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1Graduate School of Environmental Studies, Tohoku University, Miyagi, Japan
2Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan
3Mercator Research Institute on Global Commons and Climate Change, Berlin, Germany
4Department Economics of Climate Change, Technische Universit€at Berlin, Berlin, Germany
5Lead contact

*Correspondence: achmed.shahram.edianto.p1@alumni.tohoku.ac.jp (A.E.), trencher.gregory.2s@kyoto-u.ac.jp (G.T.), manych@

mcc-berlin.net (N.M.)

https://doi.org/10.1016/j.patter.2023.100776
THEBIGGERPICTURE Coal power plants are the single largest contributor to global heating.With new con-
structions slowing globally, there is an urgent need to accelerate the retirement of existing plants. With
numerous barriers hampering this, retirement speeds differ considerably across countries. It is thus unclear
at what age existing plants will retire and where global hotspots of early or late retirements may be located.
Our machine-learning model identifies plant-level CO2 emissions and penetration of renewables in the elec-
tricity mix as themost important factors influencing retirement ages. Daring a look into the future brings good
news: globally, most plants will likely retire earlier than the historical average of 40 years, generating large
emissions reduction benefits. However, we forecast some countries will face considerable difficulties in
retiring plants due to high lock-in, influenced by plant ages and dependence on coal. These countries merit
targeted support by the international community.

Development/Pre-production:Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
Averting dangerous climate change requires expediting the retirement of coal-fired power plants (CFPPs).
Given multiple barriers hampering this, here we forecast the future retirement ages of the world’s CFPPs.
We use supervised machine learning to first learn from the past, determining the factors that influenced his-
torical retirements. We then apply our model to a dataset of 6,541 operating or under-construction units in 66
countries. Based on results, we also forecast associated carbon emissions and the degree towhich countries
are locked in to coal power. Contrasting with the historical average of roughly 40 years over 2010–2021, our
model forecasts earlier retirement for 63% of current CFPP units. This results in 38% less emissions than if
assuming historical retirement trends. However, the lock-in index forecasts considerable difficulties to retire
CFPPs early in countries with high dependence on coal power, a large capacity or number of units, and young
plant ages.
INTRODUCTION

Coal power continues to exacerbate climate change and air

pollution.1 Bucking global efforts to phase-out or expedite retire-

ments of coal-fired power plants (CFPPs), numerous countries

have recently built new plants.2,3 In addition to some 6,500 units

totalling 2,000 GW of capacity that exist globally, another 450

GW of new construction risks to expand this fleet.4 Once built,
This is an open access article und
CFPPs typically operate for between 40 and 50 years.5–7 If all ex-

isting and new plants achieved a similar lifetime, 278 Gt of CO2

(Gt-CO2) emissions would result (calculated by authors based

on Global Energy Monitor (2022)). This would consume more

than half of the remaining carbon budget (500 Gt-CO2) permitted

in scenarios that limit post-industrial warming to 1.5�C.8 In paral-

lel, air pollution and damage to human health would be pro-

longed for decades.9
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New CFPP developments have recently slowed.10 In 2021,

newly installed capacity declined to less than half of 2015 levels,

when the biggest installation occurred (see Figure S1; Table S1).

Yet there remains an urgent and unsolved challenge of how to

tackle the world’s fleet of existing plants. This requires govern-

ment interventions to accelerate the retirement of existing

CFPPs across wealthy and developing economies8,11 and

knowledge of conditions that affect retirement ages.

Many obstacles are expected to impede efforts to expedite

the retirement of CFPPs.12–14 These can arise from resistance

by industry, for whom early plant retirements can trigger financial

losses,15,16 but also from the political difficulty of provoking eco-

nomic and societal disturbances across the power-generation

and coal-extraction sector.17 In addition, many countries lack

the technological capacity18,19 or resources to immediately shift

to alternative energy technologies. Strategies are thus needed to

confront these financial, political, and social factors that ‘‘lock in’’

coal power by hampering early plant retirement and thereby pro-

longing lifetime carbon emissions.7,20

Several studies have attempted to forecast retirement ages for

the global CFPP fleet. But research is limited to top-down ap-

proaches, where retirement volumes or schedules are pre-

scribed in accord with climate mitigation scenarios.21–24 More-

over, the usefulness of top-down estimates is reduced by the

tendency of governments and market actors to ignore carbon

budgets when deciding retirement schedules. Meanwhile, exist-

ing studies employing a bottom-up approach are limited to those

modeling retirement ages based on plant-by-plant conditions.25

Conversely, although recent scholarship adds to our under-

standing of the factors that influenced historical CFPP life-

times,26 it is still unclear how these could affect retirement

ages in the future. Consequently, we have a limited understand-

ing of what operational lifetimes to anticipate for currently oper-

ating CFPPs, what emissions will result, and what countries will

experience lock-in to coal power.

We therefore aim to determine the factors that influenced his-

torical CFPP retirements and forecast future retirement ages

based on these results. We also aim to estimate carbon emis-

sions from CFPPs based on forecasted retirement ages and to

quantify the degree to which countries are locked in to coal po-

wer. To achieve this, we first extracted from literature descrip-

tions of factors expected to influence retirement ages. We then

collected county-specific data for these from publicly available

sources (World Bank [2018],27 BP [2021],28 EMBER [2021],29

etc.). Next, we used supervised machine learning to measure

the influence of these on retirement ages, examining 1,697 units

retired between 2010 and 2020 in 34 countries.We subsequently

apply the model to a dataset of 6,541 units still operating or un-

der construction in 66 countries to forecast future retirement

ages and resulting emissions. Finally, we develop a coal lock-

in index based on forecasted retirement ages, the share of

coal in the electricity mix, and total capacity.

This study makes three important contributions. First, by

examining historical evidence and country-specific conditions,

we propose a new approach to estimate future CFPP lifetimes

and ensuing emissions. Second, by identifying the factors that

influenced historical retirements, we generate hints on condi-

tions that could accelerate future retirements. Third, our novel

lock-in index identifies countries meriting attention by policy-
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makers and investors because of their forecasted challenges in

phasing out coal.

