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1. Introduction. The following theorem is

Kawakita’s inversion of adjunction on log canon-

icity (see [8, Theorem]). Although [8, Theorem] is

formulated and proved only for algebraic varieties,

his clever and mysterious proof in [8] works in the

complex analytic setting. Here we will prove it as an

application of the minimal model theory for projec-

tive morphisms of complex analytic spaces estab-

lished in [6] following the argument in [7] with some

suitable modifications. Our proof is more geometric

than Kawakita’s.

Theorem 1.1 (Log canonical inversion of ad-

junction, see [8, Theorem]). Let X be a normal

complex variety and let S þ B be an effective R-

divisor on X such that KX þ S þB is R-Cartier, S

is reduced, and S and B have no common irreducible

components. Let �:S� ! S be the normalization

with KS� þBS� ¼ ��ðKX þ S þBÞ, where BS� de-

notes Shokurov’s different. Then ðX;S þBÞ is log

canonical in a neighborhood of S if and only if

ðS�;BS� Þ is log canonical.

We note that X is not necessarily an algebraic

variety in Theorem 1.1. It is only a complex

analytic space. In this note, we will freely use [6]

and [2]. We assume that the reader is familiar with

the basic definitions and results of the minimal

model theory for algebraic varieties (see, for exam-

ple, [3–5,9], and so on).

2. Quick review of the analytic MMP.

In this section, we quickly explain the minimal

model theory for projective morphisms between

complex analytic spaces established in [6].

2.1 (Singularities of pairs). As in the alge-

braic case, we can define kawamata log terminal

pairs, log canonical pairs, purely log terminal

pairs, divisorial log terminal pairs, and so on, for

complex analytic spaces. For the details, see

[6, Section 3].

One of the main contributions of [6] is to find

out a suitable complex analytic formulation in order

to make the original proof of [3] work with only

some minor modifications.

2.2. Let �:X ! Y be a projective morphism

between complex analytic spaces. A compact subset

of an analytic space is said to be Stein compact if it

admits a fundamental system of Stein open neigh-

borhoods. It is well known that if W is a Stein

compact semianalytic subset of Y then �ðW;OY Þ is

noetherian. From now on, we fix a Stein compact

subset W of Y such that �ðW;OY Þ is noetherian.

Then we can formulate and prove the cone and

contraction theorem over some open neighborhood

of W as in the usual algebraic case. This is

essentially due to Nakayama (see [10]). We say

that X is Q-factorial over W if every prime divisor

defined on an open neighborhood of ��1ðW Þ is

Q-Cartier at any point x 2 ��1ðW Þ. Then, in [6], we

show that we can translate almost all the results

in [3] into the above analytic setting suitably (see

[6, Section 1]).

Hence we have the minimal model program

with ample scaling as in the algebraic case. In

Section 4, we will use it in the proof of Theorem

1.1.

2.3 (Minimal model program with ample scal-

ing). Let ðX;�Þ be a divisorial log terminal pair

such that X is Q-factorial over W and let C � 0 be

a �-ample R-divisor on X such that ðX;�þ CÞ is

log canonical and that KX þ�þ C is nef over W .

Then we can run the ðKX þ�Þ-minimal model

program with scaling of C over Y around W from
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ðX0;�0Þ :¼ ðX;�Þ as in the algebraic case. We put

C0 :¼ C. Thus we get a sequence of flips and

divisorial contractions

ðX0;�0Þ --K
�0 ðX1;�1Þ --K

�1 � � �

--K
�i�1 ðXi;�iÞ --K

�i ðXiþ1;�iþ1Þ --K
�iþ1 � � �

over Y with �i :¼ ð�i�1Þ��i�1 and Ci :¼ ð�i�1Þ�Ci�1

for every i � 1. We note that each step �i exists

only after shrinking Y around W suitably. We also

note that

�i :¼ inff� 2 R�0 j KXi
þ�i þ �Ci is nef over Wg

and that each step �i is induced by a ðKXi
þ

�iÞ-negative extremal ray Ri such that ðKXi
þ�i þ

�iCiÞ �Ri ¼ 0. We have

��1 :¼ 1 � �0 � �1 � � � �

such that this sequence is

. finite with �N�1 > �N ¼ 0, or

. infinite with limi!1 �i ¼ 0.

