Geometric transitions for Calabi–Yau hypersurfaces II

Makoto Miura

miurror.jp@gmail.com

Department of Mathematics, Graduate School of Science, Osaka University

October 2023

1 Introduction

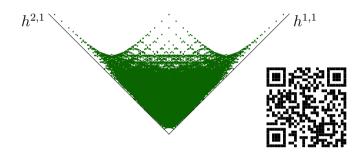
Geography of smooth Calabi–Yau 3-folds

A normal projective variety X over \mathbb{C} is called *Calabi–Yau* if it has at worst Gorenstein canonical singularities and satisfies

- $K_X \sim 0$, and
- $H^i(X, \mathcal{O}_X) = 0$ for $0 < i < \dim X$.

In the case of a smooth Calabi–Yau 3-fold, the Hodge pair $(h^{1,1}, h^{2,1})$ is both a topological invariant and a derived invariant.

Example 1.1 (Calabi–Yau hypersurfaces in toric varieties). In 2000, Kreuzer and Skarke provided the largest known dataset of Hodge pairs $(h^{1,1}, h^{2,1})$ for smooth Calabi–Yau 3-folds, derived from Calabi–Yau hypersurfaces in toric varieties:



Problems on the geography of smooth Calabi–Yau 3-folds

- Do they form a bounded family?
- Does topological mirror symmetry conjecture hold? It exchanges the Hodge numbers $h^{1,1}$ and $h^{2,1} \neq 0$.
- Are they all connected via geometric transitions?
- Is the ratio of Hodge pairs with odd $h^{1,1} h^{2,1}$ equal to 1/e = 0.3679? (For Example 1.1, the ratio 0.3689 fails to reject this hypothesis statistically.)

Trinity: contractions, geometric transitions, and inclusions

A geometric transition is an operation connecting two (families of) smooth Calabi–Yau 3-folds via a birational contraction followed by a flat deformation. More precisely, a geometric transition is described as the composition $\iota \circ p : \mathcal{X} \to \mathcal{X}'$ of the following maps

$$\begin{array}{cccc} \mathcal{X} & \stackrel{p}{\longrightarrow} & \overline{\mathcal{X}} & \stackrel{\iota}{\longrightarrow} & \mathcal{X}' \\ \downarrow & & \downarrow & & \downarrow \\ B & = & B & \bigoplus & B' \end{array}$$

2 General results in toric geometry

From combinatorics to birational geometry

Let $N \simeq \mathbb{Z}^d$, and N^{prim} be the set of primitive lattice points of N. We call a finite set A a *primitive generating set* of $N_{\mathbb{R}}$ if A is a nonempty subset of N^{prim} and Cone $A = N_{\mathbb{R}}$. For any complete fan Σ , the set of ray generators $G(\Sigma)$ is a primitive generating set.

Definition 2.1. A > A' denotes an inclusion $A \supset A'$ of primitive generating sets of $N_{\mathbb{R}}$ such that |A| = |A'| + 1.

Definition 2.2. A fiber structure $A_{\rm f} \subset A$ is an inclusion of primitive generating sets $A \subset N$ and $A_{\rm f} \subset N_{\rm f} := \mathbb{R}A_{\rm f} \cap N$. The base can be naturally defined as a primitive generating set $A_{\rm b} \subset N_{\rm b} := N/N_{\rm f}$. $A_{\rm f} \Subset A$ denotes a fiber structure satisfying $|A| = |A_{\rm f}| + |A_{\rm b}|$ and $|A_{\rm f}| = \operatorname{rank} N_{\rm f} + 1$, which we call a *Mori fiber structure* on A.

