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Reconstructing visual illusory experiences from human 
brain activity 
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Visual illusions provide valuable insights into the brain’s interpretation of the world given sensory inputs. 
However, the precise manner in which brain activity translates into illusory experiences remains largely 
unknown. Here, we leverage a brain decoding technique combined with deep neural network (DNN) represen-
tations to reconstruct illusory percepts as images from brain activity. The reconstruction model was trained on 
natural images to establish a link between brain activity and perceptual features and then tested on two types of 
illusions: illusory lines and neon color spreading. Reconstructions revealed lines and colors consistent with il-
lusory experiences, which varied across the source visual cortical areas. This framework offers a way to materi-
alize subjective experiences, shedding light on the brain’s internal representations of the world. 
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INTRODUCTION 
Visual illusions occur when perception of the world dissociates 
from sensory inputs. These illusions have been used to understand 
how the brain creates internal representations of the world. Physi-
ological and neuroimaging studies have provided evidence of neural 
responses associated with illusory features. At the level of individual 
neurons in the visual cortex, some neurons exhibit similar responses 
to both actual and illusory attributes, suggesting the presence of a 
common neurobiological processing mechanism (1–11). On a 
broader scale, differential brain activity in some visual areas corre-
lates with the perception of illusory attributes (12–18), and brain 
activity patterns can be classified according to differences in illusory 
experiences (19, 20). However, despite these insights, the precise 
impact of these neural responses on overall perceptual experience 
remains elusive. Elucidating how the population activity of visual 
cortical areas translates into the exact content of an illusory experi-
ence is essential to fill a critical gap in our understanding of how 
brain activity represents perceptual experience. 

We address this issue by reconstructing illusory percepts as 
images from brain activity at different levels of processing in the 
visual cortex. Recent decoding and reconstruction techniques 
have used deep neural network (DNN) representations translated 
from brain activity to enable the reconstruction of arbitrary stimu-
lus images (21–26). These techniques have also facilitated the recon-
struction of subjective content, such as mental imagery and 
attention-modulated perception, by using the same model that 
was trained on stimulus perception (24, 26). Reconstruction pro-
vides a coherent representation of visual experience, encoded by 
neural population patterns and those mapped to DNN representa-
tions, which can be internally modulated to provide an alternative 
interpretation of sensory inputs. We hypothesize that an illusory 

stimulus would produce brain activity similar to that induced by a 
stimulus reflecting the subjective appearance of the illusion at spe-
cific stages of visual processing. This brain activity could be trans-
lated or decoded into DNN representations, which could then be 
converted into an image that exhibits the illusory attribute absent 
in the original stimulus. 

RESULTS 
Illusory stimuli and the reconstruction model 
We tested this idea using representative line and color illusions— 
illusory lines induced by offset-gratings and neon color spreading 
(Fig. 1A and fig. S1; see Materials and Methods). Illusory lines 
were produced by shifted line gratings (27, 28). We used a total of 
six configurations of the inducer (0° and 90°) and illusory orienta-
tions (0°, 45°, 90°, and 135°). Neon color spreading is an illusion 
where the color spreads out of the stimulus region, producing the 
percept of a transparent color surface (29, 30). We used two versions 
of neon color spreading: the Ehrenstein configuration (31, 32), 
where the color is restricted to the line regions but appears to 
spread out to form a circular surface, and the Varin configuration 
(33), where the color is restricted to the wedge regions but appears 
to spread out to form a rectangular surface. For both illusions, we 
prepared control images that weakened or abolished the illusory 
percepts, and positive control images that mimicked the illusory 
percepts with real lines or a uniform color surface. 

We adopted reconstruction models that consisted of DNN 
feature decoders and an image generator (Fig. 1, B and C). The 
DNN feature decoders were similar to those used in our previous 
studies (22, 24). We used the unit activations of a feedforward con-
volutional neural network (34) as the target of decoding (Fig. 1B). 
The DNN feature decoders were trained on functional magnetic res-
onance imaging (fMRI) brain activity elicited by natural images of 
objects, material, and scenes including those added for this study 
(3200 images in total; see Materials and Methods). We used the 
fMRI signals of seven subjects from the visual cortex (VC), which 
covered both the early areas and the ventral object-responsive areas 
(see Materials and Methods). We assumed that most natural images 
would induce perceptions that closely mirror the physical features 
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of the image (veridical perception) and that the trained decoders 
could adequately represent the mapping between brain activity 
and perceptual features, even without explicit information about 
subjective appearances. 

At the test stage, we used the fMRI dataset measured for this 
study where the seven subjects were shown the illusory images as 
well as the control and positive control images in sequences inter-
leaved with natural images (Fig. 1C; see Materials and Methods for 
exclusion criteria and missing data). Each test image was flashed at 
0.625 Hz for 8 s in each trial and it was repeated across 20 trials. 
Using the trained DNN feature decoders (Fig. 1B), we obtained 
the decoded features from each single-trial brain activity of the 
test dataset (Fig. 1C). The decoded features were then input to a 
generator, which had been trained on a large natural image 
dataset to convert the stimulus DNN features of an image back to 
the original image. The stimulus DNN features of the test illusory 
images were also given to the generator to see if the involvement of 
brain activity is critical for the reconstruction of illusory features. 
We primarily used a generator based on a generative adversarial 
network (GAN) (35, 36), which we had decided on before data col-
lection. However, we also tested additional generators based on dif-
fusion methods (37–39) and pixel optimization (24). While the 
three generators produced reconstructed images with different 
flavors, they yielded qualitatively similar results in terms of the 
visual features of interest. The chosen method was able to recon-
struct natural images (fig. S2) with a quality that was on par with 
our previous study (24). 

Reconstructed images 
We first confirmed that our reconstruction pipeline did not create 
spurious lines or colors congruent with the illusory percepts. We 
show reconstructions derived from stimulus DNN features for rep-
resentative configurations (Fig. 2, “Stimulus features”). In all config-
urations, the reconstructions with stimulus features alone did not 
exhibit illusory components, even in the presence of noise (see 
fig. S3 for results from stimulus features plus the noise; see Materials 
and Methods). Although some DNN models can be trained to rep-
resent illusory appearances without the involvement of brain activ-
ity (40–43), the DNN model we used as the target for feature 
decoding is a feedforward convolutional neural network trained 
for object classification (34) and thus is unlikely to represent con-
textual features like illusory line and color. We found that individual 
units of the DNN representation did not show orientation or color 
tuning shared between real and illusory features (figs. S4 and S5). 
Thus, our reconstruction model itself seems to translate visual in-
formation represented in brain activity following the coding rules 
for veridical perception. 

