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Abstract. Medical imaging is not only essential to the diagnostic process, but 
also plays a very important role in determining the course and effectiveness of 
treatment. In the last few decades, tremendous technological innovations have 
been made in the field of non-invasive medical imaging. Among them, imaging 
methods represented by computed tomography and magnetic resonance 
imaging are indispensable in current clinical medicine because they can acquire 
biological structures and functions in three to four dimensions with high spatial 
resolution non-invasively. However, the acquisition of data with high spatial 
resolution generally leads to a decrease in the signal-to-noise ratio. A longer 
acquisition time is required to improve the signal-to-noise ratio. However, for 
non-invasive medical image acquisition in clinical settings, a long acquisition 
time is impractical and results in a decrease in signal-to-noise ratio, especially 
in high spatial resolution images. It is thus essential to develop effective 
denoising techniques as post-processing and also to adapt the optimal denoising 
method in accordance with the user’s objectives. 
 This review provides a brief overview of denoising techniques as post-
processing for medical imaging, and introduces our work on fast and accurate 
denoising methods using graphics processing units and denoising with deep 
learning. 
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1 Introduction 

Medical imaging is the non-invasive imaging of the internal structures and functions 
of living organisms for the purposes of screening and diagnosing various diseases and 
medical research, among others. Since the discovery of X-rays by Röntgen in 1895, 
medical imaging has revolutionized medicine, and medical imaging technology has 
made tremendous progress in recent years. Innovations and new discoveries in 
ultrasound, nuclear medicine, computed tomography (CT), and magnetic resonance 
imaging (MRI) have made medical imaging an indispensable tool of both clinical and 
basic medicine. Medical imaging is one of the mathematical inverse problems in 
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terms of imaging the characteristics (cause) of biological tissue from the observed 
signals (result). 
 Recent technological advances have made it possible to acquire medical images 
faster, with higher image quality, and less invasively. However, there is a trade-off 
between faster and less invasive imaging and higher image quality. For example, 
high-speed imaging leads to a lower image signal-to-noise ratio (SNR), and obtaining 
high-SNR images requires a longer acquisition time, which also leads to increased 
invasiveness in methods that involve radiation exposure, such as CT and positron 
emission tomography (PET). In medical imaging, obtaining accurate information is 
extremely important for disease diagnosis and treatment decisions. Low-quality 
medical images containing noise can lead to misdiagnosis (Fig. 1). However, 
increased acquisition time and increased invasiveness should be avoided in medical 
practice. It is thus important to use image processing techniques to improve the SNR, 
that is, to remove noise from the acquired images as post-processing. 

In this review, we provide an overview of denoising techniques as post-processing 
of medical images, and introduce denoising techniques using general-purpose 
computing on graphics processing units (GPGPU) with high speed and high accuracy, 
and denoising techniques using deep learning, including our own work. 

 

 
Fig. 1. Examples of low- and high-quality medical images. Left: Noisy chest X-ray. It is 
difficult to identify abnormal nodules from the image, which can lead to misdiagnosis. Right: 
The same chest X-ray without noise. Multiple nodules due to metastatic lung cancer can only 
be identified on a noiseless image (arrows). 

 

2 Denoising with graphics processing units 

2.1 Denoising methods for medical imaging 

Image processing techniques for denoising can be broadly classified into two 
categories: one based on unsupervised learning and the other on supervised learning. 
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The former mainly uses methods that take advantage of redundancy in image patterns, 
while the latter uses deep learning and other techniques that have made remarkable 
technological progress in recent years. Both methods require an enormous amount of 
computation to achieve high-precision denoising, and since it is difficult for ordinary 
central processing units (CPUs) to perform real-time processing as required in the 
medical field, they are used only for simple denoising methods. Therefore, the use of 
GPGPU, a technology that converts the functions of graphics processing units 
(GPUs), which are good at repeatedly applying relatively simple numerical 
calculations to a large amount of data in parallel, is a solution to this problem. It 
enables high-speed and high-precision denoising. 
 Another advantage of utilizing GPGPU for denoising is its use as an image viewer. 
In the medical field, medical images are displayed on an image viewer, and 
physicians view the images and make a diagnosis. If a denoising filter can be applied 
and displayed in real-time to the level of denoising required by the physician, it is 
possible to obtain the optimal signal for the detection of abnormalities. However, 
highly accurate denoising requires an enormous amount of computation, making it 
difficult to adapt the filter in real-time. Therefore, the use of a GPGPU not only 
enables high-speed computation, but also further speeds up the process by allowing 
images computed on the GPU to be displayed directly on the screen without having to 
return them to the CPU (Fig. 2). 
 

