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Abstract 
The structure of microbiomes is often classified into discrete or semi-discrete types potentially differing in community-scale functional 
profiles. Elucidating the mechanisms that generate such “alternative states” of microbiome compositions has been one of the 
major challenges in ecology and microbiology. In a time-series analysis of experimental microbiomes, we here show that both 
deterministic and stochastic ecological processes drive divergence of alternative microbiome states. We introduced species-rich soil-
derived microbiomes into eight types of culture media with 48 replicates, monitoring shifts in community compositions at six time 
points (8 media × 48 replicates × 6 time points = 2304 community samples). We then confirmed that microbial community structure 
diverged into a few state types in each of the eight medium conditions as predicted in the presence of both deterministic and stochastic 
community processes. In other words, microbiome structure was differentiated into a small number of reproducible compositions under 
the same environment. This fact indicates not only the presence of selective forces leading to specific equilibria of community-scale 
resource use but also the influence of demographic drift (fluctuations) on the microbiome assembly. A reference-genome-based analysis 
further suggested that the observed alternative states differed in ecosystem-level functions. These findings will help us examine how 
microbiome structure and functions can be controlled by changing the “stability landscapes” of ecological community compositions. 

Keywords: alternative stable states, biodiversity, community assembly, dysbiosis, enterotypes, microbiome dynamics, multiple stability, 
transient dynamics 

Introduction 
Understanding the mechanisms by which microbial community 
structure is organized is a major challenge in ecology and microbi-
ology [1-4]. In a general framework of community dynamics, selec-
tion, diversification (speciation), dispersal, and drift have been 
considered as fundamental components of community processes 
[5, 6] (Fig. 1). Among the four component processes [5, 6], selection 
and drift can be regarded, respectively, as purely deterministic and 
stochastic components [7, 8], while dispersal and diversification 
are considered to include both deterministic and stochastic com-
ponents [8]. Elucidating how those deterministic and stochastic 
processes collectively organize ecological community assembly is 
the key to predict and manage microbiome dynamics in diverse 
fields of applications such as human-gut microbiome therapies 
[9-13] and agroecosystem microbiome control [14-16]. 

In empirical studies of ecological communities, consequences 
of deterministic and stochastic ecological processes are observ-
able as “alternative states” of community structure [3, 17-19]. 
Pioneering studies on human-gut microbiomes have shown that 
microbiome structure can be classified into semi-discrete (par-
tially continuous) clusters despite potential numerous combi-
nations of species or taxonomic compositions [20-23]. Although 

clear classification of microbiome compositions is impossible 
[23-26], such observations of community structure highlight the 
presence of strong deterministic processes organizing community 
structure as represented by the “stability landscape” concept of 
species assembly [27]. Meanwhile, the presence of alternative 
community compositions suggests that stochastic processes play 
some roles in the community differentiation. In other words, 
because no variation in community structure is expected under 
the strict assumption of deterministic processes, both determin-
istic and stochastic processes are necessary for the existence 
of categorizable community compositions [18, 28] (Fig. 1). Thus, 
empirical studies on community structure give essential insights 
into ecological community assembly. Nonetheless, it is basically 
difficult to develop detailed discussion on ecological commu-
nity processes based on existing microbiome datasets because 
potential influence of environmental conditions on community 
structural patterns cannot be fully understood in observational 
studies. 

In this respect, experimental studies with fully controlled 
environmental conditions are expected to provide ideal oppor-
tunities for examining ecological community processes in 
light of theories on alternative states [6, 8, 19]. By making a 
number of experimental microbial communities with defined
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Figure 1. Conceptual framework of community assembly; (A) stability landscape of community structure; community assembly is often discussed 
based on the schema of “stability landscapes,” which represent the stability/instability of community states (i.e. species or taxonomic compositions); 
alternative states are defined as bottom positions within basins on the stability landscapes; (B) deterministic and stochastic processes in community 
assembly; our experiment was designed to test the contributions of deterministic and stochastic ecological processes; specifically, the results of our  
multireplicate microbiome experiments are expected to depend on the presence/absence of selection and drift; without drift (demographic 
fluctuations), all replicate communities will converge to a single community state (bottom panels); with drift, differentiation of community states can 
occur depending on the structure of stability landscapes; in particular, if there are two or more basins, differentiation into a small number of 
alternative community states will be observed as a consequence of both selection and drift (top right). 

environmental conditions, we can perform strict tests of the 
emergence of alternative community states. In other words, 
the presence of multiple reproducible states in the same 
experimental treatment is interpreted in the framework of 
selection, diversification, dispersal, and drift. Despite the 
potential contributions of the experimental approaches to our 
fundamental knowledge of community assembly, few attempts 
(but see Estrela et al. [ 29]) have been made to explore alternative 
states of microbiomes with tens of replications. 

In this study, we examined the presence of alternative 
community states by performing microbiome experiments under 
eight nutritional (medium) conditions with 48 replicates. We 
constructed experimental microbiomes using a forest-soil-
derived community of prokaryotes as a source microbiome 
and then kept the 384 microbial communities (8 treatments × 
48 replicates) under a fully controlled temperature condition. 
The experimental system was designed to examine the roles of 
selection and drift in microbial community assembly. With the aid 
of an automated pipetting system equipped in a clean laboratory 
environment, we monitored changes in microbiome community 
compositions every 2 days for 12 days based on the DNA 
metabarcoding of 16S rRNA gene sequences. The analysis of more 
than 2000 community samples then allowed us to understand 
how deterministic and stochastic processes could generate 
alternative states of ecological community structure. By exploring 
statistical ways for quantitatively evaluating the distributions 
of community compositions within state space, we extended 
discussions on alternative microbiome states in terms of the 
interplay of deterministic and stochastic ecological processes. 