The results section presents results of the machine-learning

forecasting, estimated emissions, and the coal lock-in index

and describes our data sources, sample constructions, and

calculation procedures. The following section is the discussion,

and the final section details the experimental procedures.

RESULTS

Historical drivers of early retirement
Our systematic review of academic literature led to the identifica-

tion of 1 plant-level and 13 country-level factors of which data

availability permitted their inclusion in our analysis of the histor-

ical drivers of CFPP retirement. Country-level factors describe

the socio-economic, environmental, and governance conditions

in a specific year, whereas plant-level factors reflect the charac-

teristics of a CFPP unit (see Table 1 for all factors examined along

with data sources).

Results of the Random Forest Regression used in the histori-

cal analysis are shown in Figure 1. Values appear in descending

order, with the most important factors appearing as bars at the

top of figures. To identify each factor’s contribution to a unit’s

retirement, we used Shapley Additive Explanation (SHAP)

values. A positive SHAP value indicates that a factor extends a

unit’s lifetime operation, whereas a negative value shortens it.

The horizontal location on the bottom three figures indicates

whether an SHAP value is associated with a higher or lower

retirement age.

For China and the United States, a correlation implies that the

retirement in a certain year is influenced by the value of a factor in

that respective year. Results for the rest of the world (ROW),

although based on country-specific data, provide only an

average collective result for all 64 countries in the group. For

example, if GDP data in country X and Y exerted a strong effect

on early retirement, this would show up with a high SHAP value

only if other countries in the ROW group experienced a similar

situation. In contrast, results shown for China or the United

States are based only on data from each of these countries.

For most countries with the exception of China, results show

that a unit’s annual CO2 emissions (F1)—a plant-level factor

based on a unit’s capacity, heat rate, and type of coal com-

busted (see Table 1)—exert the highest impact on retirement

ages, which in this case translates into a shorter lifetime. We

thus find that countries have tended to prioritize the retirement

of themost emissions-intensive units. Corroborating the findings

of other studies,30,31 this result suggests that the high fuel re-

quirements of old and inefficient plants, which often require

installation of expensive anti-pollution technologies, have pro-

vided an economic rationale for prioritized retirement. In both

the United States and ROW, high annual emissions exert a

strong negative impact on retirement, which in this case trans-

lates into a shorter lifetime. This can be seen in the graph where

red and blue show the high or low value of the factor, whereas the

x axis shows the negative (early retirement) or positive impact

(late retirement) on the model. In contrast, China’s results do

not exhibit a clear correlation between annual CO2 emissions

and retirement age. A key factor influencing this unclear correla-

tion is the low historical average retirement age, around 20 years,



Table 1. Country-level and plant-level factors that influence CFPP development and retirement

Factors

Data

availability Indicator unit Source

Time-series data

availability Literature Assumed influence Notes

Included in analysis

F1: Plant CO2

emissions

yes million tons CO2/year Global Energy

Monitor (2022)4
yes Trencher et al.,30

Hughes et al.31
Plants with higher

emissions are

typically older plants

with less-efficient

technologies. Due to

higher fuel

requirements and a

vulnerability to

environmental or

climate regulations,

retirement schedules

typically prioritize the

most polluting plants.

Annual CO2

emissions indicate

absolute volumes,

based on a unit’s

capacity, heat rate,

and type of coal

combusted. The heat

rate is calculated

from the coal

combustion

technology used (i.e.,

subcritical,

supercritical, ultra-

supercritical), as well

as carbon capture

and storage (CCS).

F2: Carbon price yes yes/no World Bank (2018)27 no Trencher et al.,30 Mo

et al.,32 Pahle et al.,33

Ross,34 Mo et al.35

Carbon price policies

increase the cost of

coal-fired power

generation, reducing

competitiveness

against other energy

sources.

Countries indicated

as possessing a

carbon pricing policy

during 2010–2020

receive a score of ‘‘1’’

and ‘‘0’’ if not.

F3: Coal price yes US$/ton BP (2021)28 yes Trencher et al.,30 Mo

et al.,32 Pahle et al.33
A high average price

of coal increases

electricity generation

costs, reducing

competitiveness.

Conversely, low

prices increase

competitiveness.

Average price for

2010–2020 used for

Northwest Europe,

US Central

Appalachian, and

Japan steam CIF.

(Continued on next page)
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Table 1. Continued

Factors

Data

availability Indicator unit Source

Time-series data

availability Literature Assumed influence Notes

F4: Electricity

access rate

yes % of population

with access to

electricity

World Bank

(2021)36
yes Manych

and Jakob16

Low electrification

rates create a need to

expand the electricity

supply. Many

developing countries

choose CFPPs

because they are an

established and

reliable technology,

and they can supply

large and stable

baseload power.

Training set: Since

2020 data are

unavailable and only

one country in 2019

has not reached

100% (India); we

assume that in 2020

all countries in this

sample will reach

100% because India

already reached 98%

in 2019.

Model application

set: Since 2020 data

are not available, we

extrapolate earlier

data to forecast the

2020 share for a

country that has not

reached 100%

access.

F5: Reliability of

supply

yes 1–8 World Bank

(2021)37
yes Manych

and Jakob16

Low reliability of

electricity supply

would drive the effort

to provide stable

electricity. In such

conditions, CFPPs

may be attractive

because they are an

established and

reliable technology,

and they can supply

large and stable

baseload power.

Since 2020 data are

not available, we use

2019 because of the

insignificant change

between 2018

and 2019.

F6: GDP per capita yes US$/capita World Bank

(2021)36
yes Scholvin,38

Hao Tan et al.39
Poor economic

conditions in a

country create a need

for cheap energy

sources. The cheap

fuel costs for CFPPs

may encourage new

constructions or

delay retirements.