 
Fig. 2. General-purpose computing on graphics processing units (GPGPU) workflow in real-
time filtering for an image viewer. The workflow requires data transfer from central processing 
unit (CPU) memory to graphics processing unit (GPU) memory only for the first time, which 
can be a bottleneck. 
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2.2 Perpendicular Gaussian filter for denoising 

Although nowadays many medical images can be acquired as three-dimensional (3D) 
images, it is necessary to display certain cross sections, such as axial, coronal, and 
sagittal sections, as 2D images in order to display them in an image viewer. In this 
case, efficient denoising can be achieved, especially in medical images obtained with 
high spatial resolution, by taking into account the adjacent cross-sectional information 
that is not used for display. Blurred boundaries can also be avoided by averaging with 
stronger weights in the neighborhood of the currently displayed cross section. This 
filter is called a perpendicular Gaussian filter. This needs to be computed for each 
section, and since each computation is large, the use of GPGPU is indispensable for 
real-time display. 
 Optical coherence tomography (OCT) is a non-invasive technique that uses near-
infrared light. It is a medical imaging technique that uses the scattering of reflected 
light to obtain three-dimensional images of biological tissue. While this technique can 
obtain 3D images with extremely high spatial resolution, it is also essential to use 
denoising techniques in conjunction because of the large influence of noise. Fig. 3 
shows an OCT image of the skin of a healthy subject’s palm. While it has extremely 
high spatial resolution, noise is noticeable. By applying a perpendicular Gaussian 
filter to each cross section, highly accurate denoising can be achieved, and structures 
such as sweat glands can be clearly seen. By applying this filter to OCT images of 
medaka brains, we were able to clearly delineate cerebral vasculature of 7 to 23 μm in 
size [1]. 
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Fig. 3. Examples of optical coherence tomography (OCT) images of healthy skin of the palm of 
the hand. Left: Original OCT images in axial, coronal and sagittal sections. Right: Denoised 
images with a perpendicular Gaussian filter under general-purpose computing on graphics 
processing units. Sweat glands, which are three-dimensionally coiled tubular structures, can be 
easily identified (red arrows). 

 
2.3 Non-local means filter 

Not only medical images but also natural images are known to have spatial 
redundancy in image patterns, and image noise can be efficiently reduced by an 
averaging process using this property. The Gaussian filter, a major noise reduction 
filter, is based on the principle of signal averaging using spatial redundancy in 
images, and is widely used in medical imaging such as PET image reconstruction and 
functional MRI (fMRI) analysis because of its relatively high processing speed. 
However, this filter has the major drawback of blurring edges because it also averages 
dissimilar data (Fig. 4, middle panel). The non-local means (NLM) filter, proposed by 
Baudes in 2005, averages similar data in the image by weighting the data with similar 
spatial patterns, thereby reducing the blurring of edges [2]. This filter achieves 
efficient denoising while avoiding edge blurring (Fig. 4, right panel). 

 

 
Fig. 4. Effects of denoising filters on brain magnetic resonance imaging (MRI) of a healthy 
subject. Left: Original MRI with extremely high spatial resolution (0.5×0.5×0.5 mm), but with 
noticeable noise. Middle: MRI denoised using a common three-dimensional (3D) Gaussian 
filter. Although the noise is reduced, the edges are blurred and detailed structures cannot be 
distinguished. Right: MRI denoised using the 3D non-local means (NLM) filter, which is 
extremely effective in denoising while avoiding blurred edges. 

