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Abstract. The thermal relaxation of a dense gas described by the modified
Enskog equation is studied for a closed system in contact with a heat bath.

As in the case of the Boltzmann equation, the Helmholtz free energy F that

decreases monotonically in time is found under the conventional kinetic bound-
ary condition that satisfies the Darrozes–Guiraud inequality. The extension to

the modified Enskog–Vlasov equation is also presented.

1. Introduction. Behavior of ideal gases is well described by the Boltzmann equa-
tion for the entire range of the Knudsen number, the ratio of the mean free path of
gas molecules to a characteristic length of the system. The kinetic theory based on
the Boltzmann equation and its model equations has been applied successfully to
analyses of various gas flows in low pressure circumstances, micro-scale gas flows,
and gas flows caused by the evaporation/condensation at the gas-liquid interface.

The extension of the kinetic theory to non-ideal gases would go back to the dates
of Enskog [8]. He took account of the displacement effect of molecules in collision
integrals for a hard-sphere gas and proposed a kinetic equation that is nowadays
called the (original) Enskog equation. In the original Enskog equation, there appears
a weight function that represents an equilibrium correlation function at the contact
point of two colliding molecules. On one hand, satisfactory outcomes of the original
Enskog equation, such as the dense gas effects on the transport properties, led
to recent developments of numerical algorithms [9, 20] and their applications to
physical problems, e.g., [10, 14, 20, 11]. On the other hand, the intuitive choice of
the correlation was recognized to cause some difficulties in recovering the H theorem,
as well as the Onsager reciprocity in the case of mixtures, and triggered off further
intensive studies on the foundation of the equation around from late 60’s to early
80’s, see, e.g., [19, 16, 15] and references therein.

Among many efforts in the above-mentioned period, Resibois [16] succeeded to
prove the H theorem, not for the original but for the modified Enskog equation [19]
equipped with another form of correlation function. In most cases, including the
work of Resibois, the H theorem was discussed mainly for periodic or unbounded
spatial domains, or for cases where the influence of a boundary was not necessary to
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consider, e.g., [16, 12, 1, 13]. Rather recently, a proof was given by Maynar et al. [15]
for an isolated system, assuming the specular reflection condition, where special care
was directed to a restriction on the range of collision integral near the boundary.
It seems, however, that the thermal relaxation in contact with a heat bath receives
little attention in the literature, despite the fact that it is one of the fundamental
issues in the thermo-statistical physics. Although the interaction with the thermo-
stat boundary is considered in a recent monograph of Dorfman et al. [7], we are not
aware of a direct discussion on the thermal relaxation of a dense gas in a closed
system in contact with a heat bath in the context of the modified Enskog equation.

In the present paper, we would like to fill the gap by a simple argument and to
show that, if the boundary condition satisfies the Darrozes–Guiraud inequality [6]
that is conventionally required in the kinetic theory, the Helmholtz free energy F
that decreases monotonically in time can be found for a closed system described by
the modified Enskog equation as in the case of the Boltzmann equation.

2. Problem and formulation. Consider a dense gas in a domain that is sur-
rounded by a simple resting solid wall kept at a uniform temperature Tw, i.e., a
heat bath with temperature Tw. We will study the relaxation of the gas toward a
thermal equilibrium state with the heat bath under the following assumptions:

1. The behavior of the gas is described by the modified Enskog equation for a
single species gas;

2. The gas molecules are hard spheres with a common diameter σ and mass m
and the collisions among themselves are elastic;

3. The velocity distribution of gas molecules reflected on the surface of the heat
bath is described by the kinetic boundary condition that is conventionally
used for the Boltzmann equation, the details of which will be given in (8).

LetD be a fixed spatial domain that the centers of molecules of a gas can occupy. Let
t,X and Y , and ξ be a time, spatial positions, and a molecular velocity, respectively.
Then, denoting the one-particle distribution function of gas molecules by f(t,X, ξ)
and the correlation function by g(t,X,Y ), the modified Enskog equation is written
as

∂f

∂t
+ ξi

∂f

∂Xi
= JME(f) ≡ JGME(f)− JLME(f), for X ∈ D, (1a)

JGME(f) ≡ σ2

m

∫
g(X+

σα,X)f ′∗(X
+
σα)f ′(X)Vαθ(Vα)dΩ(α)dξ∗, (1b)