(Continued on next page)
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Table 1. Continued

Factors

Data

availability Indicator unit Source

Time-series data

availability Literature Assumed influence Notes

F7: Renewable

support policy

yes 1–100 World Bank

(2021)40
yes Gallagher et al.41 Policies that support

renewable energy

would drive

deployment,

decreasing costs

over time, pushing

coal out of power

mixes because of low

generation costs.

Based on the pillar

‘‘renewable energy’’

in Regulatory

Indicators for

Sustainable Energy

(RISE).

Since 2020 data are

not available, we

extrapolate

historical data.

F8: Climate policy

effectiveness

yes 1–100 Wendling et al.,

(2020)42
yes Scholvin,38 Wang

et al.43
Strict environmental

policies may prevent

the construction of

new plants or induce

the retirement of

existing plants. They

may also mandate

expensive

antipollution

technologies,

encouraging CFPPs

to retire.

We use the

performance score

for ‘‘Climate Change’’

extracted from the

environmental

performance index

(EPI) by Yale

University to estimate

the effectiveness of

climate policies.

Countries with strict

or effective policy

tend to have a lower

carbon

intensity score.

F9: Electricity

demand growth

yes % of electricity

demand growth

EMBER (2021)29 yes Manych and Jakob,16

Dorband et al.44
A high growth of

electricity demand

creates a need to

increase power

production and drive

the acceleration of

affordable

technologies with a

large generation

capacity. Under such

conditions, CFPP can

be competitive.

Model application

set:

For countries without

2020 data, we

extrapolate data from

2015 to 2019.

For Myanmar, the

latest data are 2014,

so we use the

average growth of

2010–2014.

(Continued on next page)
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Table 1. Continued

Factors

Data

availability Indicator unit Source

Time-series data

availability Literature Assumed influence Notes

F10: Political stability yes �2.5 (weak) to 2.5

(strong)

World Bank (2021)45 yes Scholvin,38 Hao

et al.39
Unstable political or

socio-economic

conditions create

high uncertainty,

especially for new

technologies such as

renewable energy

that need supportive

policies. In such

conditions, CFPPs

may be attractive.

Since 2020 data are

not available, we

extrapolate data from

2010 to 2019.

F11: Coal rent yes % of GDP World Bank (2021)36 yes Scholvin,38 Blondeel

et al.46
The availability of coal

in a country increases

the attractiveness of

coal as an electricity

source and would

discourage the

retirement of CFPPs.

We use coal rents to

show the contribution

of coal mining activity

to a country’s

economy. High rents

indicate active coal

production with high

revenue for a country.

Coal reserves alone

could not reflect this,

because having large

reserves without

significant mining

activity will not likely

affect national coal

policy.

Since 2020 data are

not available, we

extrapolate data from

2015 to 2019.

F12: Natural gas price yes US$/mmBtu BP (2021)28 yes Ross,34 Scholvin,38

Fell and Kaffine,47

Gray and Bernell48

A low average price of

natural gas

decreases the

production cost of

gas generation,

reducing the

competitiveness of

CFPPs and

encouraging it to

retire.

We use the US Henry

Hub natural gas price

uniformly across all

countries.

(Continued on next page)
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Table 1. Continued

Factors

Data

availability Indicator unit Source

Time-series data

availability Literature Assumed influence Notes

F13: Renewable

electricity output

yes % of total power

generation

EMBER (2021)29

and IRENA (2021)49
yes Dodd and Nelson,50

Pahle et al.,33

Fell and Kaffine47

A high penetration

of renewable energy

would decrease coal

generation, reducing

the utilization of

CFPPs and

encouraging

retirement.

For 2010–2019 data,

we use EMBER data

because the latest

data are from2019 for

most countries. We

then use data from

IRENA to cover 2020

data that are not

available for some

countries.

F14: Share of nuclear

in electricity mix

yes % of total power

generation

EMBER (2021)29 yes Trencher et al.,30

Pahle et al.33
A high penetration of

nuclear may

decrease reliance on

coal for baseload

electricity and may

also receive

preference over coal

because of its

emission-free status.

Excluded in analysis

Plant age yes – Global Energy

Monitor

yes Mo et al.,32 Trencher

et al.,51 Dodd and

Nelson50

– –

Energy mix target yes – NDC no Gallagher et al.,41

Blondeel et al.,46

Gray and Bernell48

– –

Levelized cost of

electricity (LCOE)

no – – no Trencher et al.,30

Gallagher et al.,41

Webb et al.,52 Fell

and Kaffine53

– –

Government GHG

emission reduction

target

yes – NDC no Gallagher et al.,41

Dorband et al.44
– –

Coal support policy no – – no Trencher et al.,51

Pahle et al.33
– –

Societal awareness no – – no Trencher et al.51 – –

State capacity no – – no Brutschin et al.26 – –
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Figure 1. The impact of plant-level and country-level factors on forecasting a unit’s retirement age in the historical analysis

Figures show corresponding SHAP values (top) and results for the SHAP correlation analysis (bottom). SHAP values indicate the mean value of the magnitude of

each factor without explaining its positive or negative impact on the model. Feature values, indicated in red and blue (bottom), show the high or low value of the

factor, while the x axis shows the negative (early retirement) or positive impact (late retirement) on the model. Feature value is different from the SHAP value and

represents the ‘‘real value’’ of each factor. That is, while the SHAP value represents the mean value of the magnitude of that factor’s influence on the model, the

feature value shows the magnitude of that factor’s impact on the model output, which in this case results in a higher or lower retirement age. For example, in the

rest of theworld (ROW), the feature value of plant CO2 emissions is ‘‘high’’ (represented by red color), and the SHAP valuemagnitude is negative (represented by a

negative value, left side of the chart). This situation can be translated as ‘‘high plant emissions will lead to an earlier retirement age.’’ Explanations of each factor

appear in Table 1. We divided the sample into three groups, China, the United States, and the ROW, to account for the large share of retired units by the first two

countries, which make up 510 and 588 units, respectively (65% of the sample). Names on the y axis have been simplified for readability and differ slightly from

those used in the script.
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compared with other countries. Historically, Chinese coal plants

usually have had a shorter lifespan than other countries, largely

because of initiatives to close down smaller, dirtier power sta-

tions so as to better the air quality in the vicinity.54

Besides CO2 emissions, although having less impact, some

factors are still useful for the model’s forecasting performance.

