusion A ⊃ A′ of primitive
generating sets of NR such that |A| = |A′|+ 1.

Definition 2.2. A fiber structure Af ⊂ A is an inclusion of primitive
generating sets A ⊂ N and Af ⊂ Nf := RAf ∩N . The base can be
naturally defined as a primitive generating set Ab ⊂ Nb := N/Nf .
Af ⊂∗ A denotes a fiber structure satisfying |A| = |Af | + |Ab| and
|Af | = rankNf + 1, which we call a Mori fiber structure on A.

Lemma 2.3 (a rough version). An inclusion A >· A′ can
be lifted to an extremal divisorial contraction PΣ → PΣ′ of
projective toric varieties such that G(Σ) = A and G(Σ′) = A′.
A Mori fiber structure Af ⊂∗ A can be lifted to a Mori fiber
space PΣ → PΣb

such that G(Σ) = A and G(Σb) = Ab, whose
general fiber PΣf

represents G(Σf) = Af .

The MMP and the Sarkisov program

A precise version of Lemma 2.3 guarantees that the toric MMP is
coarse grained into a sequence of inclusions of primitive generating
sets, which terminates at a Mori fiber structure:

A = A0 >· A1 >· · · · >· Am = A′ ⊃∗ A′
f .

Similarly, the toric Sarkisov program is also coarse grained into a
sequence of inclusions of primitive generating sets:

Theorem 2.4 (M. 2023–, arXiv:2207.01632). Primitive gen-
erating sets of NR with Mori fiber structure are all connected
via sequences of following diagrams and their inverses.
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3 Application in two dimensions

In two dimensions, the following statements of trinity is established
by finding a “good” sequence of Sarkisov links:

Trinity in two dimensions

Theorem 3.1 (M. 2023–, arXiv:2207.01632).

• The classical Castelnuovo–Noether’s theorem on the Cre-
mona group BirP2 connects all smooth rational surfaces
via “good” sequences of contractions.

• Elliptic curves described as anticanonical hypersurfaces
in smooth proper surfaces are all connected via “geomet-
ric transitions” associated with the ambient contractions.

• Reflexive polygons are all connected via inclusions.


