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The steady propagation of a (d − 1)-dimensional planer interface in d-dimensional space is studied by
analyzing mesoscopic nonconserved order parameter dynamics with two local minima under the influence
of thermal noise. In this analysis, an entropic force generating interface propagation is formulated using a
perturbation method. It is found that the entropic force singularly depends on an ultraviolet cutoff when
d ≥ 2. The theoretical calculation is confirmed by numerical simulations with d ¼ 2. The result means that
an experimental measurement of the entropic force provides an estimation of the microscopic cutoff of the
mesoscopic description.

DOI: 10.1103/PhysRevLett.132.057101

Introduction.—Macroscopic dynamics in nature are
often described by deterministic equations. If a class of
phenomena is found to be described by a simple deter-
ministic equation with a few parameters, the phenomena
can be studied by analyzing the universal equation. Fluid
dynamics is a typical example of the success of such an
approach [1]. However, there are cases in which simple
deterministic equations cannot be found. For example, the
macroscopic motion of locally conserved quantities in one
or two dimensions cannot be described by a hydrodynamic
equation with finite transportation coefficients [2]. Another
example is the dynamical behavior near a critical point,
where transport coefficients show a singular behavior [3,4].
Even in such cases, a mesoscopic model with thermal

noise can describe the macroscopic dynamical behavior.
For example, fluctuating hydrodynamics can correctly
describe the singular behavior of hydrodynamics in low
dimensions [2]. The dynamical behavior near a critical
point also can be described by the Ginzburg-Landau model
with thermal noise [5]. Here, fluctuations modify the mean-
field properties given by the mesoscopic free energy, which
includes the transition type [6] as well as the critical
exponents [5,7]. These examples show that fluctuation
effects at mesoscopic scales lead to the renormalization of
model parameters and that the lack of a simple macroscopic
equation is connected to the infrared divergence of renor-
malized parameters. In such a case, phenomena observed at
macroscopic scales cannot be separated from those at
mesoscopic scales.
The purpose of this Letter is to report another violation of

this scale separation, which is qualitatively different from
the previously known cases. We study a steady propagation
of a (d − 1)-dimensional planer interface separating two
phases in d dimensions by analyzing the mesoscopic
nonconserved order parameter dynamics with weak

thermal noise. One remarkable finding is that the propa-
gation velocity depends on the noise intensity, as already
reported in the case d ¼ 1 [8]. This means that the noise
modifies the average dynamic behavior. Although this is an
interesting phenomenon, the mechanism behind it is
simple. The driving force of the interface motion is the
free energy difference between the two phases, which
contains the entropic contribution in addition to the meso-
scopic free energy given by the mesoscopic model. Here,
the entropic contribution is expressed by fluctuation prop-
erties coming from the noise. Thus, if there is no special
symmetry between the two phases, the propagation velocity
depends on the noise intensity. In a special case where the
mesoscopic free energy takes the same value in the two
phases, the propagation occurs only as a result of the
entropic force. The behavior can be understood by the
renormalization of the mesoscopic free energy. The main
message of this Letter is that the entropic force diverges
when an ultraviolet cutoff goes to infinity for d ≥ 2.
This result means that the propagation velocity driven by

the entropic force depends on the microscopic cutoff. In
other words, the mesoscopic description cannot be sepa-
rated from a more microscopic system.We demonstrate this
result using a theoretical calculation of the entropic force.
Furthermore, we confirm this claim by performing numeri-
cal simulations of the order parameter dynamics with noise.
We expect that this singular behavior is also observed in
experiments such as interface motion in a spin-crossover
complex [9]. Surprisingly, an experimental measurement of
the entropic force provides an estimation of the micro-
scopic cutoff of the mesoscopic description.
Setup.—For simplicity, we present the system in two

dimensions. The generalization to the other dimensions is
straightforward. Let r ¼ ðx; yÞ∈R2 be a position in a two-
dimensional region D≡ ½−L;L� × ½0; Ly�. L and Ly are
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sufficiently large and L is assumed to be infinity in
theoretical arguments. We define a real scalar order
parameter field ϕðr; tÞ in the region D. The free energy
functional of ϕ is given by

