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This poster summarizes the results of my project in progress, in which we generalize the results of the paper [BLRT] regarding the

Geometric Manin’s Conjecture (GMC) for smooth Fano 3-folds to the case of terminal factorial Fano 3-folds. Our goal is to analyze the

asymptotic behavior of irreducible components of the Hom scheme Hom(P1, X, α), as α ∈ N1(X) grows positively.

0 Settings

• X: terminal factorial Fano 3-fold/C
• α ∈ N1(X): effective curve class on X

• M ⊂ M0,0(X,α) : irreducible component generically

parametrizing stable maps f : P1 → X s.t. f∗P1 = α

• U ev //

universal family
��

X: evaluation morphism

M
• For a projective variety Y with a nef, big divisor L,

a := a(Y, L) = inf{t ∈ R | KỸ + tϕ∗L ∈ Eff
1
(Ỹ )},

which is indep. of the choice of a resolution ϕ : Ỹ → Y

• κ := κ(Ỹ ,KỸ + aϕ∗L): Iitaka dimension

1 Surfaces with higher a-invariants

a-invariants should detect “pathological” components.

Theorem 1 (cf. [BLRT], §.4). Y := ev(U)

• Y = X =⇒ general f ∈ M is free, dimM = −KX · α
• Y ̸= X =⇒ a(Y,−KX) > 1

Here is the list of surfaces with a > 1:

No. (Y,−KX |Y ) κ a contractibility

1 swept out by −KX-lines 1 2 F

2 (P1 × P1,O(1, 1)) 0 2 T (E1 type)

3 (P2,O(2)) 0 3/2 T (E2 type)

4 (P1 × P1,O(1, 1)) 0 2 T (E3 type)

5 (quadric cone,O(1)) 0 2 T (E4 type)

6 (P2,O(1)) 0 3 T (E5 type)

7 its normalization ∼= (P2,O(2)) 0 3/2 F

When X is smooth, the case 7 does not occur by [BLRT].

2 a-covers

Theorem 2 (work in progress, cf. [BLRT], §.5).
Assume M is dominant and general fiber of ev is not irreducible

Ũ → U : smooth resolution

Ũ → Y
f−→ X: Stein fact. of Ũ → U → X

=⇒ f : Y → X : a-cover (i.e. a(Y,−f∗KX) = 1)

κ Iitaka fib. π : Y 99K B X: smooth case ([BLRT])

2 general fiber maps birationally to a −KX-conic

1 (work in progress) π: dP fib. if −KX :very ample

0 ∄ when X ⊉ E5 divisor ∄ in any case

3 Movable Bend-and-Break

MBB reduces the irreducibility problem to low deg cases.

Theorem 3 (cf. [BLRT], §.6).
M : dominant component s.t. −KX · α ≥ 5

=⇒ ∃(f : C → X) ∈ M s.t. either

(1) C = C1 + C2, f |Ci : free, or

(2) C = C1 + ℓ+ C2, f |Ci : free, f(ℓ): −KX-line in E5 div.

Moreover, −KX · α ≥ 10 =⇒ ∃f ∈ M of the type (1)

4 Geometric Manin’s Conjecture

M : Manin component

:⇐⇒ ∄f : Y → X: breaking map, ∄N ⊂ M0,0(Y ): irred. comp.

s.t. f induces a dominant, gen. finite map f∗ : N 99K M

Conjecture 4 ([Tan]).

∃c ∈ Z>0, ∃α ∈ Nef1(X)Z s.t. ∀β ∈ α+Nef1(X)Z,

∃ exactly c Manin components in M0,0(X,β)

5 Example: Cubic threefolds

X ⊂ P4: factorial terminal cubic 3-fold, H := −KX/2

Theorem 5.

ℓ ∈ N1(X): H-line class

=⇒ M0,0(X, ℓ) is dominant, irreducible of dim 2

(Strategy of the proof).

q ∈ Sing(X), C: 1-para. family of lines through q

Prove C is irreducible, M0,0(X, ℓ) is birational to Sym2(C).

Theorem 6 (cf. [LT], §.7). ∀d ≥ 2,

M0,0(X, dℓ) = Rd ∪Nd: union of two components of dim 2d

• general f ∈ Rd is birational

• any f ∈ Nd is a multiple cover of an H-line of deg d

In particular, ∀d ≥ 2, ∃!Rd ⊂ M0,0(X, dℓ): Manin component
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