Materials and Methods 
Terminology 
In analyzing the data obtained in this study, we need to use 
consistent terminology to minimize the risk of confusion and 
misunderstanding. It is necessary to confirm the definitions of 
the ecological processes whose meaning can change depend-
ing on contexts. Specifically, we use the terms “selection,” 
“drift,” “dispersal,” and “diversification (speciation)” in ecological 

processes as conceptualized by Vellend [5]. Among the terms, 
selection represents expected changes in local community 
compositions resulting from differences in mean fitness between 
species, constituting purely deterministic processes [7]. Drift 
refers to demographic fluctuations that occur regardless of 
among-species difference in mean fitness, forming purely 
stochastic processes [7]. On the other hand, dispersal itself is not 
a term representing stochasticity or determinism, but it merely 
describes processes by which organismal individuals or their 
propagules move between local communities. Diversification is 
defined as evolutionary differentiation of genetic variants and 
hence it represents both stochastic (e.g. nucleotide mutation) and 
deterministic (i.e. natural selection) phenomena [3, 8]. 

Another important term we need to make clear before describ-
ing our microbiome experiment is “alternative states.” In ecology, 
the term “alternative stable states” is often used to discuss the 
processes by which divergence of community compositions is 
caused [17, 19, 30, 31]. Meanwhile, it is generally difficult to know 
whether the observed community compositions are at stable 
states (i.e. equilibria) or they are in transient processes toward 
stable states [32, 33]. Stability of communities has been a central 
topic in the history of community ecology [34, 35]. In this study, 
however, we investigate the divergence of community composi-
tions irrespective of the concept of community stability. In other 
words, our community dataset can include information of both 
transient and stable states. 

Culture experiments of microbiomes 
In the microbiome experiment, the source microbiome derived 
from the soil of the A layer (0–10 cm in depth) in the research 
forest of the Center for Ecological Research, Kyoto University, 
Shiga, Japan (34.972◦N; 135.958◦E). After sampling, the soil was 
sieved with a 4-mm stainless mesh and then 5 g of the sieved 
soil was mixed in 100 ml phosphate-buffered saline with cyclo-
heximide (137 mM NaCl, 8.1 mM Na2HPO4, 2.68 mM KCl, 1.47 mM 
KH2PO4, and 200 μg/ml cycloheximide). In this process, we added 
cycloheximide in order to exclude eukaryotes from the source 
microbiome. The source prokaryote microbiome was cultured at 
22◦C for  48 h.
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Figure 2. Experimental design; laboratory culture system; a source microbiome deriving from forest soil was precultured with cycloheximide under 
room temperature for 2 days in order to remove eukaryotes; the microbiome inoculum was then introduced into eight types of media (Table S1 ) with  
48 replicates; a fraction of the culture fluid was sampled every 2 days, and equivalent volume of fresh medium was added to the continual culture 
system throughout the 12-day experiment (8 media × 48 replicates × 6 time points = 2304 community samples). 

We introduced the inoculum microbiome into eight types of 
media with different constitutions of carbon sources with 48 
replicate communities per medium type (in total, 8 media × 48 
replicates = 384 experimental communities; Fig. 2). To make the 
compositions of the media as simple as possible, we used M9 
medium with minimal inorganic additives and combinations of 
three types of the carbon resources, specifically, glucose, leucine, 
and citrate as detailed in Table S1. We selected the medium 
systems with different combinations of glucose, leucine, and cit-
rate because all the three carbohydrates have six carbons in 
their molecules, facilitating the adjustments of molarity in the 
experimental treatments. In the microbiome culture experiment, 
each of the eight media was designed based on the concentra-
tions or presence/absence of the three carbon sources: i.e. low 
or high concentration of glucose (G/HG), with or without leucine 
(−/L), and with or without citrate (−/C). Hereafter, these medium 
types were designated as Medium-G (low glucose, without leucine, 
without citrate), GL (low glucose, with leucine, without citrate), 
GC (low glucose, without leucine, with citrate), GLC (low glucose, 
with leucine, with citrate), HG (high glucose, without leucine, 
without citrate), HGL (high glucose, with leucine, without citrate), 
HGC (high glucose, without leucine, with citrate), and HGLC (high 
glucose, with leucine, with citrate), respectively (Table S1). 

In each well of a 240-μl deep-well plate, 10 μl of the diluted 
source microbiome solution and 190 μl of medium were installed. 
Based on the quantitative amplicon sequencing detailed below, 
the source microbiome solution was estimated to contain 
3.12 × 106 DNA copies of the 16S rRNA gene (SD = 8.37 × 105) 
(i.e. the density of the 16S rRNA gene in the diluted source 
inoculum was 3.12 × 105 copies/μl; Fig. S1). Note that a previous 
research estimated that a single cell of Enterobacteriaceae bacteria 
has an average of 7.3 DNA copies of 16S rRNA genes (SD = 0.9; 
calculated with rrnDB; [36]), although variation in 16S rRNA 
gene copy numbers among prokaryote taxa has been known 
[36]. The deep-well plate was kept shaken at 200 rpm using a 
plate thermo-shaker BSR-MB100-4A (Bio Medical Sciences Co. 
Ltd, Tokyo) at 30◦C for 2 days. After 2 days of incubation, 190 μl 
out of the 200-μl culture medium was sampled from each of 
the 48 wells after mixing (pipetting) every 2 days for 12 days. 
All pipetting manipulations were performed with high precision 

using an automatic pipetting machine (EDR-384SR; BIOTEC Co. 
Ltd, Tokyo) placed in a laminar flow cabinet. In each sampling 
event, 190 μl of fresh medium was added to each well so that the 
total culture volume was kept constant. In total, 2304 samples 
(384 communities/day × 6 time points) were collected. 