F ðϕÞ ¼
Z
D
d2r

�
fðϕÞ þ κ

2
½ð∂xϕÞ2 þ ð∂yϕÞ2�

�
; ð1Þ

where fðϕÞ is a mesoscopic free energy density and κ is a
constant characterizing the interface energy. Following the
Onsager principle, we assume that the dynamics of ϕðr; tÞ
is described by

∂tϕ ¼ −Γ
δF
δϕ

þ η; ð2Þ

where Γ is a constant representing the mobility and η is
Gaussian white noise satisfying hηðr; tÞi ¼ 0 and the
fluctuation-dissipation relation

hηðr; tÞηðr0; t0Þi ¼ 2ΓTδðr − r0Þδðt − t0Þ: ð3Þ

This model has been referred to as “Model A” [5], which
describes the nonconserved order parameter dynamics.
More precisely, because this model describes mesoscopic
dynamics, we introduce a microscopic cutoff length 2π=kc,
where the amplitude of the Fourier mode with jkj > kc is
set to zero.
Specifically, we study a system in which the mesoscopic

free energy density fðϕÞ has two local minima at ϕ1 and
ϕ2. We assume ϕ1 < ϕ2 without loss of generality. We
impose periodic boundary conditions in the y direction and
ϕðrÞ ¼ ϕ1 at x ¼ −L and ϕðrÞ ¼ ϕ2 at x ¼ L. A one-
dimensional planer interface is initially prepared at x ¼ 0.
We then observe the motion of the interface. The goal here
is to determine the expectation value of the steady propa-
gating velocity of the interface.
We first consider the case T ¼ 0 with fðϕÞ fixed. The

model given by (2) becomes a deterministic equation.
The steady propagation solution ϕ0ðzÞ with z ¼ x − c0t
satisfies

−c0∂zϕ0ðzÞ ¼ −Γ½f0ðϕ0Þ − κ∂2zϕ0�; ð4Þ

where c0 is the steady propagation velocity of the interface.
Mathematically, (4) is a nonlinear eigenvalue problem for
the solution ϕ0 with a special value of c0. Thus, ϕ0ðzÞ and
c0 are simultaneously determined. The explicit form of the
solution is not generally written, but we can easily confirm
the following relation in the limit L → ∞ [10]:

c0 ¼ Γint[fðϕ2Þ − fðϕ1Þ]; ð5Þ

with

Γint ¼
ΓR∞

−∞ dz[∂zϕ0ðzÞ]2
: ð6Þ

The relation (5) indicates that the free energy density
difference between the two local minima drives the inter-
face to decrease the total free energy. The mobility of the
interface is then given by (6).
When T > 0, the noise modifies the propagation veloc-

ity. To extract this effect clearly, we study the case c0 ¼ 0,
which holds when fðϕ2Þ ¼ fðϕ1Þ. We then consider the
weak noise limit T → 0 ignoring nucleation events in the
bulk. Let θðy; tÞ be the x coordinates of the interface at time
t. The expectation of the fluctuating quantity θðy; tÞ
approaches a steady propagating state expressed as

hθðy; tÞiss ¼ ctþ const: ð7Þ

A finite value of c was reported for the case d ¼ 1 [8], in
which the nature of the driving force was found to be
entropic. That is, when the fluctuation intensity around ϕ ¼
ϕ1 is larger than that around ϕ ¼ ϕ2, the entropy density in
the region with ϕ ¼ ϕ1 is larger and then the region of
ϕ ¼ ϕ1 becomes larger, leading to c > 0. The formula for c
is expressed as [8]

