

Background

Fujita's freeness conjecture

- Let X be an n-dimensional smooth projective variety over \mathbb{C} .
- Let \mathcal{L} be an ample line bundle on X.

Then the adjoint bundle $\omega_X \otimes \mathcal{L}^{n+1}$ is globally generated.

If \mathcal{L} is globally generated, Fujita's freeness conjecture is proved by Kodaira vanishing and Castelnuovo-Mumford regularity. Similar results are known in

- positive characteristic (Smith'97, Hara'03, Keeler'08)
- mixed characteristic [BM+23]

This globally generated case was generalized to the relative setting in characteristic zero:

Theorem (Popa-Schnell'14)

- Let $f: X \to Y$ be a surjection between projective varieties over \mathbb{C} with X smooth and Y n-dimensional.
- Let \mathcal{L} be an ample and globally generated line bundle on Y.
- Then $f_*\omega_X^m \otimes \mathcal{L}^{m(n+1)}$ is globally generated for all $m \geq 1$.

• To see that this is indeed a generalization, set $f = id_X$ and m = 1. In positive characteristic, the analogous statement of this theorem is false (Moret-Bailly'81, Shentu-Zhang'20). However, an analog with some additional assumptions holds:

Theorem [Eji19] (cf. [Eji23])

- Let k be a perfect field of characteristic p > 0.
- Let $f: X \to Y$ be a surjection between projective varieties over k with X regular and $n = \dim Y$.
- Let \mathcal{L} be an ample and globally generated line bundle on Y.
- If ω_X is f-ample, then $f_*\omega_X^m \otimes \mathcal{L}^{m(n+1)}$ is globally generated for all $m \gg 1$.

• If $f = \operatorname{id}_X$, the f-ampleness of ω_X is automatic.

The following table gives a very brief summary of the results mentioned above.

	char. zero	pos. char.	mixed char.
absolute	OK	OK	OK
relative	OK	OK	?

Figure 1:Results on the globally generated case of Fujita's conj. and its relative variant

We consider the relative case in mixed characteristic.

On Fujita's freeness conjecture in mixed characteristic

Hirotaka Onuki

Graduate School of Mathematical Sciences, The University of Tokyo

Main Theorem

Let (R, \mathfrak{m}) be a Noetherian complete local domain of residue characteristic p > 0.

Main Theorem

• Let $f: X \to Y$ be a surjection between integral projective R-schemes with X regular and let $n = \dim Y_{\mathfrak{m}}$ be the dimension of the closed fiber of Y. • Let \mathcal{L} be an ample and globally generated line bundle on Y. If ω_X is f-ample, then $f_*\omega_X^m \otimes \mathcal{L}^{m(n+1)}$ is globally generated for all $m \gg 1$.

Sketch of the proof

Although Kodaira vanishing is only available in characteristic zero, Bhatt [BM+23] proved a Kodaira-type vanishing theorem "up to finite covers". Bhatt's vanishing theorem is employed to derive a global generation result for the sheaves defined below (Key Lemma). This result is used repeatedly to prove the Main Theorem.

Definition

Let X be a normal integral projective R-scheme. • [BM+23] For a Weil divisor M on X, define

to be the submodule

$$\bigcap_{g: X' \to X} \operatorname{Im}(H^0(X', \mathcal{O}_{X'}(K_{X'} + g^*M)))$$

where $g: X' \to X$ runs over all finite surjection from a normal integral scheme X'.

• [HLS21] Define

$$\tau_+(\mathcal{O}_X)\subset \mathcal{C}$$

as the subsheaf such that $au_+(\mathcal{O}_X)\otimes \mathcal{A}$ is globally generated by $\mathbf{B}^0(X,\mathcal{A})$ for a sufficiently ample line bundle \mathcal{A} on X.

