岡村 郁弥 (Fumiya Okamura) 名古屋大学多元数理科学研究科 D2

This poster summarizes the results of my project in progress, in which we generalize the results of the paper [BLRT] regarding the Geometric Manin's Conjecture (GMC) for smooth Fano 3-folds to the case of terminal factorial Fano 3-folds. Our goal is to analyze the asymptotic behavior of irreducible components of the Hom scheme $\operatorname{Hom}(\mathbb{P}^1, X, \alpha)$, as $\alpha \in N_1(X)$ grows positively.

0 Settings

- X: terminal factorial Fano 3-fold/ \mathbb{C}
- $\alpha \in N_1(X)$: effective curve class on X
- $M \subset \overline{M}_{0,0}(X,\alpha)$: irreducible component generically parametrizing stable maps $f: \mathbb{P}^1 \to X$ s.t. $f_*\mathbb{P}^1 = \alpha$
- $\mathcal{U} \xrightarrow{\text{ev}} X$: evaluation morphism universal family
- M• For a projective variety Y with a nef, big divisor L,

$$a := a(Y, L) = \inf\{t \in \mathbb{R} \mid K_{\tilde{Y}} + t\phi^* L \in \overline{\mathrm{Eff}}^1(\tilde{Y})\},\$$

which is indep. of the choice of a resolution $\phi\colon \tilde{Y}\to Y$

• $\kappa := \kappa(\tilde{Y}, K_{\tilde{Y}} + a\phi^*L)$: Iitaka dimension

1 Surfaces with higher *a*-invariants

a-invariants should detect "pathological" components.

Theorem 1 (cf. [BLRT], §.4). $Y := ev(\mathcal{U})$

• $Y = X \implies general \ f \in M \ is \ free, \ \dim M = -K_X \cdot \alpha$ • $Y \neq X \implies a(Y, -K_X) > 1$

Here is the list of surfaces with a > 1:

No.	$(Y, -K_X _Y)$	κ	a	contractibility
1	swept out by $-K_X$ -lines	1	2	F
2	$(\mathbb{P}^1 \times \mathbb{P}^1, \mathcal{O}(1, 1))$	0	2	T (E1 type)
3	$(\mathbb{P}^2, \mathcal{O}(2))$	0	3/2	T (E2 type)
4	$(\mathbb{P}^1 \times \mathbb{P}^1, \mathcal{O}(1, 1))$	0	2	T (E3 type)
5	$(quadric \ cone, \mathcal{O}(1))$	0	2	T~(E4~type)
6	$(\mathbb{P}^2, \mathcal{O}(1))$	0	3	$T \ (E5 \ type)$
γ	its normalization $\cong (\mathbb{P}^2, \mathcal{O}(2))$	0	3/2	F

When X is smooth, the case 7 does not occur by [BLRT].

2 *a*-covers

Theorem 2 (work in progress, cf. [BLRT], §.5).

Assume M is dominant and general fiber of ev is not irreducible $\tilde{\mathcal{U}} \to \mathcal{U}$: smooth resolution

 $\tilde{\mathcal{U}} \to \mathcal{U}$: smooth resolution. $\tilde{\mathcal{U}} \to Y \xrightarrow{f} X$: Stein fact. of $\tilde{\mathcal{U}} \to \mathcal{U} \to X$ $\cdots \to a(Y, -f^*K_X) = 1)$

$$\implies f: Y \to X : a \text{-cover} (i.e. \ a(Y, -f^*K_X) = 1)$$

- *litaka fib.* $\pi: Y \dashrightarrow B$ *X: smooth case ([BLRT])* К
- general fiber maps birationally to a $-K_X$ -conic \mathcal{Z}

Movable Bend-and-Break 3

MBB reduces the irreducibility problem to low deg cases.

Theorem 3 (cf. [BLRT], §.6). M: dominant component s.t. $-K_X \cdot \alpha \geq 5$ $\implies \exists (f: C \to X) \in M \text{ s.t. either}$

(1) $C = C_1 + C_2$, $f|_{C_i}$: free, or

(2) $C = C_1 + \ell + C_2$, $f|_{C_i}$: free, $f(\ell)$: $-K_X$ -line in E5 div.

Moreover, $-K_X \cdot \alpha \ge 10 \implies \exists f \in M \text{ of the type } (1)$

4 Geometric Manin's Conjecture

M: Manin component

: $\iff \nexists f \colon Y \to X$: breaking map, $\nexists N \subset \overline{M}_{0,0}(Y)$: irred. comp. s.t. f induces a dominant, gen. finite map $f_*: N \dashrightarrow M$

Conjecture 4 ([Tan]).

 $\exists c \in \mathbb{Z}_{>0}, \ \exists \alpha \in \operatorname{Nef}_1(X)_{\mathbb{Z}} \ s.t. \ \forall \beta \in \alpha + \operatorname{Nef}_1(X)_{\mathbb{Z}},$ \exists exactly c Manin components in $\overline{M}_{0,0}(X,\beta)$

5 Example: Cubic threefolds

 $X \subset \mathbb{P}^4$: factorial terminal cubic 3-fold, $H := -K_X/2$

Theorem 5.

 $\ell \in N_1(X)$: *H*-line class $\implies \overline{M}_{0,0}(X,\ell)$ is dominant, irreducible of dim 2

(Strategy of the proof).

 $q \in \text{Sing}(X), C$: 1-para. family of lines through qProve C is irreducible, $\overline{M}_{0,0}(X, \ell)$ is birational to $\operatorname{Sym}^2(C)$.

Theorem 6 (cf. [LT], §.7). $\forall d \geq 2$, $\overline{M}_{0,0}(X,d\ell) = \mathcal{R}_d \cup \mathcal{N}_d$: union of two components of dim 2d

- general $f \in \mathcal{R}_d$ is birational
- any $f \in \mathcal{N}_d$ is a multiple cover of an *H*-line of deg d

In particular, $\forall d \geq 2, \exists ! \mathcal{R}_d \subset \overline{M}_{0,0}(X, d\ell)$: Manin component

References

- [BLRT] R. Beheshti et al. Moduli spaces of rational curves on Fano threefolds. Adv. Math., 408 Part A:Article 108557, 2022.
- [LT] B. Lehmann and S. Tanimoto. Geometric Manin's conjecture and rational curves. Compos. Math., 155(5):833-862, 2019.
- [Tan] S. Tanimoto. An introduction to Geometric Manin's conjecture. arXiv:2110.06660, 2021.