c ¼ Γint
T
2

�
1

ξ2
−

1

ξ1

�
þOðT3=2Þ; ð8Þ

where ξi ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ=f00ðϕiÞ

p
is the correlation length of fluctua-

tions in the bulk region with ϕ ¼ ϕi. It should be noted that
(8) was confirmed by numerical simulations [8].
In this Letter, we study c for the system in two

dimensions. Because the driving force of the interface
motion is entropic, we expect that an entropic contribution
sðϕÞ to the macroscopic free energy plays an essential role
in the determination of c. We then conjecture

c ¼ Γintf−T½sðϕ2Þ − sðϕ1Þ�g þOðT3=2Þ; ð9Þ

which means that the difference between the entropic
contributions in each bulk region leads to the driving force.
The question now is whether or not c can be expressed in
such a form. Even if the form of (9) is correct, the
functional form of sðϕÞ is not immediately obtained from
the model (2). We thus need to derive c for the system in
two dimensions. However, because the derivation method
in Ref. [8], which follows the method proposed in
Refs. [11–13], is specific to the one-dimensional case,
we have to develop a general method of deriving c.
Main result.—We derive the stochastic interface dynam-

ics from the stochastic model (2). As far as deterministic
systems are concerned, there have been many methods used
to derive the equation for interface motion [14–20]. The
essence of these methods is to extract the interface motion
as the slowest dynamics while separating other fast
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variables. We generalize the methods above to analyze
stochastic systems in one and higher dimensions. We then
obtain the formula (9) with

sðϕiÞ ¼ −
1

2

Z
jpj≤kc

dp
2π

ξ−2i − p2

p2 þ ξ−2i
; ð10Þ

in one dimension and

sðϕiÞ ¼ −
1

2

Z
jpj≤kc

d2p
ð2πÞ2

ξ−2i
jpj2 þ ξ−2i

: ð11Þ

in two dimensions. The right-hand side of (10) is calculated
as

sðϕiÞ ¼ −
1

2π

�
2

ξi
tan−1ðξikcÞ − kc

�
: ð12Þ

By substituting this result into (9) and taking the limit
kc → ∞, we obtain (8). Then, for the two-dimensional
case, the right-hand side of (11) is calculated as

sðϕiÞ ¼ −
1

8πξ2i
lnðξ2i k2c þ 1Þ; ð13Þ

where the cutoff wave number kc should remain finite. This
means that the stationary propagation velocity for the
model with d ¼ 2 singularly depends on the ultraviolet
cutoff kc. In other words, we need to specify a value of the
cutoff kc to study a measurement result of the propagating
velocity.
Numerical simulations.—Because the cutoff dependence

of the formula (13) is rather striking, we now confirm this
result using numerical simulations. We note that sðϕ1Þ ¼
sðϕ2Þ when f00ðϕ1Þ ¼ f00ðϕ2Þ. Therefore, an asymmetric
landscape of fðϕÞ is necessary for the appearance of the
entropic driving force. On the basis of this fact, we assume
the local free energy density fðϕÞ is given by

fðϕÞ ¼
�
1 − exp½b1ðϕ − 1Þ�
1 − exp½b1ðϕ0 − 1Þ�

1 − exp½−b2ðϕþ 1Þ�
1 − exp½−b2ðϕ0 þ 1Þ�

�
2

;

ð14Þ

as in Ref. [8]. Here, f satisfies the condition that ϕ1 ¼ −1,
ϕ2 ¼ 1, and fðϕ1Þ ¼ fðϕ2Þ. In Fig. 1, we show the form of
the local free energy density f. It can be seen that the
potential is highly asymmetric, i.e., f00ðϕ1Þ ≫ f00ðϕ2Þ.
Examples of asymmetric free energy density f were
presented in Refs. [21,22].
We define a discrete model on a square lattice with a

spatial mesh size of Δx, considering that Δx should be
smaller than ξ1 and ξ2. The discrete model is obtained by
discretizing (2), where ∂