JLME(f) ≡ σ2

m

∫
g(X−σα,X)f∗(X

−
σα)f(X)Vαθ(Vα)dΩ(α)dξ∗, (1c)

where X±x = X ± x, α is a unit vector,

θ(x) =

{
1, x ≥ 0

0, x < 0
, (2)

dΩ(α) is a solid angle element in the direction of α, and the following notation
convention is used:{

f(X) = f(X, ξ), f ′(X) = f(X, ξ′),

f∗(X
−
σα) = f(X−σα, ξ∗), f

′
∗(X

−
σα) = f(X−σα, ξ

′
∗),

(3)

ξ′ = ξ + Vαα, ξ′∗ = ξ∗ − Vαα, Vα = V ·α, V = ξ∗ − ξ. (4)
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Here and in what follows, the argument t is suppressed, unless confusion is antici-
pated. Our correlation function g is adjusted to the domain D in such a way that
the usual correlation function g2(t,X,Y ) is modified as

g(t,X,Y ) = g2(t,X,Y )χD(X)χD(Y ), (5a)

χD(X) =

{
1, X ∈ D
0, otherwise

, (5b)

where χD plays the same role as the Heaviside function θ. Consequently, the range
of integration in (1b) and (1c) can be treated as the whole space of ξ∗ and all
directions of α even near the surface of the domain ∂D. In contrast to the original
Enskog equation, g2 takes a complicated form that requires further supplemental
notation. For the moment, it suffices to mention that g2 has a symmetric property
g2(t,X,Y ) = g2(t,Y ,X) and is a functional of a gas density

ρ =

∫
fdξ. (6)

Therefore (1) is closed as the equation for f . By (5), g has the same symmetric
property as g2:

g(t,X,Y ) = g(t,Y ,X). (7)

Further details of g2 can be found in Appendix A.
The boundary condition is applied on the surface ∂D of the domain D:

f(t,X, ξ) =

∫
ξ∗·n<0

K(ξ, ξ∗|X)f(t,X, ξ∗)dξ∗, (ξ · n > 0, X ∈ ∂D), (8a)

where K(ξ, ξ∗|X) is a scattering kernel assumed to be time-independent, n is the
inward unit normal to the surface ∂D at position X, and the boundary is assumed
to be at rest. The following properties are conventionally supposed for a kinetic
boundary condition: [17]

1. Non-negativeness:

K(ξ, ξ∗|X) ≥ 0, (ξ · n > 0, ξ∗ · n < 0); (8b)

2. Normalization:∫
ξ·n>0

∣∣∣ ξ · n
ξ∗ · n

∣∣∣K(ξ, ξ∗|X)dξ = 1, (ξ∗ · n < 0), (8c)

where the integrand in (8c) is the so-called reflection probability density.
Equation (8c) implies that the boundary ∂D is impermeable;

3. Preservation of equilibrium: The resting Maxwellian fw characterized by the
surface temperature Tw, i.e.,

fw =
a

(2πRTw)3/2
exp(− ξ2

2RTw
), (8d)

with a(> 0) being arbitrary, satisfies the boundary condition (8a), and the
other Maxwellians do not satisfy (8a).

The diffuse reflection, the Maxwell, and the Cercignani–Lampis condition [4, 2,
17] that are widely used for the Boltzmann equation are specific examples of (8).
Note that the uniqueness in the third property listed above excludes the adiabatic
boundary such as the specular reflection condition. As to the H theorem for the
specular reflection case, the reader is referred to [15].



4 SHIGERU TAKATA

The form of the modified Enskog equation (1) is identical to the one for a confined
isolated system discussed in [15]. In our formulation, χD is used to make simpler
the integration range near the surface ∂D.

3. Collisional contributions to the momentum and the energy transport.
Before going into details, we recall three types of operation that are useful in the
transformation of the moments of collision integrals:

(I): to exchange the letters ξ and ξ∗;
(II): to reverse the direction of α (or introduce β = −α);
(III): to change the integration variables from (ξ, ξ∗,α) to (ξ′, ξ′∗,α) and then

to change the letters (ξ′, ξ′∗) to (ξ, ξ∗).