Note that our study was not designed to examine historical 
contingency (priority effects) because the microbial species were 
simultaneously introduced into the experimental media. Disper-
sal between replicate communities was prohibited, and diversifi-
cation leading to speciation events was unlikely to occur in the 
12-day experiment. Thus, our aim in this study was to examine 
the contributions of selection and drift to microbiome dynamics 
(Fig. 1). 

DNA extraction 
To extract DNA from each culture sample, 5 μl of the  collected  
aliquot was mixed with 1 μl lysozyme solution (50 mg/ml 
lysozyme [Sigma], 20 mM Tris–HCl [pH 8.0], 2 mM EDTA), and 
the mixed solution was incubated at 37◦C for 2 h. After adding 
proteinase K solution (1/30 [v/v] Proteinase K [Takara], 20 mM 
Tris–HCl [pH 8.0], 2 mM ethylenediaminetetraacetic acid (EDTA)), 
the aliquot was incubated at 55◦C for 3 h and 95◦C for 10 min. The 
solution was then vortexed for 10 min to increase DNA yield. 

We also extracted DNA from the inoculum aliquot to reveal 
community structure of the source microbiome. Because the 
source inoculum was expected to include high concentrations 
of soil-derived compounds, which can inhibit polymerase chain 
reactions (PCRs), a commercial DNA extraction kit optimized for 
soil samples was used. Specifically, after 50 μl of the inoculum 
sample was incubated with 350 μl SDS buffer with proteinase 
K (1:30 [v/v] Proteinase K [Takara], 0.5% sodium dodecyl sul-
fate (SDS), 2 mM Tris–HCl [pH 8.0], 2 mM EDTA) based on the 
temperature profile of 55◦C for 180 min and 95◦C for 10 min.  
The aliquot (400 μl) was then subjected to DNA extraction with 
DNeasy PowerSoil Kit (Qiagen). 

PCR and DNA sequencing 
For the samples of the experimental microbiomes, prokaryote 
16S rRNA V4 region was PCR-amplified with the forward primer 
515f fused with 3–6-mer Ns for improved Illumina sequencing
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quality [37] and the forward Illumina sequencing primer (5′-TCG 
TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG-[3–6-mer Ns]– 
[515f]-3′) and the reverse primer 806rB fused with 3–6-mer Ns 
and the reverse sequencing primer (5′-GTC TCG TGG GCT CGG 
AGA TGT GTA TAA GAG ACA G [3–6-mer Ns]–[806rB]-3′) (0.2 μM 
each). The buffer and polymerase system of KOD One (Toyobo) 
were used with the temperature profile of 35 cycles at 98◦C for  
10 s, 55◦C for  5 s,  and 68◦C for 1 s. To prevent generation of 
chimeric sequences, the ramp rate through the thermal cycles 
was set to 1◦C/s [38]. Illumina sequencing adaptors were then 
added to respective samples in the supplemental PCR using the 
forward fusion primers consisting of the P5 Illumina adaptor, 8-
mer indexes for sample identification [39], and a partial sequence 
of the sequencing primer (5′-AAT GAT ACG GCG ACC ACC GAG 
ATC TAC AC–[8-mer index]–TCG TCG GCA GCG TC-3′) and the  
reverse fusion primers consisting of the P7 adaptor, 8-mer indexes, 
and a partial sequence of the sequencing primer (5′-CAA GCA GAA 
GAC GGC ATA CGA GAT–[8-mer index]–GTC TCG TGG GCT CGG-
3′). KOD One was used with a temperature profile of 8 cycles at 
98◦C for 10 s, 55◦C for  5 s,  and  68◦C for 5 s (ramp rate = 1◦C/s). The 
PCR amplicons of the samples were then pooled after a purifi-
cation process with the AMPureXP Kit (Beckman Coulter). Primer 
dimers, which were shorter than 200 bp, were removed from the 
pooled library by supplemental purification with AMPureXP: the 
ratio of AMPureXP reagent to the pooled library was set to 1 (v/v) in 
this process. This library was further purified with E-gel SizeSelect 
2 (Invitrogen), and then ca. 440-bp DNA fragments were selectively 
obtained. The sequencing libraries were processed in an Illumina 
Miseq sequencer (271 forward [R1] and 31 reverse [R4] cycles; 20% 
PhiX spike-in). 

For the source microbiome sample, the prokaryote 16S rRNA V4 
region was amplified as well. To estimate concentrations of 16S 
rRNA genes included in the inoculum, a quantitative amplicon 
sequencing platform was applied by introducing five “standard 
DNA” fragments with controlled concentrations to the PCR master 
mix solution of the first PCR process as detailed elsewhere [40, 41]. 
The standard DNAs were used for the in silico calibration of 16S 
rRNA gene concentrations in the target sample after sequencing 
as detailed in the previous study [40-42]. 