Building on these findings, we then examined the reconstruc-
tions with DNN features decoded from single-trial brain activity 
in the whole VC for each stimulus image (Fig. 2, right; two repre-
sentative subjects and trials; see figs. S6 to S9 for results of others 
and fig. S10 for results of other generators). In the line illusions, 
the reconstructions contained line components of the illusory and 
the inducer orientations. The illusory orientation often appeared 
more prominent than the inducer orientation, and this effect was 
not limited to the specific image region where the illusory line 

Fig. 1. Illusory stimuli and image reconstruction procedure. (A) Example images of the illusion (left) and control (right) conditions: an illusory line induced by offset- 
gratings (top), the Ehrenstein (center), and Varin (bottom) configurations for neon color spreading. (B) Training. The stimulus features of natural images were extracted 
with a DNN pretrained for object recognition. Decoders were trained to predict the stimulus DNN features from fMRI responses to the same images. (C) Testing. Illusory 
images were presented together with control and positive control images. The stimulus features of a test stimulus or the DNN features decoded from fMRI responses to 
the test stimulus were passed to a pretrained generator for reconstruction.  
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was actually perceived. In the control condition, where there were 
fewer grating lines to weaken the illusory percept, the line compo-
nents of the illusory orientation were not as prominent. 

In the Ehrenstein configuration of neon color spreading, the re-
constructions exhibited a more extensive colored region compared 
to the control, where a line-width gap was introduced to eliminate 
the illusory percept. For the Varin configuration, the control image 
was designed to suppress the color spreading but not the contour or 
shape component. The reconstructions from the illusory and 
control conditions showed a contour-like intensity profile, but 
color spreading was more pronounced in the illusory configuration. 
In both the Ehrenstein and Varin configurations, the outer inducer 
parts were often poorly reconstructed, likely due to the selective 
flashing of color regions primarily located in more central positions. 
The lower resolution of the peripheral representation may also con-
tribute to the inferior reconstructions observed in the periphery. 

Quantitative analyses of illusory lines across multiple 
brain areas 
To quantify the reconstructed illusory lines (Fig. 3A), we detected 
the most apparent line orientation in each single-trial reconstruc-
tion using the Radon transform (44). We calculated Radon projec-
tions for line areas traversing the center of an image at each 

orientation. A prominent line would cause a substantial change in 
the projection value across parallel line areas at the line’s orienta-
tion. Thus, the orientation with the largest variance was defined 
as the principal orientation in each reconstruction (see Materials 
and Methods). The distribution of the principal orientations is 
shown in Fig. 3B by pooling single-trial reconstructions from VC 
for stimulus images with a 90° difference between the illusory and 
inducer orientations (n = 275 trials that survived the exclusion cri-
teria from seven subjects; see fig. S11A for results of each subject). 
This distribution had a bimodal peak at the illusory and inducer ori-
entations, with 61.1% of principal orientations closer to the illusory 
than the inducer orientation. The configurations of a 45° difference 
showed a similarly high closer-to-illusory proportion (65.2%; fig. 
S11, A and B). 

Using these methods, we compared the reconstructions from 
brain-decoded features of VC with those from stimulus features 
(noise added to match the decoded features from each subject; see 
Materials and Methods). Consistent with representative reconstruc-
tions (Fig. 3C, top; see other reconstructions in figs. S3 and S6), the 
principal orientations with stimulus features were distributed 
mostly around the inducer orientation, unlike the bimodal distribu-
tion found with brain-decoded features (Fig. 3C, center; all 90°-dif-
ference configurations and subjects pooled). The closer-to-illusory 

Fig. 2. Reconstructions of illusory and control images. Reconstructions from stimulus features and from brain-decoded features are shown for two representative 
subjects (S1 and S2). Reconstructions from brain-decoded features were produced from single-trial (8-s) fMRI signals in the whole visual cortex (VC). Representative 
reconstructions from four different trials are shown for each subject.  
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proportion for stimulus features (plus noise) was near zero (Fig. 3C, 
bottom; all configurations pooled in each subject; one-sided z tests, 
P < 0.01 in seven of seven subjects). These results further confirm 
that the reconstructed illusory lines were derived from brain activ-
ity, not from the analysis pipeline itself. 

In addition, we investigated the effect of the number of inducer 
lines. Prior research has shown that decreasing the number of 
inducer lines weakens illusory percepts (28). The reconstructions 
(Fig. 3D, top; additional examples in fig. S7) and distributions of 
the principal orientations (Fig. 3D, center; all 90°-difference config-
urations and subjects pooled; see results of each subject in fig. S12) 
indicate a gradual reduction in the strength of the illusory lines as 
the number of inducer lines is decreased. The closer-to-illusory pro-
portion was similar at line numbers 19 and 9 and then decreased at 
line number 3 (Fig. 3D, bottom; all 90°-difference configurations 
and subjects pooled). Thus, the reconstructions appear to reflect 
the illusory appearance manipulated by the number of 
inducer lines. 

The illusory line is perceived at the abutting portion of the 
inducer gratings. However, the method used above for detecting 
the principal orientation fails to capture this locality of the illusory 
percept. To examine the local presence of the illusory orientation in 
reconstructions, we analyzed local image regions and detected the 
principal orientation separately at (i) illusory regions where the il-
lusory line was expected to be seen and at (ii) nonillusory regions 
where only inducer lines were expected to be seen (Fig. 3E, top). We 
calculated the closer-to-illusory proportions at each local region 
and the global region from the previous analysis (Fig. 3E, bottom; 
all configurations pooled in each subject). While the closer-to-illu-
sory proportions for the local illusory regions were similar to those 
for the global region, the proportions for local nonillusory regions 
were significantly lower (one-sided z tests for proportions, P < 0.01 
in seven of seven subjects; see fig. S11C for results of 90°- and 45°- 
difference configurations). 