In the case of China and the United States, other factors exert

only a minor influence on plant retirement ages, including natural

gas prices, carbon intensity, and coal rent. In China, for example,

higher natural gas price could potentially extend the lifetime of

CFPPs. However, the magnitude of these factors is close to

zero, thus exerting almost no impact to the overall model.

The ROW group reveals an especially strong influence for a

country’s share of renewable electricity (F13) and GDP. This in-

dicates that the growth of renewables has induced early retire-

ments by gradually squeezing coal out of the electricity mix.

We presume this tendency to be most pronounced in the

advanced economies in the ROW group.

Conversely, country-level factors found to exert the weakest

influence on retirement ages are carbon price (F2), access to

electricity (F4), and the reliability of electricity supply (F5) for

China and the United States and electricity demand growth

(F9) for the ROW. The heterogeneous impact of factors in the

three country groups occurred because of their country-level

nature. For China and the United States, we compare the

changing influence of factors on retirement ages over time. In

the ROW, however, we compare factors between countries

over time.
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Forecasted retirement ages
The forecasted retirement ages for 66 countries, based on re-

sults of the historical analysis, appear in Figure 2. The complete

list of each country’s retirement probability appears in Tables S7

and S8. We set 40 years as the threshold retirement age,

because this reflects the average over 2010–20204 and is widely

used in the literature.5,6 Forty years thus provides a rough indica-

tor of what could be considered an ‘‘early’’ retirement from a his-

torical perspective.

Our model forecasts that 63% of units will be retired at less

than 40 years. Such units equate to around 1,600 GW or 68%

of global capacity. A massive proportion of early retirement oc-

curs in China, which owns 46% of global units (3,003 of 6,541

units). Interestingly, our model forecasts extensive early retire-

ments in China despite its extremely young fleet (average unit

age in 2021 is only 12 years compared with a global average

age of 26 years).

On the other hand, there are 47 countries (70% of sampled

countries) that share a high probability (>50%) that unit(s) will

be retired later than 40 years. Illustrated by rapidly developing

Asian economies, such as Indonesia, Mongolia, Pakistan, and

the Philippines, these countries all share the feature of having

built new CFPPs in recent years, propelled by the need to deliver

affordable electricity to meet rapidly growing demand.12 A

further three countries meriting attention are the United States,

Japan, and Australia, where more than 50% of CFPP capacity

is expected to retire later than the global average. More specif-

ically, the share of units forecast to operate beyond 40 years in



Figure 2. The forecasted retirement age of operating and under-

construction CFPP units (n = 6,541) from 66 countries in terms of

number of units (top) and capacity (MW) (bottom)

The map shows the cumulative units forecasted to retire before or after 40

years (the average global retirement age over 2010–2020). A country with a

100% value indicates that all CFPPs units will be retired before 40 years.

ll
OPEN ACCESSArticle
each of these countries is 95% (215 GW) of the 227 GW fleet in

the United States, 56% (30 GW) of the 55 GW fleet in Japan, and

83% (20 GW) of the 25 GW fleet in Australia.

In this step of the analysis, we forecast the retirement ages for

active units in each country and later calculate the year of retire-

ment based on the year each unit begins operation. We antici-

pate that countries with a young fleet or with units still under con-

struction will face hurdles to early retirements. For developing

economies in Asia and atypical cases like Japan (Japan is an

industrialized country with a young CFPP fleet (average age 22

years) that has seen multiple new additions in recent years.51),

in the absence of policy interventions to prevent retirement

ages mirroring historical trends, our model forecasts that many

plants may operate beyond 2050, a year when many countries

are aiming to reach carbon neutrality.

Forecasted emissions
We estimate in Figure 3 the total CO2 emissions that would occur

over the remaining lifetime for all CFPP units operating in 2025,

the year by which we assume all plants under construction in

our sample to come online. Although other factors such as

changes in operational hours would affect future emissions, we

focus on operational lifespans, because this is widely recognized

as the greatest determinant of lifetime emissions.32,50,51 This

scenario also assumes the plant retirement ages forecasted by
the machine-learning model. Resulting emissions are compared

with a reference scenario. This uses either the planned retire-

ment ages reported by plant operators (n = 804) or, for units

without this information, an assumed lifetime of 40 years (n =

5,737), based on the average retirement age over 2010–2020.4

The average retirement age forecasted by the model is 33 years,

considerably shorter than in the reference scenario, which is

40 years.

The analysis indicates that plant retirements at the ages fore-

casted by our model would generate 114.5 Gt-CO2, 38% less

than the reference scenario. This reduction potential is consider-

able, being the equivalent of approximately 2 years’ worth of

annual global CO2 emissions from all fossil fuels, which was

36.4 Gt in 2021.55 This result suggests that future emissions

from coal power may be significantly less than studies that as-

sume plant lifetimes of around 40 years, based on historical

trends.7,24 Moreover, this finding demonstrates that expediting

CFPP retirements can tremendously reduce global CO2 emis-

sions. However, this reduction is mainly contributed by China,

which exhibits 57% less emissions than in the reference sce-

nario. We also find that expedited retirements would lead to a

considerable emissions reduction in the United States, being

25% less than the reference scenario. The ROW, meanwhile, ex-

hibits a reduction potential of only 3%, because of younger plant

ages in many countries.