2
x þ ∂

2
y is replaced by the finite

difference Laplacian. For the initial condition

ϕðr; 0Þ ¼ ϕ2 − ϕ1

2
tanh

�
x
40

�
þ ϕ1 þ ϕ2

2
; ð15Þ

the stochastic time evolution is performed using the Heun
method. We then measure

Φðx; tÞ≡ 1

Ly

Z
Ly

0

dyϕðx; y; tÞ; ð16Þ

which describes the x profile averaged in the y direction. In
Fig. 2, we show an example of Φðx; tÞ for several values of
t. For the interface position XðtÞ defined byΦ(XðtÞ; t) ¼ 0,

FIG. 1. Shape of the mesoscopic free energy density (14) with
b1 ¼ 0.5, b2 ¼ 5.0, and ϕ0 ¼ −0.5.

FIG. 2. Time evolution of the pattern averaged in the y
direction. The free energy density fðϕÞ is the same as that in
Fig. 1. The other parameter values are κ ¼ 1600, Γ ¼ 0.1,
T ¼ 0.5, L ¼ 400, and Ly ¼ 100. Noting that ξ1 ¼ 4.33 and
ξ2 ¼ 27.3 for these parameters, we choose Δx ¼ 1.0 and Δt ¼
5.0 × 10−4 [23].
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we define a time-averaged velocity as

VðtÞ≡ XðtÞ − Xðt0Þ
t − t0

; ð17Þ

where t0 is chosen to be much larger than the relaxation
time to the steady propagating state. In Fig. 3, we plot the
expectation value of VðtÞ, which gives the numerically
estimated value of c. We then confirm that c is proportional
to T for T ≤ 1 [23].
We now perform the same calculation for systems with

different values of Δx. The results are displayed in Fig. 4. It
is observed that c does not go to a definite value as Δx
becomes smaller under the condition that Δx < ξ1 ≪ ξ2,
which is in contrast with the one-dimensional case. To
compare the numerical data with the theoretical result, we
overlay the graph of (9) with (13) in Fig. 4, where we
choose

kc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2π

Δx

�
2

þ
�
2π

Δx

�
2

s
¼ 2

ffiffiffi
2

p
π

Δx
; ð18Þ

which corresponds to the largest magnitude of the wave
vector in the numerical simulations. We find that the
theoretical calculation is consistent with the numerical
simulations. We thus conjecture that jcj diverges in the
limit Δx → 0 even in numerical simulations.
Sketch of the derivation.—We first take the limit L → ∞.

Let T be sufficiently small such that the noise effect can be
studied as a perturbation of the deterministic system. To
express this smallness, we replace T with ϵ2T, where ϵ is a
small dimensionless parameter. When a perturbation is
imposed on the stationary solution ϕ0ðxÞ, the response is
divided into the interface motion θðy; tÞ and the rest. That
is, we express the perturbation solution as

ϕðx; y; tÞ ¼ ϕ0ðzÞ þ ϵρ1ðz; y; tÞ þOðϵ2Þ; ð19Þ

with the comoving coordinate z ¼ x − θðy; tÞ. Assuming
that ∂yθ is small and proportional to ϵ, we introduce a large
scaled coordinate Y as Y ¼ ϵy, and define ΘðY; tÞ ¼
θðy; tÞ. The time evolution of ΘðY; tÞ is described by

∂tΘ ¼ ϵΩ1ð½Θ�Þ þ ϵ2Ω2ð½Θ�Þ þOðϵ3Þ; ð20Þ

where [Θ] represents the dependence of ∂YΘ and ∂
2
YΘ. By

substituting (19) and (20) into (2), we can determine the
statistical properties of ρ1, Ω1, and Ω2. This calculation
method is regarded as a generalization of the method in
Ref. [14] to stochastic systems.
The stationary propagation velocity c is obtained as

c ¼ ϵhΩ1iss þ ϵ2hΩ2iss þOðϵ3Þ. We calculate hΩ1iss ¼ 0
and

hΩ2iss ¼
Γ
2

R∞
−∞ dzð∂zϕ0Þfð3Þðϕ0Þhρ21issR∞

−∞ dzð∂zϕ0Þ2
: ð21Þ

This formula was derived in Ref. [27]. Now, from the time-
reversal symmetry of the steady state in the comoving
frame, we find that the integral of the numerator in (21) is
expressed as limΛ→∞½Ψðz ¼ ΛÞ −Ψðz ¼ −ΛÞ� using a
function ΨðzÞ given by