Reconstructions can be obtained using fMRI activity in individ-
ual visual areas [V1 to V4, lateral occipital complex (LOC), fusiform 
face area (FFA), parahippocampal place area (PPA); see Materials 

Fig. 3. Evaluation of line illusion reconstructions. (A) Principal orientation detection. The orientation with the largest variance in Radon projections across line po-
sitions was identified as the principal orientation in an image. (B) Distribution of principal orientations in single-trial reconstructions from visual contex (VC) (results for 
seven subjects and all 90°-difference configurations are pooled, totaling n samples; bin size = 15°). An illusory orientation (star) and an inducer orientation (square) are 
shown for reference. (C) Comparison of reconstructions from brain-decoded features of VC and stimulus features with added noise. (D) Comparison of reconstructions 
with the different numbers of inducer lines. (E) Local presence of illusory orientation in reconstructions. (F) Comparison of reconstructions from individual visual areas. 
Reconstruction examples are from single-trial brain activity in VC [except in (F)] of subject S2. The polar plots show the distributions of the principal orientations pooled 
across all subjects and all 90°-difference configurations. The bar graphs indicate the proportions of principal orientations closer to the illusory than to the inducer ori-
entation, pooled for all subjects and configurations. Color circles and lines indicate individual subjects. Comparisons with a statistically significant difference at the in-
dividual level are marked by solid circles [(C), (E), and (F)].  
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and Methods]. In Fig. 3F, we show examples of the reconstructions 
from individual areas (top; see fig. S13 for others), the distributions 
of principal orientations (center; pooled across 90°-difference con-
figurations and subjects; see fig. S14 for results of 90° and 45° dif-
ferences from each subject), and the closer-to-illusory proportions 
for the global, local illusory, and local nonillusory regions (bottom; 
all configurations pooled in each subject). Overall, V1 to V3 tended 
to show faithful reconstructions of illusory and inducer lines. V4 
and the higher visual areas showed less localized illusory lines 
and poorly reconstructed inducer lines. The strength of the illusory 
orientation component for the global regions peaked around V2 to 
V4 (Fig. 3F, bottom). The difference between local illusory and non-
illusory regions, which indicates the consistency with the local illu-
sory percept, was large around V1 to V3 (one-sided z tests for 
proportions; P < 0.05 in five of seven subjects at V1; seven of 
seven at V2, V3, and V4; six of seven at LOC; four of seven at 
FFA; and three of seven at PPA). The overall global and local 
trends in reconstructions of illusory images were found to mirror 
the trends seen for the positive control images, though the actual 
strength of the illusory line was weaker than that of the real line 
in V1 to V3 (fig. S15). The strength of illusory orientation compo-
nents (indicated by global closer-to-illusory proportions) in V1 to 
V4 and LOC seems to reflect the strength of subjective line percep-
tion manipulated by the number of lines (fig. S16). The results 
suggest that the local representations of illusory lines are formed 
in early visual areas and that illusory and real lines are similarly rep-
resented across visual areas. 

Quantitative analyses of illusory color across multiple 
brain areas 
We next produced reconstructions for neon color spreading from 
individual visual areas and VC (Fig. 4, A and B; see figs. S8, S9, 
S17, and S18 for additional examples). Reconstructions from the il-
lusion condition of the Ehrenstein configuration exhibited red 
regions across areas, similar to the positive control condition, 
with lower areas more accurately depicting the sizes of red regions 
and inducer lines (Fig. 4A). However, in the control condition, 
where a gap in line width was introduced to abolish or weaken illu-
sory color spreading, the color was largely absent in the reconstruc-
tions, even though the illusion and control stimuli included the 
same red regions. Reconstructions from the Varin illusion condi-
tion exhibited similarity to the positive control condition only in 
mid-to-higher areas, showing broad red regions (Fig. 4B). The 
color was barely present at V1 to V3, while faithful reconstructions 
of the real color could be produced from V2 and V3 in the positive 
control condition. The inducer regions were poorly reconstructed, 
even in lower areas, in the illusion and the positive control condi-
tions. Although square-like outlines were seen in the reconstruc-
tions from the lower areas, they did not coincide with the illusory 
square shape but seemed to enclose the entire stimulus region. In 
the control condition, the color was almost absent: Square outlines 
were reconstructed more clearly from the lower areas and appeared 
to align the illusory square without color spreading. 

To quantify color spreading, we performed regression analysis 
on the pixel color values in each reconstructed image (Fig. 4, C 
and D; see Materials and Methods). We created the redness (satu-
ration) maps from the original red-green-blue (RGB) values of re-
constructed and stimulus images. In addition, we prepared the 
redness maps for the expected illusory surface regions. The profile 

of the redness map from a reconstruction was fitted by those of the 
expected illusory surface region and the stimulus. The illusory 
surface regressor was shared between the illusion and the corre-
sponding control conditions for comparison. The illusory surface 
coefficient (β1) was used as the measure for illusory color recon-
struction. Regression coefficients were calculated for all individual 
trials (reconstructions) and pooled across different configurations 
(sizes and numbers of lines for Ehrenstein) in each subject and 
brain area. 

For Ehrenstein, the illusory surface coefficient was generally 
higher in the illusion condition than in the control condition 
(Fig. 4E; one-sided t tests in individual subjects; P < 0.05 in seven 
of seven subjects at VC; five of seven at V1; seven of seven at V2, V3, 
V4, LOC, and FFA; and six of seven at PPA; see fig. S19A for results 
with different stimulus configurations). V2 to V4 and higher areas 
appear to show robust illusion effects (see fig. S20 for results with 
individual trials in each subject). For Varin, the illusory surface co-
efficient was greater in the illusion than in the control condition in 
mid-to-higher areas, but the effects in individual subjects were less 
robust than those with Ehrenstein (Fig. 4F; one-sided t tests in in-
dividual subjects; P < 0.05 in three of six subjects at VC; two of six at 
V1, V2, and V3; three of six at V4; four of six at LOC; three of six at 
FFA; and one of six at PPA; see fig. S21 for results with individual 
trials in each subject). 

Similarly, we performed regression analysis in which the profile 
of the redness map from a reconstruction was fitted by the illusory 
or real color surface for the illusion and the positive control condi-
tions (Fig. 4, G and H). Whereas surface coefficients were compa-
rable between the illusion and the positive control conditions across 
brain areas for Ehrenstein, lower surface coefficients were observed 
in the illusion compared to the positive control condition in low-to- 
mid areas for Varin (Fig. 4, I and J; see figs. S22 and S23 for results 
with individual trials in each subject). In addition, large-sized Eh-
renstein configurations tended to show lower illusory surface coef-
ficients for the illusion than the positive control condition in the 
low-to-mid brain areas (fig. S19B). Thus, the strength of illusory 
color reconstruction across brain areas may depend on the spatial 
extent of filling-in and the stimulus configurations. 