Bioinformatics 
In total, 25 284 304 sequencing reads were obtained with the 
Illumina sequencing. The raw sequencing data obtained in the 
Illumina sequencing were converted into FASTQ files using the 
program bcl2fastq 1.8.4 distributed by Illumina. The output 
FASTQ files were then demultiplexed with the program Claident 
v0.2. 2018.05.29. The sequencing reads were subsequently pro-
cessed with the program DADA2 [43] v.1.18.0 of R 3.6.3 to remove 
low-quality data. In this process, the filterAndTrim function 
of DADA2 was used with the following criteria: minLen = 200, 
minQ = 10, PercLQ = 0.1, trancWindow = 5, maxEE = 3, truncR = 240, 
and avgqual = 15. Potentially chimeric sequences were removed 
by the removeBimeraDenovo function of DADA2. The molecular 
identification of the obtained amplicon sequence variants (ASVs) 
was performed based on the naive Bayesian classifier method 
[44] with the SILVA v.138.1 database [45]. Based on the in silico 
calibration of the quantitative amplicon sequencing data [40, 
41], the number of DNA copies in 10 μl of source microbiome  
(inoculum) was estimated to be 3.12 × 106 copies as mentioned 
above (Fig. S1). 

Community-level diversity 
The rarefaction curves representing relationship between the 
number of sequencing reads and the number of ASVs were drawn 

using the vegan 2.6.4 package [46] of R. In the sequencing of 
experimental culture samples, the diversity of microbial ASVs 
reached plateaus along the axis of the number of sequencing 
reads (Fig. S2). Given the rarefaction curves, the dataset was 
rarefied to 5000 reads per sample with the rrarefy function of the R 
vegan package. Of the 2304 samples (8 treatments × 48 replicates 
× 6 time points), 2250 samples with >5000 reads were used in the 
following pipeline. After screening for the replicate communities 
for which sequencing data were available for all the six time 
points, 2094 samples were subjected to the following statistical 
analyses. In total, 718 prokaryote ASVs belonging to 19 phyla, 32 
classes, 74 orders, 89 families, and 115 genera were detected. 

For each sample, two types of α-diversity indices, ASV richness 
and Shannon H′, were calculated. We then compared α-diversity 
among each medium using Student’s t-test corrected by false 
discovery rate (FDR) by Benjamini–Hochberg method (Table S2). 

Overview of the community structure 
To visualize the diversity of the prokaryote community struc-
ture, an analysis of nonmetric multidimensional scaling (NMDS) 
was performed based on the Bray–Curtis metric of β-diversity. 
Likewise, to examine the dependence of community structure 
on medium conditions, a series of permutational multivariate 
analysis of variance (PERMANOVA) [47] was performed with 50 000 
permutations. In each PERMANOVA model, glucose concentration 
(high or low; df = 1), the presence/absence of leucine (df = 1), or the 
presence/absence of citrate (df = 1) was included as the explana-
tory variable. An additional model including all the medium 
conditions and interactions between them (df = 7) was examined 
as well. The coefficients of determination (R2), which indicated 
the proportion to which given explanatory variables explained 
variation in dependent variables (community structure), were 
shown for each of the above PERMANOVA models (“glucose con-
centration,” “leucine,” “citrate,” or “all” model). Each PERMANOVA 
model was supplemented by permutational analysis of dispersion 
(PERMDISP; [48]) for potential effects of the medium condition on 
dispersion in community structure. The NMDS, PERMANOVA, and 
PERMDISP were performed for each dataset of the ASV-, genus-, 
and family-level compositions of prokaryote communities using 
the vegan 2.6.4 package [46] of R.  

Observed community structural differentiation 
versus null-model expectation 
To examine the differentiation of community compositions 
among replicate samples, the Bray–Curtis metric of β-diversity 
was calculated for respective pairs of samples collected on the 
same day in each of the same treatments (medium conditions). 
Note that the Bray–Curtis metric of β-diversity could range from 
0 (identical community structure) to 1 (no overlap of microbes). A 
histogram of the community structural difference was shown for 
each day in each experimental treatment. If a small number of 
alternative states of community structure exist under a medium 
condition, there can be some peaks of community structural 
difference within a histogram. 

To evaluate whether the obtained histograms of community 
dissimilarity (β-diversity) represented unimodal distributions, we 
performed an analysis comparing observed histograms to those 
expected under purely stochastic models. We obtained average 
community structure for each time point in each medium con-
dition for each of the ASV-, genus-, and family-level datasets. 
Stochasticity in initial community compositions was simulated 
by randomly sampling microbes from the average community 
structure based on multinomial distributions: the size of sampling 
was set to 5000 (i.e. the number of sequencing reads per sample in
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our empirical data) in each of the 48 simulated replicate commu-
nities. The subsequent stochastic fluctuations of the community 
structure were then introduced based on random-walk simula-
tions. Each run of the random-walk simulations was performed 
through the following three steps. First, the Bray–Curtis metric of 
β-diversity was calculated for respective pairs of the simulated 
communities, and the median of β-diversity values was obtained 
(Step 1). Second, if this median was lower than the median of 
the empirical data, then one of the 5000 entries (ASVs, genera, 
or families) in each of the 48 simulated replicate communities 
was randomly selected and this entry was duplicated (Step 2). 
Third, one of the 5001 entries was randomly selected and deleted 
(Step 3). If the median of β-diversity values exceeded that of the 
empirical data, this random-walk process was completed. Other-
wise, the random-walk simulation was repeated from the Step 1. 
Throughout the null-model analyses, the simulated distributions 
of community dissimilarity with the same degree of variance as 
the empirical data were obtained. 