Out of 66 countries, 27 will potentially see less future emis-

sions than in the reference scenario (see Table S9). Conversely,

the rest of the sample shows increased emissions. However,

since these countries contribute only 13% of total emissions in

the reference scenario, total emissions in the model forecasting

do not increase.

Among the top emitters, China, the United States, India, and

Australia are forecasted to see considerable carbon reductions

relative to the reference scenario. These are largest for Australia

and China (60% and 57%, respectively), whereas the United

States and Indiamay see25%and11%fewer emissions.China’s

potential for a massive reduction (65 Gt-CO2) reflects the high

probability for CFPPs to be retired below the age of 40 years.

For the United States, the emissions reduction is based on our

forecasting that 109 units will be retired in 2025, compared with

zero units in the reference scenario. In Australia, although the

model forecasts only 17%of CFPP capacity will be retired before

40 years, future emissions are 60% less than in the reference sce-

nario. This result reflects the old age of Australia’s fleet (34 years)

and the forecasting that most units will be retired by 2025.

Conversely, other high emitters such as Indonesia, Japan, the

Philippines, Poland, and South Korea are forecasted to see

higher lifetime emissions relative to the reference scenario.

South Korea, the Philippines, and Poland incur the most signifi-

cant increase, with 39%, 30%, and 19%, respectively. Mean-

while, Indonesia and Japan see an increase of only 3% and

4%. In Indonesia and South Korea, although the retirement fore-

casting analysis shows that 71% and 96% of capacity will retire

before 40 years, emissions in these countries increase because

of our model forecasting average retirement ages that are later

than the reference scenario. Concretely, the model forecasts

an average retirement age of 35 years in Indonesia and 21 years

for South Korea compared with 28 and 16 years, respectively, in

the reference scenario.
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Figure 3. Remaining lifetime CO2 emissions

after 2025.
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Coal lock-in index
Results for the coal lock-in index appear in Figure 4 and

Table S10. Depicting the degree of difficulty each country is

forecasted to face when attempting to retire its CFPP fleet,

this index considers the CFPP fleet’s age (based on the first

year of commercial operation and the retirement age fore-

casted by the machine-learning analysis), the share of coal in

the electricity mix, and the capacity of operating and under-

construction CFPPs in the base year, 2025. Our coal lock-in in-

dex extends on the carbon lock-in equation proposed by Neo-

fytou et al.,56 integrating the forecasted retirement age into the

model in place of a flat 40 years (see the detail explanation in

experimental procedures).

Shown on the y axis, high numbers (e.g., 6) reflect a high de-

gree of lock-in to coal power, whereas low numbers (e.g., 1)

reflect a low degree of lock-in. To facilitate comparison, we orga-

nize individual country results in terms of total units (y axis) and

capacity (size of circles). Four clusters of countries can be dis-

cerned from this analysis.

First are countries with a low lock-in index and a small volume

of CFPP units, home to the vast majority of so-called coal phase-

out countries. This group is characterized by countries such as

France, Germany, New Zealand, Montenegro, Ireland, Spain,

and the United Kingdom.57 Countries in this cluster have already

retired many coal plants in the past while adding few new ones,

which decreases hurdles to retiring additional units. In the case

of New Zealand, the lock-in index is zero, but the country still

has two CFPP units, each sized 500 MW, and they are relatively

old, commissioned in the 1980s. Here, however, the analysis

shows that New Zealand is not likely to encounter any difficulty

in eliminating coal from its power mix.

Second are countries with a small volume of CFPP units but a

high degree of lock-in. This group includes Mongolia, Cambodia,

and Bosnia, in addition to other developing economies still

immersed in the ‘‘phase-in’’ stage; namely, Vietnam and the

Philippines.57 In thecaseofMongolia, although thenumberofunits

(12) and CFPP capacity (1010 MW) is low compared with other

countries, the lock-in score (6.47) is the highest of all countries.

This result especially reflects two conditions: a high share of coal

in the electricitymix (93% in 2025) and a tendency for plants to op-

erate for more than 40 years. With a further twomore units sched-

uled to come online, Mongolia’s heavy reliance on coal power is

expected to pose formidable barriers to expediting plant

retirements.
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Third are countries with a larger number

of units but lower lock-in. Featuring industri-

alized giants such as Japan and the United

States, in addition to Russia, coal lock-in

scores in this group are below the median,

between 2.34 and 3.06. Nonetheless, the

significant volume of CFPP units in these

countries is expected to hamper future ef-

forts to expedite retirements. Consider the

case of Japan, whose coal lock-in score is
3.06. This is due to a roughly 30% share of coal in the electricity

mix and a forecasted average lifetime operation of CFPPs close

to 42 years. However, Japan has a slightly higher lock-in than

the United States and Russia. This reflects its larger volume of

CFPP units and much younger fleet age, which is forecasted to

average 26 years in 2025, the youngest among G7 countries.

Fourth isacluster of fivecountriescharacterizedbyconsiderably

moreCFPPunits andahighdegreeof lock-in:China, Indonesia, In-

dia, Poland, and South Africa. These countries are considered es-

tablishedcoal users, someofwhich additionally export largequan-

tities, which can result in increased reliance on coal from an

economic perspective. In the case of China, although not featuring

in the 10 most highly locked-in countries, we nonetheless antici-

pate considerable difficulty in completely phasing out coal power

compared with other countries. This is due to the sheer volume

of units and capacity. Indeed, although China’s lock-in score is

3.7 and far below India, in 2025 this country will possess more

than 1,000 GW, just over half (51%) of global capacity. India and

Indonesia are other high lock-in countries with similar characteris-

tics. India has the world’s second largest CFPP fleet in terms of

units and capacity, whereas Indonesia has the fifth highest number

of units. Both also feature among the 10 countries with the highest

coal lock-in score because of high shares of coal-fired electricity

(74% in India and almost 60% in Indonesia). In addition, the high

lock-in score for China, India, and Indonesia is also influenced by

recently added or still-under-construction CFPPs. Indeed, these

countries are home to the three largest CFPP pipelines globally,

with 92, 31, and 15 GW under construction, respectively.