DISCUSSION 
We have demonstrated the reconstruction of illusory percepts as 
images from single-trial brain activity, using the computational 
model that learns the coding scheme linking non–illusory stimu-
lus–induced perception and brain activity. The reconstructions ob-
tained from the VC resembled the illusory percepts, to the point 
where the relevant attributes were perceptually recognizable. It is 
important to note that neither the stimulus features of the illu-
sion-inducing stimuli nor the brain-decoded features of the 
control images produced such reconstructions. One notable advan-
tage of our approach is the ability to externalize mental contents, 
going beyond the conventional method of testing qualitative hy-
potheses. By representing mental contents in a manner comprehen-
sible to others, we offer a means of sharing and understanding 
subjective experiences. However, the current methods have limita-
tions including the lack of spatial resolution, in particular for the 
peripheral vision, resulting in a poor reconstruction of the inducers. 
In addition, the reconstructed images are distorted presumably due 
to inherent biases in the reconstruction model.  
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We used models trained on natural images to decode illusory 
percepts formed from artificial shapes. The ability to generalize to 
such out-of-sample images is crucial for such models. This may be 
achieved in part by the latent feature dimensions of the DNN that 
effectively capture image-level information while being compatible 
with the representations in the brain (24, 45). Furthermore, decod-
ers should be trained on a diverse set of images where the features of 
individual dimensions appear with sufficient frequency (21, 46). 
While it is not necessary for the images to be of the same category 
between the training and test stages, it is important to maintain 
commonalities at the level of the feature dimensions. The choice 
of a generator is also important in this context. Even though the 
generators were trained on identical image sets, the diffusion gen-
erator exhibited image components that resembled natural objects, 
such as flowers, while the GAN generator did not (see Fig. 2 and fig. 

S10A). Recent findings suggest that while both GAN and diffusion 
models tend to memorize training images, diffusion models recall 
more data than GANs, replicating the pixel-level details, structures, 
and styles of the training images (47, 48). Techniques to enhance the 
generalization capabilities of generators are currently in develop-
ment (49). 

The reconstructions from individual areas unveiled the strength 
of illusory representation and the extent to which it is shared with 
real stimuli at different processing stages. Specifically, regarding il-
lusory lines, our results align with previous findings (1–5, 7–10, 13), 
showing the involvement of low-level areas and LOC in processing 
both illusory and real lines. Our reconstructions further revealed 
that local illusory lines, which accurately reflected perceptual expe-
riences, were better represented in areas V1 to V3, while central il-
lusory lines tended to dominate in higher areas. With regard to 

Fig. 4. Evaluation of neon color spreading reconstructions. (A and B) Representative single-trial reconstructions of the illusion (top), control (center), and positive 
control (bottom) conditions for Ehrenstein from subject S1 (A) and for Varin from subject S2 (B). (C and D) Illustration of regression analysis for comparing the illusion and 
control conditions for Ehrenstein (C) and Varin (D). The redness map of a reconstructed image was fitted by those of the illusory surface (expected region of color filling-in) 
and the stimulus. (E and F) Comparison of the illusory surface coefficient values between illusion and control conditions for Ehrenstein (E) and Varin (F). Results for all 
configurations (sizes and numbers of lines) and seven subjects are pooled for Ehrenstein. Results for six subjects are pooled for Varin. Color lines indicate the results of 
individual subjects. Comparisons with a statistically significant difference at the individual level are marked by solid circles. (G and H) Illustration of regression analysis for 
comparing the illusion and the positive control conditions for Ehrenstein (G) and Varin (H). The redness map of a reconstructed image was fitted by that of the illusory or 
real surface. (I and J) Comparison of the illusory surface coefficient values between the illusion and the positive control conditions for Ehrenstein (I) and Varin (J), pooled as 
in (E) and (F).  
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illusory color, previous research has produced mixed findings con-
cerning its representation in the low and middle areas (12, 14, 19, 
20). Our results, however, show the participation of multiple areas 
in representing illusory color, extending even to higher areas within 
the ventral cortex. Previous studies often categorized widespread 
brain activity using broad labels, which could be confounded by 
other factors, such as the properties of inducers. This challenge 
becomes more pronounced in higher brain regions, where expan-
sive receptive fields encompass both illusory and inducer compo-
nents. In contrast, our approach may offer a more precise 
mapping between visual features and brain activity by reconstruct-
ing spacial configurations in an image. 

Our findings suggest that neural representations of illusory per-
cepts vary not only between different visual attributes such as line 
and color, but also among configurations for the same attributes. 
Specifically, for the Ehrenstein configuration of neon color spread-
ing, we observed that illusory color representations spanned from 
low to high areas, with overlaps with real color representations. In 
contrast, in the Varin configuration, we found illusory color repre-
sentations primarily in mid-to-high areas, whereas early areas man-
ifested a more pronounced representation of real color as compared 
to illusory color. Computational models attribute neon color 
spreading and related phenomena to mechanisms that involve 
lateral interactions and top-down feedbacks (30, 41, 50–52). 
While the Ehrenstein and Varin configurations might employ the 
same mechanisms, the distinct spatial arrangement of their induc-
ers could lead to varying intensities of lateral and top-down inter-
actions. For example, in the Varin configuration, the red wedges are 
situated in the peripheral areas, which could hinder color diffusion 
from the periphery to central vision through lateral connections. 
Concurrently, the top-down feedback from higher brain regions 
may not be sufficiently strong to activate neurons in the lower areas. 

Illusions serve as tools to investigate the neural underpinnings of 
consciousness by distinguishing brain activity associated with sub-
jective experience from that linked to the stimulus itself. Although 
various theories suggest different brain regions and mechanisms as 
the underpinnings of consciousness (53–59), our findings highlight 
the difficulty in identifying a singular brain region that consistently 
reconstructs illusory experiences across all conditions. Thus, multi-
ple neural mechanisms across various areas are likely implicated in 
the processing and interpretation of illusory stimuli. This nuanced 
understanding provides valuable insights into the neural represen-
tation of conscious experience, imposing constraints on theories of 
consciousness. However, it is important to acknowledge that our 
method cannot establish a causal relationship between brain activity 
and subjective percepts in the way that lesion studies can. Besides, 
our methods primarily illuminate representations rather than pro-
cessing or dynamics. To further our understanding, high-resolution 
and multimodal brain measurements and manipulations would 
serve as beneficial supplementary tools. 

In conclusion, our reconstruction approach effectively bridges 
the gap between internal representations and their external mani-
festations. This method paves the way for further explorations of, 
and communications about, the internal representations of the per-
ceptual world that reside within the brain. 