We then compared the histograms of the simulated among-
replicate dissimilarity with observed histograms. If all the micro-
biome compositions within the state space are equally possible 
(i.e. lack of deterministic processes) and only stochastic events 
(initial stochasticity and subsequent random-walk dynamics) 
operate, unimodal distributions would be observed in the empiri-
cal histograms as in the simulated histograms. Alternatively, if the 
presence of both deterministic and stochastic processes results 
in the divergence of community states, multimodal distributions 
would be present in the empirical histograms of community 
dissimilarity among replicate samples. We quantified the 
deviation of the observed community dissimilarity distributions 
from the simulated ones based on the Kullback–Leibler metric of 
divergence as follows: 

DKL(P | |Q) =
∑

x 
P(x) log

(
P(x) 
Q(x)

)

where x denotes the Bray–Curtis β-diversity between replicate 
samples, P(x) was the observed distributions of Bray–Curtis β-
diversity (i.e. empirical data), and Q(x) was the simulated dis-
tributions of Bray–Curtis β-diversity. The Kullback–Leibler diver-
gences were calculated by using the philentropy 0.7.0 package [ 49] 
of R. The larger the Kullback–Leibler divergence is, the more it 
expresses that the two distributions are different. The analysis 
was performed for each day in each experimental treatment 
(medium condition) for each of the ASV-, genus-, and family-level 
community compositional datasets. 

Likelihood ratio tests of dissimilarity 
distributions 
We statistically examined whether the observed histograms of 
community dissimilarity could be explained by unimodal or mul-
timodal distributions. In this analysis, we applied Gaussian mix-
ture modeling [50]. For a given number of normal distributions to 
be combined (number of components; G), the variance, mean, and 
relative weights to the other components of normal distributions 
are estimated. Let each overlapping normal distribution be f (x, θ) 
(θ includes mean and variance), and let the distribution of n 
samples (here, a sample is each dissimilarity of the pairwise 
communities) be X = {x1, x2, . . . , xi, . . . , xn}, we can estimate the 
parameter that maximizes the following equation: 

L (�; x1, . . . , xn) = 
n∑

i=1 

log

(
G∑

k=1 

πkfk (xi; θk)

)

where � = {π1, . . .  , πG−1, θ1, . . . , θG} are the parameters of the 
mixture model and (π1, . . .  , πG−1) are the mixing weights. Note 
that πK is defined for each pair of mixture components: when 
G = 1, the total number of parameters is 2 (θ1 including mean 
and variance); when G = 2, the total number of parameters is 5 
(each of θ1and θ2includes mean and variance and mixing weight 
between components 1 and 2 is denoted by π1; π2 is defined as 
π2 = 1 − π1). 

In our analysis of the empirical data, statistical models 
assuming unimodal distributions of community dissimilarity and 
those assuming two or more modes were compared based on 
the Bayesian information criterion (BIC). The parameter fitting 
was performed by the mclust 6.0.0 package [50] of R,  and  the  
parameters was obtained via the expectation-maximization (EM) 
algorithm in this package. We then performed likelihood ratio 
tests by assuming that deviance (i.e. 2 × log-likelihood-ratio) 
followed chi-square distributions. The tests were performed for 
each of the ASV-, genus-, and family-level datasets. 

Silhouette method for inferring the number of 
clusters 
We investigated whether the communities belonging to each time 
point and medium can be divided into a number of clusters using 
k-medoids clustering based on the Bray–Curtis distance between 
communities and cluster number selection using the average 
silhouette coefficient [51]. In k-medoids clustering, a standard 
unsupervised learning approach, replicate microbiomes in each 
experimental treatment were divided into k clusters according to 
a given number of clusters k. For each k, the average silhouette 
coefficient were calculated, and the k that exhibits the highest 
average silhouette coefficient was selected as the optimal number 
of clusters. The average silhouette coefficient was calculated by 
using the cluster 2.1.4 package [52]. 

Potential differentiation in community-level 
functions 
To examine the potential differentiation of ecosystem functions 
among the replicate communities, we inferred the community-
level functional profiles based on the phylogenetic estimation 
of gene repertoires with PICRUSt2 [53]. The gene-repertoire data 
were then subjected to NMDS, PERMANOVA, and PERMDISP based 
on the Bray–Curtis β-diversity. In total, the relative functional 
compositions of 392 metabolic pathways/processes were exam-
ined as input data. Based on the inferred profiles of metabolic 
pathways/processes, histograms of the Bray–Curtis β-diversity 
among replicate samples were drawn at respective time points 
within respective treatments. 

The metabolic pathway/process information was also used 
to compare potential functional properties among the clusters 
of microbial compositions. For each of the ASV-, genus-, and 
family-level data of community compositions, mean pathway 
abundances were calculated for each of the clusters inferred 
with the average silhouette coefficient. The metabolic pathways 
whose pathway abundances varied considerably among those 
community compositional clusters were explored based on the 
Shannon entropy metric: 30 metabolic pathways/processes with 
the lowest Shannon entropy scores were selected from the 392 
metabolic pathways/processes. 

Results 
Overview of the community structure 
In each of the experimental treatments (medium conditions), tax-
onomic richness and Shannon’s diversity index at the ASV, genus,
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and family levels decreased through time (Figs 3A, S3, and S4). The 
α-diversity indices varied depending also on medium conditions 
(Table S2). The addition of leucine or citrate, for example, sig-
nificantly increased α-diversity of the experimental microbiomes 
(FDR: q < 0.01) (Fig. 3A; see  Table S2). In all the experimental 
treatments, the decline of the number of ASVs reached plateaus 
until Day 8 (Fig. S4). 