Of course, it is conjectured that the above minimal

model program always terminates after finitely

many steps. Unfortunately, however, it is still

widely open even when �:X ! Y is algebraic.

Anyway, for the details of the minimal model

theory for projective morphisms of complex ana-

lytic spaces, see [6].

3. Zariski’s subspace theorem. In this

short section, we quickly review Zariski’s subspace

theorem following [1].

3.1 (see [1, (1.1)]). Let R1 and R2 be noether-

ian local rings. Then we say that R2 dominates R1 if

R1 is a subring of R2 and mR1
� mR2

holds, where

mR1
(resp. mR2

) is the maximal ideal of R1

(resp. R2).

3.2 (see [1, (1,1)]). Let R1 and R2 be noether-

ian local rings such that R1 is a subring of R2. We

say that R1 is a subspace of R2 if R1 with its Krull

topology is a subspace of R2 with its Krull topology.

This means that R2 dominates R1 and there exists a

sequence of non-negative integers aðnÞ such that

aðnÞ tends to infinity with n and R1 \mn
R2
� maðnÞ

R1

holds for every n � 0.

3.3 (see [1, (1.1)]). Let R1 and R2 be noether-

ian local domains such that R1 is a subring of R2.

Then trdegR1
R2 denotes the transcendence degree

of the quotient field of R2 over the quotient field of

R1. Let h:R2 ! R2=mR2
be the canonical surjection,

where mR2
is the maximal ideal of R2. Let k be the

quotient field of hðR1Þ in hðR2Þ. Then trdegkhðR2Þ is

called the residual transcendence degree of R2 over

R1 and is denoted by restrdegR1
R2.

We need the following form of Zariski’s sub-

space theorem.

Theorem 3.4 (see, for example, [1,

(10.13)]). Let R1 and R2 be noetherian local

domains such that R1 is analytically irreducible,

R2 dominates R1, trdegR1
R2 <1, and dimR1 þ

trdegR1
R2 ¼ dimR2 þ restrdegR1

R2. Then R1 is a

subspace of R2.

Here we do not prove Theorem 3.4. For the

details, see [1, §10].

4. Proof of Theorem 1.1. Let us prove

Theorem 1.1 following the argument in [7], where

the log canonical inversion of adjunction was

established for log canonical centers of arbitrary

dimension. Our proof given below uses Zariski’s

subspace theorem as in [8].

Proof of Theorem 1.1. In this proof, we will

closely follow the argument in [7] with some

suitable modifications. If ðX;S þ BÞ is log canonical

in a neighborhood of S, then it is easy to see that

ðS�;BS� Þ is log canonical by adjunction. Therefore,

it is sufficient to prove that ðX;S þ BÞ is log

canonical near S under the assumption that

ðS�;BS� Þ is log canonical. Without loss of general-

ity, we may assume that S is irreducible. We take

an arbitrary point P 2 S. We can replace X with

a relatively compact Stein open neighborhood of P

since the statement is local. From now on, we will

freely shrink X around P suitably throughout the

proof without mentioning it explicitly.

Step 1. In this step, we will see that we can

reduce the problem to the case where KX þ S þ B
is Q-Cartier.

The argument here is more or less well known

to the experts and is standard in the theory of

minimal models. Hence we will only give a sketch of

the proof. As usual, we can write

KX þ S þB ¼
Xq
p¼1

rpðKX þ S þ BpÞ

such that KX þ S þ Bp is Q-Cartier, 0 < rp < 1 for

every p with
Pq

p¼1 rp ¼ 1, and ðS�;B�
pÞ is log canon-

ical for every p, where KS� þ B�
p ¼ ��ðKX þ S þ

BpÞ. Note that if ðX;S þ BpÞ is log canonical near S

for every p then ðX;S þ BÞ is log canonical in a

suitable neighborhood of S. Therefore, we can

replace ðX;S þ BÞ with ðX;S þ BpÞ and assume
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that KX þ S þB is Q-Cartier. This is what we

wanted.

Step 2. In this step, we will make a good

partial resolution of singularities of the pair

ðX;S þ BÞ by using the minimal model program

established in [6] (see also Section 2).