MATERIALS AND METHODS 
Subjects 
We collected fMRI data from seven healthy subjects, four males and 
three females (aged 25 to 36 years). All subjects provided informed 
consent before the experiment, with the study protocol having been 
reviewed and approved by the Ethics Committee of the Graduate 
School of Informatics at Kyoto University (approval no.: KUIS- 
EAR-2017-002). The subjects had normal or corrected-to-normal 
vision. Four subjects (subjects S1 to S4) were the same as those in 
previous studies (24, 26). Therefore, we used their published data 
(training session; available from https://openneuro.org/datasets/ 
ds003430/versions/1.1.1 for subjects S1 to S3 and https:// 
openneuro.org/datasets/ds001506/versions/1.3.1 for subject S4) as 
a subset of training data and collected additional training data. 
For subjects S5 to S7, training datasets were newly acquired with 
fewer repetitions in order to conserve resources (“fMRI Experi-
ments: Training session”). For subjects S5 and S7, the same image 
set as subjects S1 to S4 was used, while for subject S6, 32 training 
images were replaced due to unpleasant object categories for the 
subject. Test datasets were newly acquired for all subjects though 
subject S4 lacked a few sessions of the test dataset (“fMRI Experi-
ments: Test session”). 

Visual stimuli 
Natural images 
A total of 3200 natural images were downloaded from the online 
image databases. We obtained 1200 object images from ImageNet 
(60), 1000 material images from Flickr Material Database FMD 
(61), and 1000 object or scene images from COCO (62). Within Im-
ageNet, we focused on 150 representative object categories, selecting 
eight images per category. This selection was informed by our pre-
vious decoding study (22). These images have been validated for 
training models that demonstrate generalizability in reconstructing 
artificial shapes (24). To enrich the diversity and volume of our 
training set, we incorporated all images from FMD (eliminating 
the need for selection) and undertook random sampling from 
COCO. We also excluded images with a resolution where the 
width or height was less than 100 pixels. On the basis of preliminary 
analyses, the inclusion of images from FMD and COCO was found 
to enhance the quality of reconstruction. Furthermore, it effectively 
mitigated a bias in which a dominant object often appears at the 
center of an image. The images were cropped to a square at the 
center and resized to 500 × 500 pixels. 
Illusory line images 
We created six images with illusory lines induced by offset gratings 
(fig. S1A). Two gratings were used to fill the gray background image 
with a predetermined number of equally spaced black lines and a 
phase shift of half a cycle between the gratings. Hence, there were 
three parameters: the orientation of the illusory line (illusory orien-
tation), the orientation of the inducer lines (inducer orientation), 
and the number of inducer lines. We set the number of inducer 
lines at 19, while varying the illusory orientations (0°, 45°, 90°, 
and 135°) and inducer orientations (0° and 90°). This resulted in 
six illusory line images, as the illusory and inducer orientations 
cannot be the same in a single image. We reduced the number of 
inducer lines to nine and three for configurations with vertical or 
horizontal illusory orientation, respectively, creating four control 
images that induce weaker illusion perception. These parameters  
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were based on previous behavioral studies on human subjects (28) 
and adapted for our experiments. In addition, we included 10 cor-
responding positive control images with a real line drawn at the lo-
cation where the illusory line was perceived. Before the fMRI 
experiments, we displayed stimulus images on the screen in the 
MRI scanner to the subjects and asked them to report their percep-
tual experiences without informing them which images were de-
signed to be illusory or control. We verified that the illusory 
images consistently induced a clear illusion, while the control 
images induced a weaker or no illusion for all subjects. This was 
consistently applied to all illusion types, including both the lines 
and the neon color spreading discussed in the subsequent section. 
Neon color spreading images 
There are two types of neon color spreading images: the Ehrenstein 
configuration and the Varin configuration. For Ehrenstein (fig. 
S1B), we prepared four different versions with two sets of lines 
(four and two) and two sizes (small and large) of the colored 
portion. The luminance of the colored lines was set between the lu-
minance values of the surrounding black lines and the background 
(gray) to meet the key requirement for transparency perception (63, 
64). The colored lines and the surrounding black lines were con-
nected in the same width, inducing color filling-in perception 
(transparent color disk). We constructed control images by reduc-
ing the width of the black lines, which created disconnected patterns 
and disrupted the color filling-in perception (32). In addition, we 
added positive control images with uniform color in the expected 
filling-in areas, while keeping the same black lines as in the illusion 
images. 

For Varin (fig. S1C), the illusion image was composed of four 
disks, the centers of which could be connected to form a rectangle. 
Each disk was pieced by a colored 90° sector and a black Pacman. 
Similar to Ehrenstein, the luminance of the color was made between 
the luminance values of Pacman (black) and the background (gray). 
For control, we removed the black Pacman and retained only 
colored sectors to reduce the color filling-in effect (the main 
control image used in the analysis of Fig. 4; left in the “control” 
panel of fig. S1C), which shared the colored lines with the illusion 
image. Two other control images were created using only black 
Pacmans or disks. We also prepared two positive control images 
with uniform color in the rectangular region of interest. The one 
with the black packmen as in the illusion image was used for the 
analysis of Fig. 4. 

In total, we produced 12 images for Ehrenstein and 6 images for 
Varin. We selected red for the colored components due to its supe-
rior reconstruction quality compared to other colors (24). The sat-
uration of the red color in each pattern was adjusted to ensure that 
all subjects clearly perceived color filling-in (0.8 for four-line and 
0.7 for two-line frames of Ehrenstein, and 0.3 for Varin, 
respectively). 

fMRI experiments 
We performed image presentation experiments for two types of ses-
sions: training and testing. All stimuli were rear projected onto a 
screen in an MRI scanner bore with a luminance-calibrated liquid 
crystal display projector. The stimulus images were displayed at the 
screen center with a size of 12° × 12° of visual angle on a gray back-
ground. We asked subjects to fixate on the center of the images cued 
by a circle of 0.3° × 0.3° of visual angle. Each subject used a custom- 
molded bite bar and/or personalized headcase from CaseForge Inc. 