Of the four clusters identified, we argue that efforts to phase out

coalpower should focuson thosecountrieswithahighcoal lock-in

score and large unit numbers, namely, China, Indonesia, India,

Poland, and South Africa, collectively representing more than

two-thirds (68%) of global capacity in 2021. Retirement schedules

in these countries will significantly influence global efforts to elim-

inate carbon emissions from electricity generation. As our lock-in

result shows, barriers to this can arise not only from the share of

coal in the power mix or from operational lifetimes, but also from

the volume of units and capacity needing to be retired.

DISCUSSION

To mitigate climate change in line with temperature targets set

under the Paris Agreement, halting the construction of CFPPs

is essential but not enough; a timely retirement of existing plants



Figure 4. Results of coal lock-in index organized into total units (operating and under construction) and capacity (MW) among 66 countries

The size of circles represents the total capacity size (MW) in 2025 of each country, based on our model forecasting.

ll
OPEN ACCESSArticle
is also needed. This study focused on this latter challenge, using

supervised machine-learning to identify factors that contributed

to historical retirements over 2010–2020.We then applied the re-

sults to a dataset of 6,541 units in 66 countries to forecast future

retirement ages, resulting emissions, and lock-in to coal power.

The historical analysis revealed that in all country groups, plant-

level annual CO2 emissions are the most important factor influ-

encing retirement ages over 2010–2020. For countries other

than China and the United States, we additionally found that the

penetration of renewables in the electricity mix exerts a strong in-

fluence on early plant retirement. On the one hand, these results

indicate that most countries are prioritizing the retirement of emis-

sions-intensive units, which typically provides an economic ratio-

nale to do so. On the other hand, we find that renewable energy,

which enjoys few operational costs, is gradually squeezing coal

out of the powermix inmanycountries, inducing early retirements.

Although theaverageglobal retirementageover2010–2021has

been around 40 years, our model suggests that many CFPPs will

retire earlier in coming years,with 63%of units forecasted to retire

earlier than the historical average.We also showed that earlier re-

tirements have potential to generate a tremendous reduction in

globalCO2 emissions, in this case, 38% less than a reference sce-

nario assuming the 40-year historical average. The emissions-

saving potential was highest in China and the United States.

Conversely, the model also forecasts that plants will retire later

than 40 years for many countries, especially Asian countries that

have recently expanded or upgraded CFPP fleets. Without policy

interventions to prevent this, numerous plants around the world
are forecasted to operate beyond 2050, the year that many coun-

tries are aiming for carbon neutrality.

Shown by our analysis on coal lock-in, we forecast consider-

able difficulties in achieving early retirements in many countries,

especially those characterized by high dependence on coal po-

wer, large capacity or unit numbers, and young fleets. This clus-

ter includes China, Indonesia, India, Poland, and South Africa.

Not only do these countries represent nearly 70% of worldwide

coal power capacity in 2021, but China, India, and Indonesia

are also home to the largest pipelines of CFPP developments.

These findings carry important policy implications. Many re-

searchers and practitioners emphasize the need to phase out

coal power from a global perspective or from the context of indi-

vidual countries. However, our lock-in analysis reveals a need to

focus attention on countries forecasted to experience consider-

able difficulty in implementing early retirements. These countries

include China, Indonesia, India, Poland, and South Africa, all

possessing high volumes of capacity and CFPP units, as well

as strong lock-in. But other countriesmeriting special assistance

in transitioning beyond coal are developing countries, such as

Mongolia and Kazakhstan, also forecasted to suffer from coal

lock-in despite smaller fleet sizes.

Our findings contribute to the growing literature taking interest in

the speedatwhich coal phase-outs canoccur. Althoughour results

and approach are not directly comparable with other studies, there

are several points of concurrence or differences between our study

and others that merit brief mentioning. First, prioritizing the retire-

mentof themost-pollutingplants is theprimary factor inouranalysis
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Figure 5. Summary of the study design.
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andmakes sense economically and for reducing emissions.22 Sec-

ond, the strictness of climate policies and government or industry

ambitions to reduce dependance on coal will greatly determine

retirement speeds.26 Our model finds ‘‘Climate Policy Effective-

ness’’ and ‘‘RenewablesPolicy’’ to be important,whereas other pa-

pers explicitly highlight the effect of carbon pricing on accelerating

retirements.25,35 Third, historical evidence shows that coal phase-

outs are slow, require several decades, and typically occur faster

in richer countries,14,58 which is in line with our coal-index results.

This once again points to the need for international collaboration

to assist poorer countries with higher lock-in to expedite retirement

schedules and replace coal with clean energy.

Several limitations in this study could inform future research.

First, our analysis did not consider unit ages, because this is the

output of the model. Since young plant ages are widely expected

to hinder early retirement because of the need to recuperate

sunken capital,24 future studies could develop models capable

of incorporating such plant-level factors. Data availability also

impacted our application of other indicators. For example, for car-

bonpricing (F2),weconsidered theexistenceof suchpolicies (yes/

no) only because of the absence of more descriptive time-series

data for the entire sample of countries. Second, questions also

remain about the influence of certain variables identified from liter-

ature review, but for which data were not fully available (Table 1).

Thesenotably includeplant age, the compositionofpowermix tar-

gets, levelized cost of electricity (LCOE), the ambition of govern-

ment GHG emissions reduction targets, coal support policy, and

societal awareness. Third, the importance of the influencing fac-

tors examined might change over the considered timescale,

becausemany are affected by ever-changing dynamics in the en-

ergymarket. Furthermore,weexpectother futuredevelopments to

influence plant retirement ages. For example, retrofitting plants

with co-firing (ammonia, biomass) or carbon capture technologies

would involve new investments that marginally reduce emissions,

thus incentivizing longeroperation.Finally,wealsodidnot take into

account coal phase-out pledges from governments, which in

many countries will likely induce earlier retirements.2 Including

such factors could increase the robustness of forecasting results.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will

be fulfilled by the lead contact, Achmed Edianto (achmed.shahram.edianto.

p1@alumni.tohoku.ac.jp).
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Materials availability

This study did not generate new unique reagents.