 
The NLM filter adjusts the value of each pixel with a weighted average of other 

pixels with similar geometric patterns in the neighborhood. Since the pixels in this 
image are highly correlated while the noise is generally independently and identically 
distributed (i.i.d.), averaging these pixels reduces the noise component and yields 
pixels that are close to the ideal value. However, a major drawback of the NLM filter 
is its huge computational complexity, which is especially apparent in 3D images. The 
NLM filter requires the calculation of the distance (similarity) between each voxel in 
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the 3D image and all voxels in the spatial region defined as the neighborhood. In 
other words, if the size of the 3D image is 𝑁𝑁3 , the size of the search region is 
(2𝑆𝑆 + 1)3, and the size of the neighborhood region is (2𝑁𝑁𝑖𝑖 + 1)3, the complexity of 
the filter algorithm is on the order of 𝑂𝑂�𝑁𝑁(2𝑆𝑆 + 1)(2𝑁𝑁𝑖𝑖 + 1)�3. In fact, in the first 
application of 3D NLM to 3D MRI, Coupe et al. reported a computation time of 6 h 
on a 3 GHz CPU with an image size of 181×217×181 and minimum values for 𝑆𝑆 
and 𝑁𝑁𝑖𝑖  (𝑆𝑆 = 5,𝑁𝑁𝑖𝑖 = 1 ) [3]. Our implementation of the same 3D MRI with 𝑆𝑆 =
7,𝑁𝑁𝑖𝑖 = 1 and a CPU (Xeon W-2295 3.0 GHz, 1 thread) takes approximately 301 s, 
which is faster than the previous implementation, but is not fast enough to be used for 
real-time viewing. Therefore, we implemented a 3D NLM using GPGPU and 
achieved increased speed of approximately 1,000 times faster than the CPU (Table 1). 
The same 3D MRI with 𝑆𝑆 = 7,𝑁𝑁𝑖𝑖 = 1 takes about 0.28 s, which is 0.001 s for one 
slice, a level that poses no problem for real-time display. 

 

Table 1. Comparison of three-dimensional non-local means (3D NLM) filter processing time 
using general-purpose computing on graphics processing units (GPGPU) and central processing 

unit (CPU). The magnetic resonance imaging (MRI) image size is 181×217×181 and the 
neighborhood size is fixed at 3 (𝑁𝑁𝑖𝑖 = 1). 

Search voxels/blocks 

Computational Time (in s) Computational Time (in s) Ratio 

GPGPU CPU CPU/GPGPU 

1 x GeForce TITAN RTX Xeon W-2295 3.0 GHz, 1 thread   

53 = 225 voxels 0.17 (0.0009 s/slice)     

73 = 343 voxels 0.28 (0.001 s/slice) 301.2 (1.66 s/slice) 1043.4 

113 = 1,331 voxels 0.73 (0.004 s/slice)     

153 = 3,375 voxels 1.5 (0.008 s/slice)     

213 = 9,261 voxels 3.7 (0.02 s/slice)     

 
As an example of the NLM filter, a segmentation using a brain MRI from the 

BrainWeb database (http://www.bic.mni.mcgill.ca/brainweb/) is shown in Fig. 5. This 
MRI has an image size of 181×217×181. Segmentation is a typical form of medical 
imaging processing of brain MRI, which separates the brain into gray matter, white 
matter, and cerebrospinal fluid. This is important for detecting brain atrophy that can 
occur in neurodegenerative diseases such as Alzheimer’s disease. Segmentation is 
typically performed using a Gaussian mixture model based on signal intensity values, 
but noise affects its accuracy. In the middle panel of Fig. 5, 9% noise is added, which 
reduces the segmentation accuracy. The 3D NLM process improves the segmentation 
accuracy (Fig. 5, right panel). We applied the 3D NLM filter to reduce the amount of 
contrast agent, which could be toxic, used in repeated CT-angiography in a rat model 
of carotid artery occlusion [4]. We also adapted the 3D NLM filter to capture minute 
changes in brain structures using MRI in a stress model rat [5]. 
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Fig. 5. Effect of the non-local means (NLM) filter on brain segmentation using three-
dimensional magnetic resonance imaging (3D MRI). Left: Segmentation into gray matter, white 
matter, and cerebrospinal fluid using a Gaussian mixture model based on signal intensities. 
Since the data are generated by a simulation without noise, accurate segmentation is performed. 
Middle: Image with 9% Gaussian noise added. The noise has reduced the segmentation 
accuracy. Right: The 3D NLM filter applied to the noise image. The segmentation accuracy is 
close to that of the original image due to efficient denoising that avoids blurring of the edges. 