At the genus level, the microbiomes were dominated by 
the four genera, Klebsiella, Raoultella, Pseudomonas, and  Cedecea, 
although there was substantial variation in the balance of 
these taxa among the medium conditions examined (Fig. 4). For 
example, in the media containing citrate (Medium-GC, GLC, HGC, 
and HGLC), the relative abundance of Citrobacter was higher than 
in other medium conditions. In the media containing leucine 
(Medium-GL, GLC, HGL, and  HGLC),  Cedecea were more abundant 
than in other medium conditions. Moreover, within each of the 
medium conditions, Serratia became dominant only in some 
replicate communities (Fig. 4). 

At the family level, the communities were characterized 
by Enterobacteriaceae, Pseudomonadaceae, and  Comamodaceae, 
with Enterobacteriaceae being particularly dominant (Fig. S6). 
Comamodaceae tended to appear at high proportions in the media 
with high concentration of glucose. The substantial among-
replicate variation in community compositions observed at the 
ASV- and genus-level analyses was also evident in the family-level 
analysis. Specifically, in the media containing leucine (medium-
GL, GLC, HGL, and HGLC), Yersiniaceae, which includs Serratia, 
dominated only in some replicate communities within each 
experimental treatment. 

At all-time points, differences in community composi-
tions were significantly explained by differences in medium 
(Figs 3B, S7–S8 and Table S3). The results also indicated that the 
overall variance explained by medium conditions decreased from 
Day 4 to 12 at the ASV level (Fig. 3B). Among the components 
of the medium conditions, concentrations of glucose had the 
largest contributions to community structure at the family 
level (Fig. S7). Meanwhile, the presence/absence of leucine had 
the highest impacts on the ASV- and genus-level community 
structure until Day 6 (Figs 3B and S7). The community structure 
within the NMDS plot distributed depending on both time 
points and medium conditions (Fig. 3C). The PERMDISP indicated 
that the concentration of glucose and the presence/absence of 
citrate greatly influenced dispersion of family-level community 
structure among samples (Fig. S8 and Table S4). In contrast, 
the presence/absence of leucine was the major determinant of 
community structural dispersion at the genus- and ASV-level 
(Fig. S8). 

Community structural differentiation 
In some medium conditions (experimental treatments), large 
community structural differences among replicate samples were 
observed. For example, in the Medium-GLC treatment, substantial 
differences in community compositions were observed among 
replicate samples at the ASV, genus, and family levels, and these 
differences seemingly increased until Day 10 (Figs 5, S9, and  S10). 
The community compositions seemed to be classified into some 
categories within the NMDS plot (Figs 5, S9, and  S10) due to the 
dominance of Serratia in some, but not all, replicate samples 
(Fig. 4). 

In fact, the histogram of community structural difference 
between samples (i.e. Bray–Curtis β-diversity between pairs of 
replicate samples) showed seemingly bimodal or multimodal 
distributions (Figs 6, S11, and  S12). Such bimodal or multimodal 

distributions of β-diversity were observed in all the eight medium 
conditions (Fig. 6), although among-replicate differentiation in 
community structure on the NMDS surface was conspicuous in 
some treatments (Medium-G, GL, GLC, HGL, HGC, and HGLC) but 
not in others (Medium-GC and HG) (Fig. 5). 

Within the deep-well plate used in the experiment, substan-
tially different community compositions were observed between 
adjacent replicate wells in each experimental treatment (Figs S13 
and S14). This fact suggests that potential fine-scale heterogene-
ity of temperature or humidity within the small culture plate 
does not fully explain the observed among-replicate divergence 
of community structure. 

Observed community structural differentiation 
versus null-model expectation 
The deviations of the observed distributions of community com-
positional dissimilarity from simulated distributions were then 
quantified based on the Kullback–Leibler divergence metric. The 
empirical data with clear multimodal distributions were high-
lighted by high Kullback–Leibler divergence (e.g. 1 ≤ Kullback– 
Leibler divergence; Figs 6, S11 and S12, and  S15). 

Likelihood ratio tests of dissimilarity 
distributions 
The BIC-based model selection in the Gaussian mixture modeling 
showed that the observed distributions of community composi-
tional dissimilarity (β-diversity) were better explained by models 
assuming two or more modes than those assuming unimodal 
distributions. The subsequent likelihood ratio tests further indi-
cated the presence of multiple peaks within the distributions of 
β-diversity among replicate samples (FDR < 10−9 for all of the 48 
media × day combinations; Table S5). 

Silhouette method for inferring the number of 
clusters 
On average, 2.56 (SD = 0.85), 2.56 (SD = 1.11), and 2.81 (SD = 1.20) 
clusters were identified for the community compositional data 
at the ASV, genus, and family levels, respectively (Figs S16–S18; 
Table S5). Replicate samples belonging to respective clusters are 
shown on the 2D surfaces of NMDS (Figs S16 and S17 and S18). 

Potential differentiation in community-level 
functions 
As observed in the above analyses on the community composi-
tions, functional profiles of the community samples significantly 
differed depending on the medium conditions (Fig. 7A and B). 
Moreover, among-replicate differentiation was evident in the 
functional profile dataset (Fig. 7C and D), although the extent of 
such differentiation varied among medium conditions (Figs S19 
and S20). 

An additional analysis further suggested that the clusters 
defined based on taxonomic compositions differed substan-
tially in the inferred functional profiles. The metabolic path-
ways/processes whose abundances showed the greatest variation 
among community compositional clusters involved teichoic acid 
(poly-glycerol) biosynthesis, vanillin/vanillate degradation, and 
bacteriochlorophyll-a biosynthesis (Fig. S21). 