ΨðzÞ ¼ fð2Þ(ϕ0ðzÞ)hρ1ðz; yÞ2iss
− κ

	h(∂zρ1ðz; yÞ)2iss − 

(∂yρ1ðz; yÞ)2

�
ss

�
: ð22Þ

Therefore, (21) takes the form (9) with

TsðϕiÞ ¼ −
1

2
lim
Λ→∞

ΨðμiΛÞ; ð23Þ

where μ1 ¼ −1 and μ2 ¼ 1. Finally, by evaluatingΨðzÞ, we
obtain (11). The calculation result is immediately gener-
alized to d-dimensional systems [23]. In particular, for the
case d ¼ 1, we obtain (10).
Concluding remarks.—We have derived the formula (9)

with (11) for the entropic driving force in the mesoscopic

FIG. 3. hVðtÞi as a function of t − t0. The parameter values are
the same as those in Fig. 2. t0 ¼ 50. Eighty samples are used to
estimate hVðtÞi with error bars.

FIG. 4. Δx dependence of the propagating velocity c for the
system in two dimensions. The parameter values are the same as
those in Fig. 2. The blue circles represent numerical results given
by hVðt ¼ 6000Þi. The green curve represents (9) with (13). We
checked the validity of the values of the numerical parameters Δx
and Δt [23].
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model (2). Although we have studied the case c0 ¼ 0, it is
straightforward to derive the propagation velocity for c0 ≠
0 as c0 þ c, which is denoted by c�. We have found that the
entropic force singularly depends on the microscopic cutoff
of the mesoscopic model (2) in two dimensions. This
discovery suggests the need for further study.
The most important challenge is an experimental obser-

vation of the entropic force in two or three dimensions. As
an experimental system, we propose to study a spin-
crossover complex where high-spin and low-spin states
can coexist with an interface [9]. Since curvatures of the
free energy at these states are different, we expect the
entropic contribution of the force generating the interface
propagation. Here, through the measurement of the space-
time correlation of order parameter fluctuations, Γ and the
correlation lengths are evaluated. By measuring c� directly
at sufficiently low temperatures T1 and T2, we may
estimate the value of kc by using c�ðT2Þ − c�ðT1Þ ≃
−Γint(T2 − T1)(sðϕ2Þ − sðϕ1Þ) with the assumption that
in the low temperature region fðϕÞ does not depend on T.
From the theoretical viewpoint, it is significant to

generalize our formula (9) for studying various systems
such as conserving systems [28] and out-of-equilibrium
systems [29–31]. More fundamentally, in pursuit of a
microscopic understanding of the cutoff, one can attempt
to consider the derivation of the mesoscopic description
from more microscopic systems such as lattice models [32]
or Hamiltonian systems [33]. Although there have been
many related studies since Ref. [34], the explicit determi-
nation of coefficients of the mesoscopic model is not easy
as argued in Ref. [35]. To develop a theory explaining the
cutoff dependence based on a microscopic description
should be another goal of nonequilibrium statistical
mechanics. As another direction of study, the universality
class of stochastic interface motion will be explored by
studying the fluctuation properties of the interface motion.
With regard to this problem, we point out that the micro-
scopic cutoff dependence observed in the Kardar-Parisi-
Zhang equation [25,26] comes from a nonlinear term that is
not relevant in our problem [23]. Thus, the microscopic
cutoff dependence reported in this Letter has never been
studied so far.
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