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1 Introduction

Geography of smooth Calabi—Yau 3-folds

A normal projective variety X over C is called Calabi—Yau if it has
at worst Gorenstein canonical singularities and satisfies

o Ky ~ 0, and
e H(X,0x)=0 for 0 <i< dimX.

In the case of a smooth Calabi-Yau 3-fold, the Hodge pair (h™!', h*!)
is both a topological invariant and a derived invariant.

Example 1.1 (Calabi-Yau hypersurfaces in toric varieties). In
2000, Kreuzer and Skarke provided the largest known dataset of
Hodge pairs (h'!, h*1) for smooth Calabi-Yau 3-folds, derived from
Calabi—Yau hypersurfaces in toric varieties:

Problems on the geography of smooth Calabi-Yau 3-folds

Do they form a bounded family?

Does topological mirror symmetry conjecture hold? It
exchanges the Hodge numbers hb! and h%! # 0.

Are they all connected via geometric transitions?

Is the ratio of Hodge pairs with odd hb' — h%! equal to
1/e =0.36797 (For Example 1.1, the ratio 0.3689 fails to
reject this hypothesis statistically.)
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Trinity: contractions, geometric transitions, and inclusions

A geometric transition is an operation connecting two (families of)
smooth Calabi—Yau 3-folds via a birational contraction followed by a
flat deformation. More precisely, a geometric transition is described
as the composition top : X — X’ of the following maps

X 2o x . x
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such that the squares in the diagram commute, where X — B
and X’ — B’ are flat families of Calabi—Yau 3-folds over irreducible
analytic spaces whose general fibers are smooth and p is a birational
contraction over B shrunk if needed.

Example 1.2. A birational contraction of projective toric varieties
Py, — Py often induces a geometric transition of Calabi—Yau hy-

persurfaces XA — Xa/. Here, Py denotes a projective toric vari-
ety defined by a simplicial projective fan ¥, and A is the New-
ton polytope of anticanonical hypersurfaces in Py. These data de-
fines a flat family Xn — B. Note that it also induces the inclu-
sions G(X) D G(¥') and Conv G(X) D Conv G(Y') , where G(X) is
the set of primitive generators of one-dimensional cones in ¥ and
Conv G(X) is the convex hull of G(X).

2 General results in toric geometry

From combinatorics to birational geometry

Let N ~ Z% and NP"™ be the set of primitive lattice points of N.
We call a finite set A a primitive generating set of Ny if A is a non-
empty subset of NP"™ and Cone A = Ng. For any complete fan X,
the set of ray generators G(X) is a primitive generating set.

Definition 2.1. A > A’ denotes an inclusion A D A’ of primitive
generating sets of Ng such that |A| = |A’| + 1.

Definition 2.2. A fiber structure Ay C Ais an inclusion of primitive
generating sets A C N and Ay C Ny := RA; N N. The base can be
naturally defined as a primitive generating set Ay, C N}, := N/Ny.
Ar & A denotes a fiber structure satisfying |A| = |A¢| + |Ap| and
Ag| = rank N; + 1, which we call a Mori fiber structure on A.
Lemma 2.3 (a rough version). An inclusion A > A’ can
be lifted to an extremal divisorial contraction Py, — Pys of
projective toric varieties such that G(X) = A and G(¥') = A'.

A Mori fiber structure Ay & A can be lifted to a Mori fiber
space Py, — Py, such that G(X) = A and G(Xy) = Ay, whose
general fiber Ps, represents G(X¢) = As.

The MMP and the Sarkisov program

A precise version of Lemma 2.3 guarantees that the toric MMP is
coarse grained into a sequence of inclusions of primitive generating
sets, which terminates at a Mori fiber structure:

A:A0>A1>"'>Am:A/®A£.

Similarly, the toric Sarkisov program is also coarse grained into a
sequence of inclusions of primitive generating sets:

Theorem 2.4 (M. 2023, arXiv:2207.01632). Primitive gen-
erating sets of Ng with Mori fiber structure are all connected
via sequences of following diagrams and their inverses.
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3 Application in two dimensions

In two dimensions, the following statements of trinity is established
by finding a “good” sequence of Sarkisov links:

Trinity in two dimensions

Theorem 3.1 (M. 2023, arXiv:2207.01632).

e The classical Castelnuovo—Noether’s theorem on the Cre-
mona group BirP? connects all smooth rational surfaces
via “good” sequences of contractions.

e FElliptic curves described as anticanonical hypersurfaces
i smooth proper surfaces are all connected via “geomet-
ric transitions” associated with the ambient contractions.

e Reflexive polygons are all connected via inclusions.