 

3 Denoising with deep learning 

3.1 Denoising methods with deep learning 

The emergence of artificial intelligence (AI) in medicine is expected to have an 
impact comparable to the breakthrough discoveries of vaccines, anesthesia, 
sterilization, X-rays, antibiotics, and deoxyribonucleic acid (DNA) in the history of 
medicine. The recent tremendous progress in AI technology has been driven by deep 
learning. Deep learning is a method in which a multi-layered neural network 
architecture transforms input information into multiple levels of abstraction, 
automatically learning from the data representations that have been designed by 
humans in conventional machine learning, such as feature extraction. Among others, 
the development of convolutional neural network (CNN) technology for image 
pattern recognition tasks drove early deep learning techniques. CNNs have also been 
applied to various problems in medical imaging, such as lesion detection and 
classification, segmentation, and image reconstruction, of which noise reduction is a 
representative example. 
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Denoising with deep learning can be categorized as an image-to-image (I2I) 
translation task. I2I translation is the task of learning a model between images from a 
source domain and images from a target domain. The goal of I2I for denoising is to 
convert an input noisy image in a source domain to a target domain with the 
corresponding denoised image. I2I translation can be categorized into two main 
learning methods: supervised and unsupervised I2I translation. The supervised I2I 
translation can also be divided into two major networks: encoder-decoder network 
and generative adversarial network (GAN). 

 
3.2 Denoising with the encoder-decoder network 

A well-known encoder-decoder network is U-Net, which is derived from 
convolutional neural networks reported by Ronneberger et al. [6]. U-Net comprises an 
encoder-decoder network with skip connections. The input image is scaled down 
toward the lower layer (encoder) and enlarged as it returns to the upper layer 
(decoder). The encoder increases the ability to abstract the content of the image, 
whereas the decoder increases the ability to generate an image from the encoder’s 
information. Skip connections can transfer non-abstract raw information, especially 
high-frequency signal information, directly to the final output layer. The name U-Net 
is derived from the shape of the overall architecture, which resembles the letter “U” in 
English. Although U-Net was originally developed for segmentation of biological 
tissue images, its usefulness has led to various applications in medical imaging, 
including denoising. We have also developed a multi-tasking deep learning approach 
that, in addition to identifying ischemic core regions in cerebrovascular disorders 
using U-Net, combines another deep learning model from the abstract representation 
reduced in dimensionality by U-Net to predict prognosis. We reported that the 
prognosis of mechanical thrombectomy for large-vessel occlusion was significantly 
improved by this method over the conventional method [7]. 

Fig. 6 shows an example of brain MRI denoising using U-Net. Recently, parallel 
imaging techniques using multi-channel phased array coils have been used to speed 
up MRI scans by acquiring only a portion of the k-space data collected by the MRI 
system. Although a variety of reconstruction algorithms have been developed, 
position-dependent variations in noise values in the reconstructed image occur, 
especially with sparse sample data. In other words, the noise is not spatially constant, 
making effective denoising difficult with conventional denoising techniques. In the 
example, a standard structural image (Fig. 6, first column) was acquired for 10 
healthy subjects, which were imaged with a 3 Tesla MRI system for 6 min, and a 
noisy structural image (Fig. 6, second column), which was acquired in 3 min using a 
high-speed imaging method with a parallel imaging technique. The images were 
trained and validated by 5-fold cross-validation. Whereas U-Net achieves highly 
accurate denoising including at the center of the image (Fig. 6, 3rd column), noise in 
the center still remains with conventional denoising techniques such as the 3D NLM 
method (Fig. 6, 4th column). Although U-Net is a supervised learning method and 
thus requires a large amount of data for general-purpose denoising, it can be a useful 
method for situations where image acquisition protocols are somewhat fixed, such as 
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in the medical field, because a training model can be constructed with a small number 
of data sets. 

 

 
Fig. 6. Example of brain magnetic resonance imaging (MRI) denoising using U-Net. First 
column: Standard three-dimensional (3D) structural image acquired in 6 min with a 3T-MRI 
system. Second column: Noisy structural image acquired in 3 min by high-speed imaging 
method using parallel imaging technique. 3rd column: Denoised image using 3D U-Net. 
Denoising is achieved throughout the image, including the central region. 4th column: 
Denoising image using the 3D non-local means (NLM) filter. Although noise in the periphery 
has been denoised, noise in the center still remains. 