Let W be a Stein compact subset of X such that

�ðW;OXÞ is noetherian and that W contains some

open neighborhood of P . By [6, Theorem 1.21], we

can take a projective bimeromorphic morphism

�:Y ! X with KY þ�Y ¼ ��ðKX þ S þ BÞ such

that

(i) Y is Q-factorial over W ,

(ii) �Y is effective and �Y ¼
P

j dj�j is the

irreducible decomposition,

(iii) the pair

Y ;�0Y :¼
X
dj�1

dj�j þ
X
dj>1

�j

0
@

1
A

is divisorial log terminal, and

(iv) every �-exceptional divisor appears in

ð�0Y Þ
¼1 :¼

P
dj�1 �j.

Note that �:Y ! X is sometimes called a dlt blow-

up of ðX;S þ BÞ in the literature (see [6, Theorem

1.21]). We write �0Y ¼ T þ �, where T is the strict

transform of S and � :¼ �0Y � T , and put

� :¼ �Y � T � � ¼ �Y ��0Y :

We take an effective Cartier divisor E on Y such

that �E is �-ample and KY þ T þ �� E is �-nef

over W . We note that we can choose E such that E

and T have no common components. Then we run

the ðKY þ T þ �Þ-minimal model program with

scaling of �E over X around W . We obtain a

sequence of flips and divisorial contractions:

ðY ; T þ �Þ ¼: ðY0; T0 þ �0Þ --K
�0 ðY1; T1 þ �1Þ

--K
�1 ðY2; T2 þ �2Þ --K

�2 � � �

--K
�i�1 ðYi; Ti þ �iÞ --K

�i � � � :
Note that each step exists only after shrinking X

around W suitably. Let �i:Yi ! X be the induced

morphism. For any divisor G on Y , we let Gi denote

the pushforward of G on Yi. We put ��1 :¼ 1. By

construction, there exists a non-increasing sequence

of rational numbers �i � �iþ1 with i � 0 that is

either

. finite with �N�1 > �N ¼ 0, or

. infinite with limi!1 �i ¼ 0

such that KYi þ Ti þ �i � �Ei is nef over W for all

�i�1 � � � �i. Without loss of generality, we may

assume that each �i is a flip for every i � i0 or that

i0 ¼ N, that is, the minimal model program stops at

i0 ¼ N. For any positive rational number t, there is

an effective Q-divisor �t on Y such that �t �Q

�� tE and ðY ; T þ�tÞ is purely log terminal with

bT þ�tc ¼ T . In this case, we see that if t < �i�1

then ðYi; Ti þ�t;iÞ is purely log terminal. In partic-

ular, ðYi;�t;iÞ is kawamata log terminal.

Step 3. In this step, we will check that

Ti \ �i ¼ ; holds for every i.

We note that Ti is normal since ðYi; Ti þ �iÞ is a

divisorial log terminal pair. Therefore, �i:Ti ! S

factors through �:S� ! S. By construction, we

have KYi þ Ti þ �i þ �i ¼ ��i ðKX þ S þ BÞ. Hence

KTi þDiffTið�i þ �iÞ :¼ ðKYi þ Ti þ �i þ �iÞjTið4:1Þ
¼ ð�0iÞ

�ðKS� þ BS� Þ
holds, where �0i:Ti ! S�. Assume that Ti \ �i is not

empty. Then we see that ðTi;DiffTið�i þ �iÞÞ is not

log canonical. By (4.1), this is a contradiction since

ðS�;BS� Þ is log canonical by assumption. This

implies that Ti \ �i ¼ ; holds for every i. In

particular, we have

KTi þDiffTið�i þ �iÞ ¼ ðKYi þ Ti þ �i þ �iÞjTi
¼ ðKYi þ Ti þ �iÞjTi
¼: KTi þDiffTið�iÞ:

Step 4. In this step, we will show that

�ijTi :Ti --K Tiþ1 is an isomorphism for every i.

Moreover, we will prove that if �i is a flip then �i
is an isomorphism on some open neighborhood of Ti.