Discussion 
Based on the experimental design with many replicates in 
each of the multiple treatments, we examined how microbial 
community assembly was driven by deterministic and stochastic
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Figure 3. Overview of the community structure; (A) α-diversity of the communities; in each experimental treatment (medium condition), Shannon’s 
diversity index for ASV-level community compositions is shown for each day; the results of Student’s t-test are shown in Table S2; (B) dependence of 
community structure on medium conditions; in each PERMANOVA model of ASV-level community compositions, glucose concentration (high or low; 
df = 1), the presence/absence of leucine (df = 1), or the presence/absence of citrate (df = 1) was included as the explanatory variable; an additional 
model including all the medium conditions and interactions between them (df = 7) was examined as well; the coefficients of determination (R2), which 
indicate the proportion to which given explanatory variables explain variation in dependent variables (community structure), are shown for each of 
the above PERMANOVA models (“glucose concentration,” “leucine,” “citrate,” or “all” model); (C) overview of the community structure; the ASV-level 
community compositions are shown along the axes of NMDS (stress = 0.157). 
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Figure 4. Variation in community structure among replicate samples; for each replicate community in each experimental treatment, changes in 
genus-level community compositions (relative abundance) are shown; the numbers shown at the top of the bar plots refer to time points (days); the 
replicate samples were ordered based on unweighted pair group method with arithmetic mean (UPGMA) analyses performed on Day 12 for respective 
experimental treatments; the order of replicate communities on successive days is the same as that on Day 12. 
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Figure 5. Time-series changes in community structure; for each replicate community in each experimental treatment, time-series changes in 
ASV-level community structure are shown with arrows on the NMDS surface defined in Fig. 3C. 
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Figure 6. Histograms of community structural differentiation; for each experimental treatment, difference in ASV-level community structure 
(Bray–Curtis β-diversity) between replicate communities is shown as a histogram for each day; the distributions simulated by assuming purely 
stochastic processes (stochasticity at colonization events and subsequent random-walk processes) and the distributions observed in the empirical 
data are shown; each panel is color coded according to the score of Kullback–Leibler divergence (KL divergence) between the simulated and observed 
distributions (Fig. S15); a higher KL divergence score represents greater difference between the simulated and observed distributions; see Figs S11 
and S12 for results based on the genus- and family-level community structure. 

processes. As reported in previous studies [ 29, 54, 55], the 
alpha diversity and community structure of the experimental 
microbiomes have changed drastically within the first few days 
(Figs 4 and S5 and S6), but the pace of the change has decreased 
dramatically late in the time series (Figs 5 and S9 and S10). 
We then observed community compositional variation both 
among and within experimental treatments (Figs 3–5). Although 
our experiment is based on a single source microbiome and 
hence the generality of the findings should be strictly examined 
in future studies expanding the experimental approach, the 
results provide an opportunity for discussing how deterministic 
and stochastic processes operate in microbiome assembly. 
Hereafter, we discuss the ecological processes potentially 
underlying the microbiome variation in the framework outlined 
in Fig. 1. 

In terms of deterministic ecological processes, the importance 
of selection has been discussed for decades in microbiology [7, 
8, 56-60]. Indeed, in our study, the community structure differed 
remarkably depending on the medium conditions (Fig. 3), indicat-
ing that selection [8, 59] operated in the community processes 
of the experimental microbiomes. For example, Citrobacter, which  
has the ability to metabolize citrate, occurred almost exclusively 
in the media containing citrate (Fig. 4). Moreover, the observed dis-
tributions of the community compositional dissimilarity among 
replicate samples deviated quantitatively and qualitative from 
what was expected under purely stochastic processes (Figs 6 and 
S11 and S12). Thus, selection can be regarded as a fundamental 
mechanism determining community structure. 

In addition to selection, drift was shown to organize the 
community structure of the experimental microbiomes. We found
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Figure 7. Functional profiles of the microbiome; (A) overview of functional compositions; based on a phylogenetic inference of metabolic pathway 
compositions (a reference-genome analysis of constituent bacteria based on PICRUSTs2), community samples are plotted on a NMDS surface 
(stress = 0.125); (B) dependence of community functional profiles on medium conditions; in each PERMANOVA model of metabolic pathway/process 
compositions, glucose concentration (high or low; df = 1), the presence/absence of leucine (df = 1), or the presence/absence of citrate (df = 1) was 
included as the explanatory variable; an additional model including all the medium conditions and interactions between them (df = 7) was examined 
as well; the coefficient of determination (R2) is shown for each day; (C) time-series changes in community functional profiles; the results on two 
experimental treatments (Medium-GLC and HGC) are shown; see Fig. S19 for full results; (D) histograms of community functional differentiation; the 
results on two experimental treatments (Medium-GLC and HGC) are shown; see Fig. S20 for full results. 

D
ow

nloaded from
 https://academ

ic.oup.com
/ism

ecom
m

un/article/4/1/ycae007/7585291 by Kyoto D
aigaku N

ogaku-bu Toshoshitsu user on 29 February 2024

https://academic.oup.com//article-lookup/doi/10.1093//ycae007#supplementary-data
https://academic.oup.com//article-lookup/doi/10.1093//ycae007#supplementary-data


12 | Hayashi et al.

that community compositions could diverge into a small number 
of reproducible alternative states even under the same environ-
mental (medium) conditions (Figs 3–6). This finding indicates 
that selection and drift could collectively generate alternative 
states of community structure in microbiome dynamics (Fig. 1). 
On a stability landscape of community structure, divergence 
into a small number of reproducible states never occur without 
selection (Fig. 1). In addition, stochastic processes like drift 
(demographic fluctuations) are necessary for such divergence 
because without stochasticity, identical consequences are always 
expected. Meanwhile, careful interpretation is required when 
we discuss the stochastic processes caused by drift. In our 
experiment, drift might influence the community assembly 
not exclusively at the (pre-)colonization stage (i.e. stochastic 
sampling effects in the pipetting of inoculum microbiomes) but 
also at the postcolonization stage (i.e. “random walk” fluctuation 
of community compositions). The relative contributions of 
precolonization and postcolonization stochastic events need to be 
examined in future studies. In our present experiment, 3.12 × 106 