Data and code availability

The publications comprising our sample, our coding procedure, and cod-

ing results are publicly available on the Zenodo platform.59

Our study design involves seven steps that we summarize in Figure 5 and

elaborate below.
Systematic literature review

In the first step, we systematically reviewed academic literature to identify fac-

tors expected to drive or impede the retirement and development of CFPPs.

We identified relevant studies from Scopus using a procedure explained in

Notes S1.

The literature review led to the identification of 18 country-level and two

plant-level factors (Table 1). Country-level factors describe the socio-eco-

nomic, environmental, and governance conditions in a specific year, whereas

plant-level factors reflect the characteristics of a CFPP unit (e.g., capacity,

emissions, and technology). Due to data availability, we limit the factors

used for the forecasting analysis to 13 of these.

Annual CO2 emissions from each CFPP unit (F1) is the only plant-level factor

included in the model. Inclusion of this factor assumes that plants with higher

emissions are typically older plants with less-efficient technologies. Having

higher fuel requirements and a vulnerability to environmental or climate regu-

lations, retirement schedules typically prioritize the most polluting plants.

Besides this factor, plant age, determined by the commercial operation date

(COD), often appeared in the literature based on views that old plants are more

likely to retire than young plants. However, our forecastingmodel could not use

this factor for two reasons. First, the training sample is biased compared with

the overall sample. Specifically, only older plants can be retired at old ages,

which is simply not feasible for younger ones. Second, the model’s output is

a unit’s retirement age, which essentially reflects a plant’s age at that point

in time. This differs from the training set, which consists of already retired units

for which the retirement age is known. We illustrate this situation in Table 2.

Hence, including COD values in the analysis would create a false effect,

causing the machine-learning model to interpret historical trends as indicating

that the earlier the COD year (i.e., the older the plant) the older the retirement

age. Conversely, a later COD year (i.e., a younger plant) would be interpreted

as inducing a younger retirement age. We illustrate this situation in Figure 6.

The bottom of Figure 2 plots the average retirement ages for all retired units.

This indicates a declining average retirement age over time if units are plotted

according to COD years. This situation arises because in the last three de-

cades, there are more units still in operation than have retired (Figure 6A).

Because the machine-learning model learns only from retired and not still

operating units, it would conclude from this trend that older units with an earlier

COD year are more likely to retire at a young age (Figure 6B).

Sample construction: training set

In the second step, we built a sample of all CFPP units retired worldwide be-

tween 2010 and 2020 using data from Global Energy Monitor.4 This contains

1,697 CFPPs units retired in 34 countries. This sample provides our ‘‘training

set’’ (see Table S2 and Figure S2 for a statistical description).

mailto:achmed.shahram.edianto.p1@alumni.tohoku.ac.jp
mailto:achmed.shahram.edianto.p1@alumni.tohoku.ac.jp


Table 2. Illustration of reason for excluding plant age as a variable input to the retirement forecasting model

Training set Model application set

Country Unit

Retirement

age, years Country Unit COD

Retirement

age, years

Australia Kwinana-A power station Unit 1 40 Australia Bayswater power station Unit 1 1985 ?

Australia Swanbank-B power station Unit 2 40 Australia Bluewaters power station Unit 1 2009 ?

Australia Collinsville power station Unit 5 38 Australia Collie power station Unit 1 1999 ?

Data are from Global Energy Monitor.4
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We selected the period 2010–2020 because of the highest number of retire-

ments (over 1,800 units) compared with preceding decadal periods (for

example, the period 2000–2009 saw the retirement of only around 600 units)

(Table S2; Figure S2).Moreover, this period hasmore data available for the fac-

tors influencing retirement.

Whenbuilding thesample,weexcludedcountries forwhichdatawere unavai-

lable. We also treated units retired before 10 years as outliers, excluding these

from the analysis. These outliers totaled 53 or 3% of all units, thus comprising

an insignificant portion of our sample. We made this decision after observing

that theconcernedunits are almost all concentrated inChina, and that particular

circumstances were frequently behind these extreme cases of early retirement

(Table S3). For instance, many plants were prematurely shut down due to gov-

ernment orders after legal violations, financial difficulties in the power utility, or

as part of short-term demonstration projects.

We divided the sample into three groups: China, the United States, and the

ROW. This strategy deals with the influence of China and the United States,

which collectively represent 1,100 of 1,697 units. We thus prevent the unique

factors influencing historical retirements in China and the United States (such

factors would include the strong influence of government in China in closing

CFFPs and the shift from coal to gas in the USA enabled by shale gas produc-

tion) from affecting other countries’ results, increasing the model’s forecasting

accuracy. When making this decision, we compared the accuracy of results

between a single sample for the entire world and the aforementioned three

regional groups. Although both models successfully recreated the historical

retirement trend with high accuracy, the retirement age has a slightly different

result (see Table S4). Concretely, a single model resulted in unclear correla-

tions for the most influential factors based on the SHAP analysis. Therefore,

we decided to use three separate models for China, the United States, and

the ROW.

Sample construction: Model application set

In the third step, we again leveraged data from the Global Energy Monitor to

build a sample of 6,541 operating and under-construction units (the sample ex-

cludes units classified byGlobal EnergyMonitor as permitted, pre-permitted or

announced) in 66 countries (henceforth the ‘‘model application’’ set). We then

apply the model developed with the previous training set to forecast the future

retirement age of each CFPP unit in this dataset (see Forecasting retirement

ages using supervised machine learning).

The discrepancy between the countries in the training model and model

application set is unavoidable. The countries in the training model cover those

that have already experienced CFPP retirement and for which data are avail-

able. Conversely, the model application set is composed of all countries

with operating or planned CFPP units and with data available.

