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Cauer Ladder Network with Constant Basis Functions for
Eddy Current Problems Involving Conductor Movement

Kengo Sugahara1, Naoto Tanimoto1, Yasuhito Takahashi2, and Tetsuji Matsuo3

1Graduate School of Science and Engineering, Kindai University, Osaka, Japan, ksugahar@kindai.ac.jp
2Department of Electrical Engineering, Doshisha University, Kyotanabe, Japan, ytakahashi@mail.doshisha.ac.jp

3Graduate School of Engineering, Kyoto University, Kyoto, Japan, matsuo.tetsuji.5u@kyoto-u.ac.jp

This article proposes a Cauer ladder network with constant basis functions for eddy current problems involving
translational movements. The analysis domain is decomposed into two domains: the stator part and the mover part. The
Cauer ladder network method is applied to each domain to derive circuit parameters and corresponding basis functions
to reconstruct the eddy current and compute the Lorentz force. Interactions between the two domains are modeled by
current-controlled voltage sources connected to each stage of the Cauer ladder network. The gains of the current-controlled
voltage sources are computed by numerical integration of the vector potential induced by the coil. An analysis of the
TEAM Workshop Problem 28 was performed, and the results were validated by comparing them with those obtained by
the commercially available software and showed a significant reduction in computational time.

Index Terms—Cauer ladder network, eddy currents, model order reduction, levitation devices, TEAM 28

I. INTRODUCTION

THE finite element method has been widely used
for analyzing electric machines because nonlinear

magnetic effects and translational movements can be
accurately modeled along with the governing mechanical
equations. However, the finite element method is time-
consuming, especially when real-time control systems are
simulated. An efficient approach to reduce the computa-
tional cost of the finite element method is model order
reduction (MOR), and various researches are carried out
on this topic [1]–[4].

We have been conducting research on one of the MOR
methods, i.e., the Cauer Ladder Network (CLN) method
[5]–[9]. The CLN method is a method to represent the
magnetic field by a ladder-type circuit composed of
inductors and resistors and electromagnetic fields are
expanded with the corresponding electromagnetic field
modes. In this paper, we propose a method to use constant
basis functions that do not change with the movement
of themover in the CLN method for eddy current fields
involving a mover. A method to use parameterized basis
functions with respect to the movement of the mover was
proposed in [10], [11]. When using parameterized basis
functions with respect to the movement of the mover, it
is necessary to limit the space where the mover moves
in advance and construct the CLN circuit within that
range. Moreover, there is a disadvantage that the imple-
mentation on the circuit simulator becomes complicated
when the time derivative of the circuit parameters or the
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corresponding basis function is required. When using the
proposed method, both circuit parameters and basis func-
tions are constant, so the implementation on the circuit
simulator is simple and analysis can be easily performed
with Simulink and other tools that are commonly used
for control design.

In this paper, we deal with one of the simple examples
of eddy current fields involving a mover, the TEAM
Workshop Problem 28 (TWP28) [11]–[13].

II. CAUER LADDER NETWORK EXTRACTION

TWP28 [12] was chosen as an example because it
provides a simple model to build the proposed formu-
lation. However, we can extend it to multiple-conductor
problems by introducing a multi-port CLN [14] with
multiple controlled sources.

Fig. 1 shows the model geometry of TWP 28. The
moving aluminum plate is non-magnetic and has σ =
34 MS/m conductivity. Two concentric coils are con-
nected in anti-series, and are placed below the aluminum
plate, and carry a sinusoidal current with I = 20A
amplitude and f = 50Hz frequency. The inner and
outer coils have 960 and 576 turns, respectively. The gap
between the aluminum plate and the coils, zGAP, varies
from 3.8 mm to 20 mm.

In this formulation, the problem is decomposed into
two models: (a) current sources and (b) moving aluminum
plate, as shown in Fig. 1. The solutions of each model
are superposed to reconstruct the solution of the original
problem. For the simplicity, we assume the strand current
in thr current sources in Fig. 1 (a), and ignore the eddy
currents. Hence, the source vector potential, denoted as
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As, by the current can be computed analytically. In Fig.
1 (b), the governing equation of the aluminum domain is
formulated as reduced problems (1), truncated with the
infinite elements.
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where Ar is the reduced vector potential, and µ is the
permeability of the aluminum plate. Instead of moving
the aluminum plate, zGAP is time-dependent and the
velocity term is not required in (1).
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Fig. 1: Model geometry of TWP28. Dimensions are in
millimeters. The problem is decomposed into two parts.
The solutions of each model are superposed to reconstruct
the solution of the original problem.

The procedure, discussed in [6] and [8], is employed
to obtain the circuit parameters R2n, L2n+1, and the two
sets of the basis functions ĵ2n, and â2n (â2n = â2n−1−
â2n+1) with the fixed levitaion height zGAP = z0 and
fixed time t = t0. â2n act as the basis functions and
ĵ2n as the test functions. By testing the first term in (1)
with ĵ2n, we obtain diagonal resistance matrix R whose
coefficients are

Rn,m =

∫
C

ĵ2n · 1
σ
∇×

(
1

µ
∇× â2m

)
dV. (2)

where C is a conducting domain. By testing the second
term in (1), we obtain tridiagonal inductance matrix L
whose coefficients are

Ln,m =

∫
C

ĵ2n · â2mdV. (3)

We can derive the conventional CLN equation

(
R+

∂

∂t
L

)


j0
j2
...

j2N
...