 
3.3 Denoising with the generative adversarial network 

A deep learning algorithm for image generation, GAN, was presented by Goodfellow 
et al. in 2014 [8]. GAN consists of two models, a generator and a discriminator, and 
the idea is that these two models learn adversarially. These two models are typically 
implemented in neural networks. The generator attempts to learn the distribution of 
true examples for generating new images. The discriminator, usually a binary 
classifier, learns to discriminate as accurately as possible between the generated 
image and the true image. Learning converges when the discriminator can no longer 
distinguish between the true image and the image generated by the generator. Since 
the publication of GAN, a vast number of GAN-derived methods have been proposed, 
such as conditional GAN (cGAN), which can be extended to a conditional model by 
conditioning both the discriminator and the generator on additional information. Isola 
et al. reported a GAN that performs image transformation by inputting corresponding 
images as pairs and identifying whether they are pairs, which they called Pix2Pix [9]. 
This is a type of cGAN because it conditions the corresponding images as additional 
information, and it is one of the I2I translations in terms of performing image 
transformations. 
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Fig.7 shows an example of brain MRI denoising using Pix2Pix. In this example, as 
in the example in Fig. 6, a standard 3D structural image (Fig. 7, first column) and a 
noisy structural image (Fig. 7, second column) were acquired for 10 healthy subjects. 
Each was acquired in 6 min with a 3T-MRI system and 3 min with a high-speed 
imaging method using parallel imaging technology. The images were trained and 
validated by 5-fold cross-validation. Pix2Pix achieves more accurate denoising than 
the denoising using U-Net described in 3.2 (Fig. 7, 3rd and 4th columns). In 
particular, it should be noted that Pix2Pix reconstructs structures such as the 
cerebellar fissures and putamen (Fig. 7, 3rd column, red arrows), which are almost 
completely lost in the noisy structural image. This means that the concept of normal 
brain structure was effectively learned by GAN. 

 

 
Fig. 7. Example of brain magnetic resonance imaging (MRI) denoising using Pix2Pix. First 
column: Normal structural image taken in 6 min with a 3 Tesla MRI system. Second column: 
Noisy structural image acquired in 3 min by high-speed imaging method using parallel imaging 
technique. 3rd column: Noise-reduced image using Pix2Pix. High-precision noise reduction 
was achieved, and structures such as the cerebellar fissures and putamen, which were almost 
completely lost in the noisy structural image, were restored (red arrows). 4th column: Denoised 
image using U-Net. Although the noise is removed with high-precision, it is worse than 
Pix2Pix, including the restoration of microstructures. 

 

4 Conclusions 

In this paper, we review a rapid and efficient method for denoising medical images 
using GPU and deep learning, including our own work. Table 2 lists the advantages 
and disadvantages of the denoising methods introduced in the paper. With the 
tremendous improvement in computer processing speed in recent years, real-time 
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processing of computationally demanding high-precision noise reduction algorithms, 
which was difficult in the past, can now be realized using GPGPU. Furthermore, by 
using deep learning, even information lost due to noise can be recovered. This is a 
noise reduction technique at a level previously unthinkable. We believe that these 
techniques will generally be adapted to medical imaging in the future and will be 
beneficial to both clinical and basic medicine. 

 

Table 2. Advantages and disadvantages of the denoising methods introduced in this paper 

Denoising methods Advantages Disadvantages 

Perpendicular Gaussian 
filter 

The concept is simple. 

No training data are required. 

On a two-dimensional display, not 
only denoising but also 3D 
structural information of the 
previous and next slices can be 
visualized. 

It is not suitable for 3D image 
analysis because it cannot be 
represented as a 3D structure. 

Non-local means filter By changing the parameters, it can 
adapt to images with a wide range 
of noise levels. 

Suitable for 3D image analysis 
because denoising with edge 
preserving can be expressed as a 3D 
structure. 

No training data required. 

Noise remains when there is spatial 
non-uniformity in the noise 
properties. 

Encoder-decoder 
network 

Among deep learning algorithms, it 
is relatively stable over training. 

It can be adapted to cases where 
there is spatial non-uniformity in the 
noise properties. 

Training data are required. 

It cannot be adapted to images with 
noise with different properties in 
comparison to the training data, and 
a new training model needs to be 
built additionally. 

Generative adversarial 
network 

It is possible to achieve denoising 
with restoration of even minute 
structures that have lost most of 
their information in the image. 

Training data is required. 

It cannot be adapted to images with 
noise with different properties in 
comparison to the training data, and 
a new training model needs to be 
built additionally. 

Parameters can be difficult to adjust 
and it is sometimes unstable to train. 
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