In addition, we excluded units with a planned commercial operation beyond

2025 due to a high risk of cancellation. Indeed, the year 2021 alone saw the

cancellation of 2,688 CFPP units previously under planning.4 Furthermore,

cancellations are increasing as governments and societal investors increas-

ingly balk at the high carbon emissions of coal power and elevated costs rela-

tive to renewables, which are rapidly plummeting.

Data sources for influencing factors

In the fourth step, to measure the influence of factors described by the litera-

ture as contributing to plant retirements, we leveraged various data sources

listed in Table 1 for each country in our sample. The plant-level factor (F-1)

comes from Global Energy Monitor,4 whereas country-level data were

retrieved from several sources, such as the World Bank (2021)36 and BP Sta-
tistical Review.28 When integrating country-level data, we ensured that values

correspond with each unit’s retirement year. For example, unit A that retired in

2019 would be paired with GDP data in 2019. However, our forecasting anal-

ysis (the model application set) uses only data from 2020, the latest year with

data available.

Forecasting retirement ages using supervised machine learning

In the fifth step, we employed supervised machine learning to identify the fac-

tors influencing historical retirement ages as described in the following

subsections.

Random forest regression

We adopted Random Forest Regression for the regression forecasting using

machine learning because of its quick training time and acceptable error bal-

ance.60 This method’s regressive capacity has been widely demonstrated in

various disciplines, including biological medicine,61 environmental moni-

toring,62 and astronomy.63 Although there are cases where the ‘‘neuron’’

concept in neural network methods is superior to the ‘‘tree’’ concept, the

Random Forest Regression offers several advantages that better suited our

data. These especially offer greater ease and speed when determining the

model structure and during its application and tuning.64 For energy-related

forecasting, Alova et al.65 used a similar supervised machine-learning tech-

nique. However, their binary output prevented us from directly appropriating

the same model in our study, which forecasts retirement ages.

We ran the entire analysis with Python through Google Colaboratory. The

entire script is accessible from Zenodo.59

Hyperparameter tuning and accuracy testing

When developing the Random Forest Regression, we used forecasting accu-

racy as themain parameter to determine the sufficiency of the model. The best

settings for our model were identified by running hyperparameter tuning,

where we tuned the model’s hyperparameters to increase forecasting perfor-

mance and to avoid overfitting. This removed patterns deemed insignificant for

forecasting or that do not generalize beyond the training sample for core and

learning control parameters. Results for hyperparameter tuning and accuracy

testing appear in Tables S4–S6. Here we show that accuracy results for China,

the United States, and the ROW are 82.13%, 78.79%, and 78.53%, respec-

tively. Because reasonable forecasts can be made with a value of 50%, our

three models indicate the ability to make reliable forecasts.66

Feature selection (SHAP value)

To identify each factor’s contribution to a unit’s retirement, we used SHAP

values, informed by prior literature that recognizes the consistency and accu-

racy of these values for model forecasting.67 SHAP values, given in log odds,

reflect a factor’s influence on retirement age forecasting. A positive SHAP

value indicates that a factor extends a unit’s lifetime operation, whereas a

negative value shortens it.

Lifetime operational CO2 emissions

In the sixth step, we calculate the lifetime CO2 emissions expected to occur

from each unit in light of forecasted retirement ages. We set the base year

to 2025, the last planned year of commercial operation for units still under con-

struction. Lifetime operational emissions are compared using two scenarios:

first, remaining lifetime emissions based on the average lifetime operation of

units retired between 2010 and 20204; and second, remaining lifetime emis-

sions based on our retirement forecasting results. Emissions are calculated as
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Figure 6. The false effect on retirement ages

if including COD values in the historical anal-

ysis

These figures show the attributes of all units retired

or operating (A: n = 8,925; B: n = 2,437) between

1927 and 2021 of its operating year (COD).
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Lifetime operation CO2 emissions = remaining lifetime of unit3 annual CO2;

where remaining lifetime is COD � retirement age, and annual CO2 is annual

emissions of unit (sourced from Global Energy Monitor4).
Coal lock-in index

We estimate the degree of lock-in each country is expected to face to coal po-

wer based on three components known to enable or hamper efforts to reduce

dependence on coal: (1) the age of a country’s CFPP fleet, (2) the share of coal

in the power mix, and (3) total installed capacity. Shown in the second formula,

our calculation of age captures the remaining operational lifetime of a unit (as

of 2025) weighted by the capacity of a country’s CFFP fleet. We extend on the

carbon lock-in index proposed by Neofytou et al.56 by integrating the fore-

casted retirement age into the model in place of a flat 40 years. In line with

these authors, the index focuses on the consumption side of coal. We use

the root square to reduce the range of the index. The calculation is as follows:

Coal lockin =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
age � coal share

p
;

where coal share represents share of coal (%) in the electricity mix in 2025 (to

obtain the share of coal power in 2025, since the latest year for which available

is2020,we followAlovaetal.65byextrapolatingdata from2015to20for theperiod

2021–2025 using the 3-year moving average. However, this forecasting method

couldnotwork for acountrywitha0%shareofcoal power in2020.Thus, for coun-

tries with no coal power in 2020butwith units under construction and that are ex-

pected to come online during 2021–2025, we assume a 1% coal share in 2025.

These countries are Honduras, Senegal, Tajikistan, and United Arab Emirates (4

out of 66 countries) (base year), and age represents CFPP fleet age weighted

by capacity, based on Neofytou et al.56 as below, and set to base year 2025:
Age =

Pn

i = 1

Capi½ðcommercial operation date+

Pn

i =
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where cap represents capacity of all CFPP units (sourced from Global Energy

Monitor), COD represents year plant operation commenced (sourced fromGlobal

Energy Monitor), retirement age forecasting represents result from the machine-

learning analysis, and the base year is 2025.
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