to reduce head motion during fMRI data collection. Multiple scan-
ning sessions were performed to collect data for each subject. The 
total time span of data collection varied among the subjects: approx-
imately 2 years for subjects S1 and S2, 4 years for subjects S3 and S4, 
and less than 1 year for subjects S5 to S7. Each consecutive session 
took a maximum of 2 hours, with each run taking 6 to 8 min. The 
subjects were free to rest adequately between runs or to terminate 
the experiment at any time. 
Training session 
A single set of training sessions consisted of presenting each of the 
3200 natural images once, resulting in 64 runs. Images from differ-
ent training image sets (ImageNet, FMD, and COCO) were present-
ed in separate runs. There were 32- and 6-s rest periods at the 
beginning and end of each run, respectively. Each run contained 
55 trials, with 50 trials of different images and five randomly inter-
spersed repetition trials that showed the same image as the previous 
trial. Each image was flashed at 1 Hz during an 8-s trial. We reused 
the training data of four subjects for ImageNet dataset from previ-
ous studies (24, 26), where a rate of 1 Hz was used. We decided to 
continue to use the same rate for other subjects, as well as for FMD 
and COCO datasets. There was no rest period between trials. To in-
dicate the onset of a trial, the color of the fixation spot was changed 
to red 0.5 s before the trial and then switched back to white when the 
trial began. Subjects were instructed to perform a one-back repeti-
tion detection task, in which they were required to press the button 
if the current stimulus matched the one presented immediately 
before it. We asked the subjects to maintain steady fixation through-
out the run and evaluated their alertness level using one-back task 
performance. We repeated one set of training sessions five times for 
subjects S1 to S4 (3200 × 5 = 16,000 training samples) and two times 
for subjects S5 to S7 (3200 × 2 = 6400 training samples). Before an-
alyzing the illusion test data, we confirmed that training data with 
fewer repetitions could produce a comparable model performance 
on an independent test dataset with natural image presentation (24). 
The order of image presentation was randomly assigned across runs. 
Test session 
In the test session, we presented each of the 38 test images (10 illu-
sory line images, 10 real line images, 12 Ehrenstein images, and 6 
Varin images) 20 times. For subject S4, we only collected data for 
32 test images because of the subject’s relocation before we decided 
to add the Varin configurations (six images). We included the same 
number of randomly selected natural images to make the fMRI 
signal baselines comparable to the training sessions. The test 
session consisted of 40 runs. Similar to the training session, there 
were 32- and 6-s rest periods at the beginning and end of each 
run, respectively. Each run contained 42 trials with 38 trials of dif-
ferent images (19 test images and 19 natural images) and four ran-
domly interspersed repetition trials that showed the same image as 
the previous trial (subject S4 underwent fewer trials due to the fewer 
illusion images). To eliminate the aftereffect from the previous test 
image, we inserted a natural image trial between every two illusion 
image trials. Otherwise, the presentation order was random in each 
run. Each image was flashed at 0.625 Hz during an 8-s trial. The 
slower rate was used in the test session because subjects of prelim-
inary experiments reported that it improved the stability of the illu-
sory perception. For the neon color illusion stimuli (Ehrenstein and 
Varin), only the colored portions were flashed on black lines or 
disks to enhance illusory percepts. There was no rest period 
between trials. The subjects performed a one-back repetition  
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detection task based on the same cue from the fixation spot as in the 
training session. 

MRI acquisition 
We collected fMRI data using a 3.0-T Siemens MAGNETOM Verio 
scanner at the Kyoto University Institute for the Future of Human 
Society (formerly, Kokoro Research Center). An interleaved T2*- 
weighted gradient-echo echo-planar imaging scan was performed 
to acquire functional images covering the entire brain [repetition 
time (TR), 2000 ms; echo time (TE), 43 ms; flip angle, 80°; field 
of view (FOV), 192 × 192 mm2; voxel size, 2 × 2 × 2 mm3; slice 
gap, 0 mm; number of slices, 76; and multiband factor, 4]. T1- 
weighted (T1w) magnetization-prepared rapid acquisition gradi-
ent-echo fine-structural images of the entire head were also ac-
quired [TR, 2250 ms; TE, 3.06 ms; inversion time (TI), 900 ms; 
flip angle, 9°; FOV, 256 × 256 mm2; and voxel size, 1.0 × 1.0 × 
1.0 mm3]. 

fMRI data preprocessing 
We performed the MRI data preprocessing through the pipeline of 
FMRIPREP (version 1.2.1). For the functional data of each run, we 
first estimated a BOLD reference image using a custom methodol-
ogy of FMRIPREP. Then, data were motion-corrected using 
MCFLIRT from FSL (version 5.0.9) and slice time-corrected using 
3dTshift from AFNI (version 16.2.07), based on this BOLD refer-
ence image. Next, we coregistered the corresponding T1w image 
using boundary-based registration implemented by bbregister 
from FreeSurfer (version 6.0.1). The coregistered BOLD time- 
series were then resampled onto their original space (2 × 2 × 2 
mm3 voxels) with antsApplyTransforms from ANTs (version 
2.1.0) using Lanczos interpolation. After obtaining the resampled 
BOLD time series, we first shifted the time series by 4 s (two 
volumes) to compensate for hemodynamic delays, and then re-
gressed out nuisance parameters from each voxel’s time series of 
each run, including a constant baseline, a linear trend, and temporal 
components proportional to the six motion parameters calculated 
during the motion correction procedure (three rotations and three 
translations). We created single-trial data samples by reducing 
extreme values (beyond ±3 SD for each run) of the time series 
and averaging within each 8-s trial (four volumes). 

Data exclusion criteria 
We fixed the data exclusion criteria before fMRI data collection and 
finished exclusion before proceeding to the main analyses. First, 
runs with low performance (hit rate ≤ 50%) in the one-back repe-
tition detection task were excluded. This step was to discard the 
scanned data when the subject’s alertness level was low. As a 
result, one run and two runs were discarded from subjects S1 and 
S2, respectively. Second, runs with large head motion (maximum 
translation ≥2 mm) were excluded. In this procedure, we excluded 
two runs from subject S5. After preprocessing the MRI data, we ob-
tained 18 to 20 single-trial samples for each image and subject. 

Brain regions of interest 
According to standard retinotopy experiments (65, 66), we delineat-
ed V1, V2, V3, and V4. The LOC, FFA, and PPA were identified 
using conventional functional localizers (67—69). We defined the 
higher visual cortex (HVC) region by manually delineating a con-
tiguous region that covered the LOC, FFA, and PPA on the flattened 

cortical surfaces. The VC was defined by combining V1 to V4 and 
the HVC. 

DNN image features 
We defined the unit activations of a DNN with visual image inputs 
as stimulus features. For the DNN, we used a variant of AlexNet, 
BAIR/BVLC CaffeNet model (34) pretrained with images in Image-
Net to classify 1000 object categories (the pretrained model is avail-
able from https://github.com/BVLC/caffe/tree/master/models/ 
bvlc_reference_caffenet). The CaffeNet model has five convolution-
al layers and three fully connected layers. We resized all stimuli to 
227 × 227 pixels before feeding them into the CaffeNet model. We 
reshaped the outputs of each of the first seven layers (conv1 to 
conv5, fc6, and fc7 layers; after the rectification operation, if not 
otherwise stated) to a vector for each visual image. The number of 
units in each of the CaffeNet layers is as follows: conv1, 209,400; 
conv2, 186,624; conv3 and conv4, 64,896; conv5, 43,264; and fc6 
and fc7, 4096. 