 = − ∂

∂t


as0(zgap = z0, t)

0
...
0
...


(4)

where j2n are the coefficients of ĵ2m and as0 is a time-
dependect coefficient of As(t) = as0(t)As(t = t0).

By testing the right-hand side in (1), As(zgap) can be
expanded with ĵ2n as follows.

As(zgap(t))≈
∑
n

as2n(zgap(t))ĵ2n (5)

as2n(t) =
1

R2n

∫
C

ĵ2n ·As(zgap(t), t)

σ
dV (6)

The dependence of the expansion coefficient a2n(zgap)
on zgap is shown in Fig. 2 when z0= 3.8mm. When
zgap=3.8 mm, a0 = 1, an = 0 for n > 0, but as zgap
increases, a0 decreases and an for n > 0 increases. Fig. 3
shows comparisons of the vector potential As(zGAP, t =
t0) reconstructed by (5) and that induced by the coils. It
can be confirmed that the reproducibility increases as the
expansion order increases.
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Fig. 2: zgap dependence of the expansion coefficients
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Fig. 3: As reconstructed by (5) The reproducibility
increases as the expansion order increases.

There is no guarantee that As exists inside the space
spanned by ĵ2n. Thus, if (5) is not a good approximation,
the space must be expanded with an additional set of
basis functions. For the case of motion involving only one
direction, as in TWP28, (5) is a sufficient approximation.

With â2n and ĵ2n, we can discretize (1) to derive (7)
for any value of zgap. This is a natural extension of the
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conventional CLN method. The idea of the proposed CLN
method is that the CLN on the left-hand side is constant
by imposing the right-hand side to vary with the mover
motion.

(
R+

∂

∂t
L

)


i0
i2
...

i2N
...

 = − ∂

∂t


as0(zgap(t), t)
as2(zgap(t), t)

...
as2N (zgap(t), t)

...


(7)

The right-hand side of (7) corresponds to the voltage
source on each stage of the CLN whereas the conven-
tional CLN has only one voltage source at the first stage.
Those voltage sources are modeled as a current-controlled
voltage source, whose gains the opposite of the time
derivatives of the expansion factors of as2n(zgap(t), t).
The proposed CLN representation corresponding to (7)
is shown in Fig. 4. as0(t)

− ta0

R0 L1

− ta2

R2 L3

− ta4

R4 L5

Fig. 4: Proposed CLN representation of TWP28.

III. SINUSOIDAL STEADY STATE ANALYSIS

We have construced the CLN with z0= 3.8mm. The
computational time of generating the 4-stage CLN model
was approximately 30 s. The mover was fixed at a
constant height of zgap = 20 mm, and a sinusoidal
steady-state analysis was performed at f =50 Hz. Fig.
5 shows the comparison of the eddy current distributions
at the center of the aluminum plate. (a) and (f) are the
results of FEM and others are differencies between the
proposed CLN method and FEM with various stages. It
can be seen that the error decreases for both the real and
imaginary parts as the expansion order increases.

Fig. 6 shows the comparison of the time-averaged
Lorentz force in the sinusoidal steady state with the FEM.
The FEM results are already sufficiently reproduced with
2-stages CLN and the results do not change even if the
expansion order is increased thereafter.

Fig. 7 shows the comparison of the Joule loss in the
sinusoidal steady state with the FEM. The FEM results
are already sufficiently reproduced with 2-stages CLN
and the results do not change even if the expansion order
is increased thereafter.
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Fig. 5: Eddy current density obtained by FEM and the
proposed CLN, and those two differences.
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Fig. 6: zgap dependence of the time-averaged force
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Fig. 7: zgap dependence of the Joule loss
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IV. TRANSIENT ANALYSIS COUPLED WITH MOTION

Fig. 8 shows a block diagram of the proposed CLN
method implemented in Simulink for motion coupling.
The width of the time step ∆t was set to 0.1 ms and
simulations were performed for 20,000 steps from 0 ms
to 2000 ms. We observed ∆t = 1.0 ms was too large
and it must be smaller than ∆t = 0.5 ms at least. The
environment used for the calculations was Intel Core i5-
12400 CPU, 64GB memory. Fig. 9 shows a comparison
of the measured magnetic levitation height [12], that
obtained by the commercial software (ELF/MAGIC), and
the proposed method. The fine oscillations with a period
of 20 ms, which appear among the large periodic damped
oscillations with a period of 200 ms, are considered to
be caused by the power supply frequency of 50 Hz. The
results of the 2-stage CLN reproduce the ELF/MAGIC’s
results with an error of less than a few percent. As for
the actual measurement results, they are likely to contain
some errors that differ from ideal electromagnetic field
modeling. The proposed CLN method requires only about
5 s for transient analysis, which is a significant reduction
in analysis time compared to the 40 min required by
ELF/MAGIC.
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Fig. 8: Block diagram of the proposed CLN coupled with
the equation of motion
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Fig. 9: Levitation height transients evaluated from mea-
surements, commercial software, and proposed CLN ap-
proach

V. CONCLUSION

The CLN method with constant basis functions for
eddy current problems involving translational movements

has been proposed. Because both the circuit parameters
and the basis functions are constant, the implementation
on the circuit simulator is simple and analysis can be
easily performed with circuit simulators used for control
design. To show the validity of the proposed method,
an analysis of the TWP 28 was performed and the
computation time has been significantly reduced without
the loss of accurary. We plan to apply this method to
cases where multiple conductors exist.
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