Lemma 2.3 (a rough version). An inclusion A > A' can be lifted to an extremal divisorial contraction $\mathbb{P}_{\Sigma} \to \mathbb{P}_{\Sigma'}$ of projective toric varieties such that $G(\Sigma) = A$ and $G(\Sigma') = A'$. A Mori fiber structure $A_{\rm f} \Subset A$ can be lifted to a Mori fiber space $\mathbb{P}_{\Sigma} \to \mathbb{P}_{\Sigma_{\rm b}}$ such that $G(\Sigma) = A$ and $G(\Sigma_{\rm b}) = A_{\rm b}$, whose general fiber $\mathbb{P}_{\Sigma_{\rm f}}$ represents $G(\Sigma_{\rm f}) = A_{\rm f}$.

The MMP and the Sarkisov program

A precise version of Lemma 2.3 guarantees that the toric MMP is coarse grained into a sequence of inclusions of primitive generating sets, which terminates at a Mori fiber structure:

 $A = A_0 \geqslant A_1 \geqslant \dots \geqslant A_m = A' \circledast A'_{\mathrm{f}}.$

Similarly, the toric Sarkisov program is also coarse grained into a sequence of inclusions of primitive generating sets:

Theorem 2.4 (M. 2023–, arXiv:2207.01632). Primitive generating sets of $N_{\mathbb{R}}$ with Mori fiber structure are all connected via sequences of following diagrams and their inverses.

$type~I_{\rm d}$	$type I_{ m m}$	$type \ II_{ m irr}$	$type \ II_{ m ni}$	$type~IV_{\rm m}$
$A \gg A'$	$A=A^{\prime\prime}\! >\! A^\prime$	$A \lessdot A'' \triangleright A'$	$A \lessdot A'' \triangleright A'$	$A=A^{\prime\prime}\!=\!A^\prime$
* *		₩ U \		
$A_{\rm f}{=}A_{\rm f}'$	$A_{\mathrm{f}} \circledast A_{\mathrm{f}}'' \triangleright A_{\mathrm{f}}'$	$A_{\rm f} \lessdot A_{\rm f}'' \triangleright A_{\rm f}'$	$A_{\rm f}{=}A_{\rm f}^{\prime\prime}{=}A_{\rm f}^{\prime}$	$A_{\mathbf{f}} \circledast A_{\mathbf{f}}'' \circledast A_{\mathbf{f}}'$

3 Application in two dimensions

such that the squares in the diagram commute, where $\mathcal{X} \to B$ and $\mathcal{X}' \to B'$ are flat families of Calabi–Yau 3-folds over irreducible analytic spaces whose general fibers are smooth and p is a birational contraction over B shrunk if needed.

Example 1.2. A birational contraction of projective toric varieties $\mathbb{P}_{\Sigma} \to \mathbb{P}_{\Sigma'}$ often induces a geometric transition of Calabi–Yau hypersurfaces $\mathcal{X}_{\Delta} \to \mathcal{X}_{\Delta'}$. Here, \mathbb{P}_{Σ} denotes a projective toric variety defined by a simplicial projective fan Σ , and Δ is the Newton polytope of anticanonical hypersurfaces in \mathbb{P}_{Σ} . These data defines a flat family $\mathcal{X}_{\Delta} \to B$. Note that it also induces the inclusions $G(\Sigma) \supset G(\Sigma')$ and $\operatorname{Conv} G(\Sigma) \supset \operatorname{Conv} G(\Sigma')$, where $G(\Sigma)$ is the set of primitive generators of one-dimensional cones in Σ and $\operatorname{Conv} G(\Sigma)$ is the convex hull of $G(\Sigma)$.

In two dimensions, the following statements of trinity is established by finding a "good" sequence of Sarkisov links:

Trinity in two dimensions

Theorem 3.1 (M. 2023–, arXiv:2207.01632).

- The classical Castelnuovo-Noether's theorem on the Cremona group Bir \mathbb{P}^2 connects all smooth rational surfaces via "good" sequences of contractions.
- Elliptic curves described as anticanonical hypersurfaces in smooth proper surfaces are all connected via "geometric transitions" associated with the ambient contractions.
- Reflexive polygons are all connected via inclusions.