DNN feature decoding 
We constructed multivoxel decoders by training a set of linear re-
gression models that predicted stimulus features from multiple 
fMRI voxel signals induced by the corresponding stimuli, as in pre-
vious studies (22, 24, 26). Using fMRI samples from the training 
session (training dataset; 16,000 trials for subjects S1 to S4 and 
6400 trials for subjects S5 to S7), we trained a distinct decoder for 
each combination of DNN units and brain areas (whole VC or in-
dividual visual subareas). For a target DNN unit, we selected voxels 
that were most highly correlated (measured using absolute Pearson 
correlation coefficient) from each brain area based on training data 
and then provided them to a decoder as inputs (with a maximum of 
500 voxels). While the decoder for a specific DNN unit was not 
trained using the entirety of the brain region, decoders across dif-
ferent DNN units choose varying voxel subsets, potentially covering 
a large portion of the whole brain region. The weights of a decoder 
were optimized via least-square minimization with L2 regulariza-
tion. We set the regularization parameter to 100. 

We applied the trained decoders to fMRI data from the test 
dataset to predict the feature values of individual DNN units 
(“decoded features”). The decoded features corresponding to a 
visual image come from a single-trial fMRI sample. We normalized 
the decoded features for subsequent image reconstruction analyses 
to compensate for the possible differences in the distributions of the 
stimulus and decoded features. The variance across normalized 
decoded features within a layer was matched to the mean variance 
of DNN feature values, which was calculated from an independent 
set of 10,000 natural images. The mean of the normalized decoded 
features was maintained at the same level as that of the unnormal-
ized decoded features. 

Image generator 
GAN (main method) 
To visualize the illusory percepts as images, we adopted a generator 
network (35) that was pretrained using a GAN framework (available 
from https://lmb.informatik.uni-freiburg.de/resources/binaries). 
This image generator was trained to transform the rectified 
outputs of fc6 layer of the CaffeNet model into the original input 
image using images from ImageNet. We fed the decoded fc6 fea-
tures from a single-trial or trial-averaged fMRI sample into this  
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generator network to obtain a reconstructed image (36). The choice 
of fc6 aligns with our aim of studying representations of illusory 
percepts in multiple individual brain areas. The fc6 layer demon-
strated decent and comparable linear decodability for all visual 
areas (22). A recent study also found that all ventral stream visual 
areas corresponded best with layers of similar levels (70). We addi-
tionally confirmed that fc6 provided more accurate results when 
mapped to the original image compared to higher layers (35). We 
chose this method for quantitative analyses in this study because the 
results of pilot research indicated that it tended to produce high- 
contrast reconstructions, especially for geometric shapes and pat-
terns, compared to other candidate methods. 
Diffusion 
Similar to the main method, we fed the decoded fc6 features to a 
diffusion-based image generator. Here, we trained a conditional dif-
fusion model after a modification of the model architecture from a 
previous study (38). The diffusion model was trained to generate the 
original input image conditioned on the rectified outputs of fc6 
layer of the CaffeNet model as follows. We used the architecture 
for the class-conditional ImageNet 64 × 64 model (available from  
https://github.com/openai/improved-diffusion/), which had a con-
ditioning vector of length 768. To enable training a diffusion model 
conditioned on the 4096-dimensional fc6 feature vector derived 
from CaffeNet (see “DNN image features”), we further added a 
fully connected layer whose input and output sizes were 4096 and 
768, respectively. The fc6 features were fed into the diffusion model 
through this fully connected layer. Approximately 1.2 million 
natural images from ImageNet (60) were used as training images 
and resized to 64 × 64 pixels. We used the linear noise schedule 
and set the number of diffusion steps to 4000. We trained the 
model for 1 million steps using a batch size of 128 and a learning 
rate of 0.0001. 
Pixel optimization (iCNN) 
In our original deep image reconstruction study (24), this method 
was used to convert decoded features of multiple DNN layers to an 
image (code available from https://github.com/KamitaniLab/ 
DeepImageReconstruction). The pixel values of an input image 
were optimized such that its image features matched the decoded 
features. In the current study implementation, we used CaffeNet 
as the target of feature decoding for comparison with the other 
methods. Following (24), we used the feature values before the rec-
tification operation from eight layers (conv1 to conv5 and all fully 
connected layers). We also applied the same loss function and 
natural image prior and solved the optimization problem using sto-
chastic gradient descent with momentum for 200 iterations. 

Analysis of robustness to noise 
To exclude the possibility that stimulus-independent noise in brain- 
decoded features leads to the reconstruction of illusory compo-
nents, we added noise to stimulus fc6 features and fed them into 
the generator. Lacking prior knowledge of the noise distribution, 
we adopted a nonparametric method to sample the noise. We 
assumed that the noise for an individual DNN unit follows the 
same unknown probability distribution across the nonillusory 
trials of the same subject (individual units do not necessarily 
share the same distribution). The following analysis was performed 
separately for each subject. We calculated the empirical noise distri-
butions by pooling the differences between decoded and stimulus 
features across nonillusory trials. We then randomly sampled the 

noise value from the empirical distribution for each DNN unit 
and added them to the stimulus features of an illusory image. 

Evaluation of reconstruction 
Illusory line 
We evaluated each single-trial reconstructed image of the line illu-
sion, both globally (whole image) and locally (restricted to a specific 
image region). For the local case, we investigated two types of image 
regions: illusory and nonillusory. To delineate the regions for each 
stimulus image, we cropped the four largest disks tangent to the 
middle lines of the image, among which two disks consisted of illu-
sory lines and two disks did not (Fig. 3E). We detected the principal 
orientation for each image/region of interest and compared which 
of the illusory and inducer orientations was more similar to the 
principal orientation, using cosine similarity. The principal orien-
tation was detected using the method that has been used in texture 
analysis (44). We converted the images into grayscale and applied 
Radon transform to detect the linear trends. More specifically, the 
largest disk area A in the image region was selected and projected to 
a line space by summing the pixel intensities along each line within 
A 

Rðr; θÞ ¼
X

ðx;yÞ[A

Iðx; yÞδðr � xcosθ � ysinθÞ

where each line is parametrized by the distance from the center r 
and the orientation θ. The intensity of the pixel located at (x, y) is 
denoted by I(x, y). If (x, y) is on the line, δ = 1, otherwise, δ = 0. 