First, we assume that �i is a flip. We consider

the following flipping diagram

(Yi, Ti + Γi)
φi

ϕi

(Yi+1, Ti+1 + Γi+1)

ϕ+i
Zi

and we let Wi denote the normalization of ’iðTiÞ.
Let C be any flipping curve. If C is contained in Ti,

then we obtain

ðKYi þ Ti þ �iÞ � Cð4:2Þ
¼ ðKYi þ Ti þ �i þ �iÞ � C ¼ 0

since Ti \ �i ¼ ; by Step 3. This is absurd. Hence

this implies that the natural map Ti !Wi is an

isomorphism. By the same argument, we see that

the natural map Tiþ1 !Wi is also an isomorphism.
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This means that �ijTi :Ti --K Tiþ1 is an isomorphism

when �i is a flip. By the above argument, we see

that Tiþ1 (resp. Ti) does not contain any flipped

(resp. flipping) curves. Note that if Ti � C > 0 holds

for some flipping curve C then �Tiþ1 is ’þi -ample.

Hence Ti is disjoint from the flipping locus. This

implies that �i is an isomorphism near Ti when �i is

a flip.

Next, we assume that �i is a divisorial con-

traction. In this case, �ijTi :Ti --K Tiþ1 is obviously a

projective bimeromorphic morphism between nor-

mal complex varieties. Let C be any curve con-

tracted by �i. Assume that C is contained in Ti.

Then, by the same computation as in (4.2), we get a

contradiction. This means that �ijTi :Ti ! Tiþ1 does

not contract any curves. Thus, �ijTi :Ti --K Tiþ1 is an

isomorphism.

We get the desired statement.

Step 5. In this step, we will prove that the

natural restriction map

ð�i0Þ�OYi0 ð�m�i0 � aEi0Þ ! ð�i0Þ�OTi0 ð�aEi0Þ

is surjective over some open neighborhood of P for

every positive integer m � a=�i0�1 such that m� is

an integral divisor, where a is the smallest positive

integer such that aEi0 is Cartier.

By definition, aEi0 is Cartier. By Step 4, Yi0 --K

Yi is an isomorphism on some open neighborhood

of Ti0 for every i � i0. Therefore, aEi is Cartier on

some open neighborhood of Ti for every i � i0. Since

ðYi; Ti þ �iÞ is divisorial log terminal and Ti is a

Q-Cartier integral divisor, we have the following

short exact sequence:

0! OYið�m�i � aEi � TiÞð4:3Þ
! OYið�m�i � aEiÞ ! OTið�aEiÞ ! 0

for every i � i0 and every m such that m�i is

integral (cf. [9, Proposition 5.26]). Here, we used

the fact that Ti \ �i ¼ ; (see Step 3). Let U be an

open neighborhood of P contained in W . For every

positive integer m � a such that m� is an integral

divisor, there exists i such that �i�1 � a=m � �i. If

further m � a=�i0�1, then i � i0. Since

�m�i � aEi � Ti � ðKYi þ� a
m;i
Þ

�Q;�i ðm� 1Þ KYi þ Ti þ �i �
a

m
Ei

� �
;

ðYi;� a
m;i
Þ is kawamata log terminal, KYi þ Ti þ �i �

a
m Ei is nef over U, we obtain that

R1ð�iÞ�OYið�m�i � aEi � TiÞ ¼ 0ð4:4Þ

on U by the Kawamata–Viehweg vanishing theorem

for projective bimeromorphic morphisms of com-

plex analytic spaces. Hence the natural restriction

map

ð�iÞ�OYið�m�i � aEiÞ ! ð�iÞ�OTið�m�i � aEiÞ
¼ ð�iÞ�OTið�aEiÞ

is surjective on U by (4.3) and (4.4). Note that

ð�iÞ�OYið�m�i � aEiÞ
¼ ð�i0Þ�OYi0 ð�m�i0 � aEi0Þ

and

ð�iÞ�OTið�aEiÞ ¼ ð�i0Þ�OTi0 ð�aEi0Þ

hold because Yi0 --K Yi is an isomorphism in codi-

mension one and Yi0 --K Yi is an isomorphism on

some open neighborhood of Ti0 by Step 4, respec-

tively. Thus, the natural restriction map

ð�i0Þ�OYi0 ð�m�i0 � aEi0Þ ! ð�i0Þ�OTi0 ð�aEi0Þð4:5Þ

is surjective on U for every positive integer m �
a=�i0�1 such that m� is an integral divisor. This is

what we wanted.