DNA copies of the 16S rRNA gene were introduced into each 
replicate community at the precolonization stage, while 10 μl out  
of 200 μl of culture media was left for successive time points 
(i.e. 5% dilution rate in each transition between time points) 
at the postcolonization stage. Experiments comparing multiple 
source microbiome density and multiple post-colonization 
bottleneck levels will provide further crucial knowledge of how 
drift can drive community dynamics leading to alternative 
states. 

In our results, community structural differences, which were 
evident at the ASV or genus levels (Figs 3–6), were less conspic-
uous at the family level (Figs S6, S9, and  S11) partly due to the 
dominance of bacteria belonging to Enterobacteriaceae. Such  con-
vergence of community structure at higher taxonomic levels may 
stem from redundancy in functional compositions of microbial 
communities as has been reported in previous studies [9, 61, 62]. 
However, in some experimental treatments (e.g. Medium-GLC), 
substantial divergence of taxonomic compositions among repli-
cate communities was evident even at the family level (Fig S6). 
Thus, substantial functional differentiation could occur through 
the emergence of alternative states of microbiome structure. 

In fact, a reference-genome-based analysis suggested that 
divergence into alternative community structure could entail 
functional differentiation of microbial communities. The inferred 
community-level gene repertoires were differentiated into 
some clusters within each experimental treatment (Fig. 7C), 
resulting in bimodal or multimodal distributions of pairwise 
community dissimilarity (Fig. 7D). We further found that the 
clusters identified in the community compositional analyses 
differed substantially in their metabolic pathway/process profiles 
(Fig. S21). This observation is of particular interest because 
knowledge of the processes driving divergence into functionally 
different microbiome states is essential in diverse fields of applied 
sciences. In medicine, for example, the structure of human 
gut microbiomes varies considerably among host individuals, 
exhibiting complex associations with host human health [20, 
22]. Furthermore, recent studies have suggested that fish-
associated and plant-associated microbiomes can be classified 
into several community compositional clusters potentially 
differing in physiological impacts on host organisms [14, 63]. 
To extend the discussion on functional divergence of micro-
biomes, the genomic information of the microbes constituting 
microbiomes need to be enriched with shotgun metagenomic 
analyses [64-66]. 

From a detailed inspection of the experimental results, we 
found that shifts between alternative states could occur in micro-
bial community dynamics. Although differences in community 
structure were expanded from Day 2 to Day 10, transitions 
between alternative states seemed to occur within the NMDS 
plots in some experimental treatments (Medium-GL, GLC, and 
HGL; Fig. 5). This observation illuminates the ecological theory 
that transitions between alternative stable states are possible if 
demographic fluctuations of microbial populations within the 
communities are large enough to cross the “boundaries” splitting 
basins of stability landscapes [30, 31]. Alternatively, the observed 
dynamics may be interpreted as transient dynamics toward a 
large basin within a stability landscape [19, 33]. Although it is 
notoriously difficult to distinguish alternative transient states 
from alternative stable states based on current frameworks of 
empirical datasets, further feedback between theoretical and 
empirical investigations will promote our understanding of 
large shifts in community structure [42]. Besides, quantitative 
evaluation of the degree to which community compositions 
were distributed within state space (Figs S16–S18) will help  
us establish a comprehensive conceptual framework beyond 
dichotomy between discrete and continuous community states. 

The fact that patterns in the divergence into alternative states 
differed among environmental conditions give significant impli-
cations for the “controllability” of microbiomes. We found that the 
number and structure of alternative states differed depending on 
medium conditions (Figs 5 and S9 and S10). This result suggests 
that the shapes of underlying stability landscapes, which are 
formed by selection, can be changed by the addition of specific 
chemicals to the microbial ecosystems. Such changes in stability 
landscape structure have been intensively discussed in theoreti-
cal ecology [31] but explored in a few empirical studies [67, 68]. 
Thus, this study indicates that microbiome experiments under 
a series of environmental conditions provide ideal opportunities 
for investigating how microbiome structure can be managed by 
changing the structure of background stability landscapes based 
on the manipulation of environmental conditions. 

Although the experiment using field-collected source micro-
biomes allowed us to explore broad state space of possible com-
munity structure, experiments based on explicitly defined sets of 
microbial species will provide complementary insights. A more 
mechanism-based understanding may become possible by con-
ducting similar experiments on multispecies systems with known 
genomes and metabolic pathways. In this respect, experiments on 
synthetic communities (SynCom) [69-71] are expected to promote 
reductionistic understanding of microbial community processes 
[72, 73]. With the aid of genome-based metabolic modeling [74-76], 
for example, potential consequences of competitive and facilita-
tive interactions between microbial species may be inferred at the 
community level [66]. For further understanding of microbiome 
assembly, it is also important to apply empirical frameworks for 
describing complex time-series processes of ecological commu-
nities [42, 77, 78] in light of shifts between alternative states 
[42]. Exploring potential contributions of phages to stochastic 
dynamics of bacterial communities is another intriguing direc-
tion of research. Interdisciplinary studies based on microbiology, 
genomics, and theoretical ecology will reorganize our knowledge 
of the stability and dynamics of microbiomes. 
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