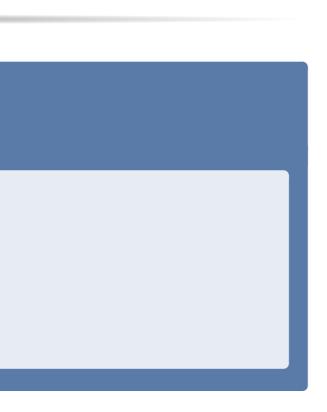
• Let $f: X \to Y$ be a surjection to an integral R-scheme Y and N a Cartier divisor on X. Define

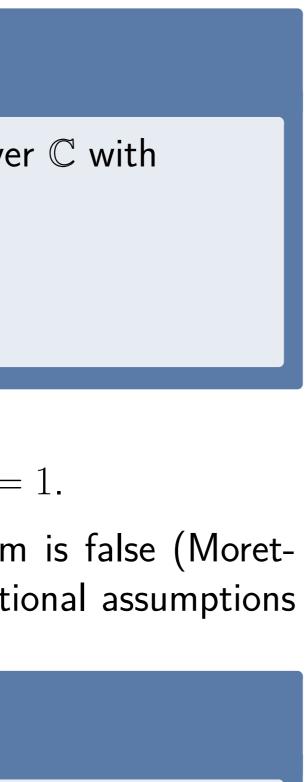
 $\mathbf{B}^0 f_*(\tau_+(\mathcal{O}_X) \otimes \mathcal{O}_X(N)) \subset f_* \mathcal{O}_X(N)$

as the subsheaf such that $\mathbf{B}^0 f_*(\tau_+(\mathcal{O}_X) \otimes \mathcal{O}_X(N)) \otimes \mathcal{L}$ is globally generated by $\mathbf{B}^0(X, \mathcal{O}_X(N) \otimes f^*\mathcal{L}) \subset H^0(Y, f_*\mathcal{O}_Y(N) \otimes \mathcal{L})$ for a sufficiently ample line bundle \mathcal{L} on Y.

We state some properties of these modules.

- If X is regular, $\tau_+(\mathcal{O}_X) = \mathcal{O}_X$ holds.
- If N is sufficiently f-ample, $\mathbf{B}^0 f_*(\tau_+(\mathcal{O}_X) \otimes \mathcal{O}_X(N)) = f_*(\tau_+(\mathcal{O}_X) \otimes \mathcal{O}_X(N))$ holds.





- $\mathbf{B}^0(X, \mathcal{O}_X(K_X + M)) \subset H^0(X, \mathcal{O}_X(K_X + M))$
 - $\rightarrow H^0(X, \mathcal{O}_X(K_X + M)))$

- X normal and $n = \dim Y_{\mathfrak{m}}$.
- is globally generated.

We prove the Key Lemma by using Bhatt's vanishing theorem and the Koszul/Skoda complex.

Now we prove the Main Theorem. We make two observations: for sufficiently large $m \gg 1$ and for any $s \ge 0$,

- generated (by the Key Lemma)

We use these observations to show that $\omega_X \otimes f^* \mathcal{L}^{n+1}$ is semiample. Then we get the Main Theorem from **2**.

- characteristic, Publ. Math. Inst. Hautes Études Sci., (2023).
- preprint
- characteristic and applications, preprint.

Key Lemma

• Let $f: X \to Y$ be a surjection between integral projective R-schemes with • Let \mathcal{L} be an ample and globally generated line bundle on Y. • Let N be a Cartier divisor on X with $N - K_X$ big and semiample. Then $\mathbf{B}^0 f_*(\tau_+(\mathcal{O}_X) \otimes \mathcal{O}_X(N)) \otimes \mathcal{L}^n$ is globally generated.

• If, furthermore, X is regular and N is sufficiently f-ample, then $f_* \mathcal{O}_X(N) \otimes \mathcal{L}^n$

• If $f_*\omega_X^m \otimes \mathcal{L}^s$ is globally generated, so is $\omega_X^m \otimes f^*\mathcal{L}^s$ (by the f-freeness of ω_X^m) 2) if $\omega_X^{m-1} \otimes f^* \mathcal{L}^{s-\delta}$ is semiample for some $\delta > 0$, then $f_* \omega_X^m \otimes \mathcal{L}^{s+n}$ is globally

References

[BM+23] B. Bhatt, L. Ma, Z. Patakfalvi, K. Schwede, K. Tucker, J. Waldron and J. Witaszek, Globally +-regular varieties and the minimal model program for threefolds in mixed

[Eji19] S. Ejiri, Direct images of pluricanonical bundles and Frobenius stable canonical rings of fibers,

[Eji23] S. Ejiri, Notes on direct images of pluricanonical bundles, Eur. J. Math., (2023) [HLS21] C. Hacon, A. Lamarche and K. Schwede, Global generation of test ideals in mixed