Step 6. In this final step, we will get a

contradiction by assuming that ðX;S þ BÞ is not

log canonical at P . Here, we will use Zariski’s

subspace theorem as in [8].

The assumption implies that P 2 �ð�Þ. Note

that the non-log canonical locus of ðX;S þBÞ is

�ð�Þ set theoretically. By construction, ðYi; Ti þ �iÞ
is divisorial log terminal. Therefore, the non-log

canonical locus of ðYi; Ti þ �i þ �iÞ is nothing but

the support of �i. Therefore, �ð�Þ ¼ �ið�iÞ holds

set theoretically for every i. Hence we have P 2
�i0ð�i0Þ.

Claim. Let OX;P be the localization of OX at

P and let mP denote the maximal ideal of OX;P . For

every positive integer n, there exists a divisible

positive integer �ðnÞ such that

ð�i0Þ�OYi0 ð��ðnÞ�i0 � aEi0ÞP � mn
P � OX;P

holds, where ð�i0Þ�OYi0 ð��ðnÞ�i0 � aEi0ÞP denotes

the localization of ð�i0Þ�OYi0 ð��ðnÞ�i0 � aEi0Þ at P .

Proof of Claim. We take Q 2 �i0 such that

�i0ðQÞ ¼ P . We consider OX;P ,! OYi0 ;Q, where

OYi0 ;Q is the localization of OYi0 at Q. It is well

known that OX;P is excellent. Therefore, OX;P is

analytically irreducible since X is normal. Since
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�i0 :Yi0 ! X is a projective bimeromorphic mor-

phism, the quotient field of OYi0 ;Q coincides with the

one of OX;P . We note that the natural map OX;P !
OYi0 ;Q=mQ is surjective, where mQ is the maximal

ideal of OYi0 ;Q. Hence we can use Zariski’s subspace

theorem (see Theorem 3.4). Thus we get a large

and divisible positive integer �ðnÞ with the desired

property. �

We consider the localization of the following

restriction map OX ’ ð�i0Þ�OYi0 ! ð�i0Þ�OTi0 at P .

We put A ¼ OX;P , M ¼ ðð�i0Þ�OTi0 ÞP , and N ¼
ðð�i0Þ�OTi0 ð�aEi0ÞÞP . Then, by the surjection (4.5)

in Step 5 and Claim, we obtain that N ¼ ð0Þ by

Lemma 4.1 below. This is a contradiction.

Hence, we obtain that ðX;S þ BÞ is log canon-

ical at P . Since P is an arbitrary point of S, ðX;S þ
BÞ is log canonical in a neighborhood of S. We finish

the proof of Theorem 1.1. �

We used the following easy commutative

algebra lemma in the above proof of Theorem 1.1.

Lemma 4.1. Let ðA;mÞ be a noetherian local

ring, let M be a finitely generated A-module, and

let ’:A!M be a homomorphism of A-modules. Let

I1 	 I2 	 � � � 	 Ik 	 � � � be a chain of ideals of A such

that there exists �ðnÞ satisfying I�ðnÞ � mn for every

positive integer n. Let N be an A-submodule of M.

Assume that ’ðIkÞ ¼ N holds for every positive

integer k. Then we have N ¼ ð0Þ.
Proof. Let b be any element of N . Then we can

take a 2 I�ðnÞ � mn such that ’ðaÞ ¼ b. This implies

that b ¼ ’ðaÞ 2 mnM. Hence b 2 mnM holds for

every positive integer n. Thus we obtain b 2T
n mnM ¼ ð0Þ. Therefore, b ¼ 0 holds, that is,

N ¼ ð0Þ. �

We close this short note with a remark.

Remark 4.2. If ðX;S þBÞ is algebraic in

Theorem 1.1, then we do not need [6]. It is sufficient

to use the minimal model program at the level of [3],

the well-known relative Kawamata–Viehweg van-

ishing theorem, and Zariski’s subspace theorem

(see, for example, [1, (10.6)]). Our proof given here

is longer than Kawakita’s one (see [8]). However, it

looks more accessible for the experts of the minimal

model program since the argument is more or less

standard.
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