For each orientation, we calculated the variance of the projec-
tions across lines that intersect a small disk region in the center of 
the image. Intuitively, a prominent black line at a specific orienta-
tion would result in a substantial decrease in the projection value, 
causing a sharp change in projections across the neighboring lines 
of the same orientation. We calculated this variance for different 
orientations and defined the principal orientation as the one with 
the largest variance. Only the lines close (no more than five pixels 
in distance) to the center of the region were used to calculate vari-
ance. This restricted range was expected to contain the illusory line. 
Illusory color 
To evaluate the color filling-in effect, we performed a regression 
analysis in which a reconstructed image was approximated by the 
superposition of the illusory surface and the inducing stimulus 
with an additive error term. Given the real color surface in the pos-
itive control image, we performed another regression analysis that 
excluded the inducing stimulus regressor to compare the illusory 
color with the real color. 

Before the regression analysis, we created redness maps from the 
reconstructions, the illusory/real surfaces, and the inducing stimu-
lus. A redness map was generated by converting the RGB image to 
the HSV color space, using version 4.5.2 of the openCV library, and 
by extracting the saturation (S) values of the red pixels. The nonred 
pixels were assigned a value of zero. The red pixels were identified as 
those with hue values (H ) in the range of 0° to 10°, or 160° to 180°. 
The regression models for the redness map of each single-trial re-
construction were as follows 

yi ¼ εi þ β1xi;1 þ β2xi;2 ðillusion versus controlÞ

yi ¼ εi þ β1xi;1 ðillusion versus positive controlÞ
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with yi (i = 1,2, …, h × w) the value of the i-th pixel in the redness 
map of a reconstruction of size h × w, ɛi the error term, xi,1 and xi,2 
the values of the i-th pixel in the redness maps of the illusory/real 
surface and the inducing stimulus, β1 and β2 the coefficients for the 
illusory/real surface and the inducing stimulus. The coefficients 
were estimated by minimizing the sum of squared errors across 
the pixels in each reconstruction. 

Analysis of individual units’ responses 
Orientation selectivity 
To examine whether individual DNN units could respond similarly 
to real and illusory line orientations, we introduced illusory images 
comprised of concentric curves broken at the center, along with 
their corresponding positive control images with a central real 
line (fig. S4A). The spacing between adjacent concentric curves 
was kept constant, and the phases of the concentric halves were ran-
domly assigned from a range of 0 to 1 cycle. To balance the back-
ground curves, the images with flipped phases between two parts 
were paired, and the averaged activation was used to evaluate orien-
tation selectivity. 

We first identified units selective to a specific orientation using a 
real central line of 12 different orientations (in 15° steps) on unbro-
ken concentric patterns with phases matched with the illusion/pos-
itive control image. The concentric patterns were presented in the 
background because unit activation to a central orientation depend-
ed on the background context, especially in the middle and higher 
layers. Among center-responsive units [the center units of each 
channel in convolutional layers (864 for conv1, 256 for conv2 and 
conv5, and 384 for conv3 and conv4) and all units in fully connect-
ed layers], we selected the units that exhibited higher activation to 
the orientation of interest than to all the other orientations for both 
of the background phases. We then ranked them based on the dif-
ference in activation between the orientation of interest and the 
other orientations. Using the top 5% units of each layer, we calcu-
lated the activations to all 12 orientations for the illusion and the 
positive control images. We repeated this procedure for 50 random-
ly assigned pairs of background phases. 
Color (hue) selectivity 
To examine whether individual DNN units could respond similarly 
to real and illusory colors, we identified units responsive to real 
color (fig. S5A) and then compared their activations to the illusion, 
the control, and the positive control images (fig. S5B; see 
“visual stimuli”). 

We first identified units selective to red color, using a uniform 
surface (disk or square) with three levels of luminance (0.3, 0.5, and 
1, relative to the luminance of the image background color based on 
measurements of the display) and four levels of saturation (0, 0.3, 
0.7, and 1) on the inducer patterns. Among the units that showed 
higher activations to red (nonzero saturation) than to gray (zero sat-
uration) for all the luminance and saturation levels, we ranked the 
units by the difference in activation averaged across all comparisons 
between the red and gray surfaces. The activations for the top 5% 
units are shown for each layer after subtracting the activation to 
the gray surface. 

Statistical tests and sample size 
In this study, each subject was regarded as a replication unit (71); 
thus, statistical tests were primarily conducted on a per subject 

basis. The sample size of test data (the number of trials for each 
image/condition) was determined before the test experiments. 

In the analysis of principal orientations, we planned to perform 
one-sided z tests to determine whether the closer-to-illusory pro-
portion was greater in one condition than in the other. To 
achieve a statistical power of 80%, at least 20 samples are required 
for each condition to detect a large effect size (Cohen’s h = 0.8) at a 
significance level of 0.05. Thus, we repeated 20 trials for each stim-
ulus image in each subject. In the present paper, we only present the 
results of statistical tests on the trials pooled across different stim-
ulus configurations. Thus, one condition for statistical comparison 
involves more than 20 trials. The numbers of trials that survived the 
exclusion criteria for the results in Fig. 3C to compare decoded fea-
tures (n1) and stimulus features (n2) were n1 = n2 = 117, 116, 120, 
120, 113, 120, and 120 for subjects S1 to S7, respectively, and in 
Fig. 3 (D and F) to compare local illusory (n1) and nonillusory 
(n2) regions were n1 = n2 = 234, 232, 240, 240, 226, 240, and 240 
for subjects S1 to S7. 

In the analysis of illusory color, we planned to perform one- 
sided t tests on the illusory surface coefficients obtained from indi-
vidual trials/reconstructions. To achieve a statistical power of 80%, 
at least 20 samples are required for each condition to detect a large 
effect size (Cohen’s d = 0.8) at a significance level of 0.05. Thus, we 
repeated 20 trials for each stimulus image in each subject. The actual 
numbers of trials that survived the exclusion criteria in Fig. 4 (E and 
F) to compare the illusion (n1) and the control (n2) conditions were 
n1 = 77, 74, 80, 80, 75, 80, 80 and n2 = 79, 75, 80, 80, 77, 80, 80 (sub-
jects S1 to S7) for Ehrenstein, and n1 = 20, 20, 20,19, 20, 20 and n2 = 
20, 20, 20, 19, 20, 20 (subjects S1 to S3 and S5 to S7) for Varin. The 
same numbers of trials/reconstructions were used for the results in 
Fig. 4 (I and J). 
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