These operations will be used also in Sec. 4.
We then notice that, by (III) and (II),∫

ϕJGME(f)dξ =

∫
ϕ′JLME(f)dξ, (9)

holds for any ϕ(ξ) and thus

m

σ2

∫
ϕ(ξ)JME(f)dξ

=

∫
(ϕ′ − ϕ)g(X−σα,X)f∗(X

−
σα)f(X)Vαθ(Vα)dΩ(α)dξ∗dξ. (10)

First, it is obvious from (10) with ϕ = 1 that
∫
JME(f)dξ = 0. Hence, the

continuity equation is obtained by the integration of (1a) with respect to ξ:

∂ρ

∂t
+

∂

∂X
· (ρv) = 0. (11)

Here v (or vi) is a flow velocity defined by

vi =
1

ρ

∫
ξifdξ. (12)

Next, consider two kinds of collision invariants ψ as ϕ in (10): (i) ψ(ξ) = ξi
and (ii) ψ(ξ) = ξ2/2. One of the main qualitative differences from the Boltzmann
equation is that ψ-moment of the collision term does not vanish in general. For
both (i) and (ii), (10) with ϕ = ψ can be transformed as

m

σ2

∫
ψ(ξ)JME(f)dξ =

∫
(ψ′∗ − ψ∗)g(X+

σβ,X)f(X+
σβ)f∗(X)Vβθ(Vβ)dΩ(β)dξdξ∗

=

∫
(ψ − ψ′)g(X+

σβ,X)f(X+
σβ)f∗(X)Vβθ(Vβ)dΩ(β)dξdξ∗,

(13a)

where (I) and (II) are used at the first equality, while ψ+ψ∗=ψ
′+ψ′∗ is used at the

second equality. Combining (13a) and (10) for ϕ = ψ gives

m

σ2

∫
ψ(ξ)JME(f)dξ =

1

2

∫
(ψ′ − ψ){g(X−σα,X)f∗(X

−
σα)f(X)

− g(X+
σα,X)f(X+

σα)f∗(X)}Vαθ(Vα)dΩ(α)dξ∗dξ. (13b)

Since

g(X−σα,X)f∗(X
−
σα)f(X)− g(X+

σα,X)f(X+
σα)f∗(X)
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=−
∫ σ

0

∂

∂λ
g(X+

λα,X
+
(λ−σ)α)f∗(X

+
(λ−σ)α)f(X+

λα)dλ

=−∇ ·
∫ σ

0

αg(X+
λα,X

+
(λ−σ)α)f∗(X

+
(λ−σ)α)f(X+

λα)dλ, (14)

(13b) gives rise to the notion of collisional contributions to the stress tensor p
(c)
ij

and the heat flow q
(c)
i defined as

p
(c)
ij =

σ2

2m

∫ ∫ σ

0

αiαjV
2
α θ(Vα)

g(X+
λα,X

+
(λ−σ)α)f∗(X

+
(λ−σ)α)f(X+

λα)dλdΩ(α)dξ∗dξ, (15a)

q
(c)
i =− p(c)ij vj +

σ2

4m

∫ ∫ σ

0

αi[(ξ + ξ∗) ·α]V 2
α θ(Vα)

g(X+
λα,X

+
(λ−σ)α)f∗(X

+
(λ−σ)α)f(X+

λα)dλdΩ(α)dξ∗dξ

=
σ2

4m

∫ ∫ σ

0

αi[(c+ c∗) ·α]V 2
α θ(Vα)

g(X+
λα,X

+
(λ−σ)α)f∗(X

+
(λ−σ)α)f(X+

λα)dλdΩ(α)dξ∗dξ, (15b)

see e.g., [5, 10]. Here c = ξ − v, c∗ = ξ∗ − v, and

ψ′ − ψ =

Vααi, (ψ = ξi),
1

2
Vα(ξ + ξ∗) ·α, (ψ =

1

2
ξ2),

(16)

have been used. Note that, thanks to the factor χD in g, the range of integration
with respect to λ is simply from 0 to σ, regardless of the position X in D.

To summarize, two expressions for the same quantity have been obtained. For
the quantity related to the energy,∫

1

2
ξ2JME(f)dξ

=− σ2

2m

∫
[(ξ + ξ∗) ·α]V 2

α θ(Vα)g(X+
σα,X)f(X+

σα)f∗(X)dΩ(α)dξdξ∗, (17a)

and ∫
1

2
ξ2JME(f)dξ = − ∂

∂Xi
(p

(c)
ij vj + q

(c)
i ), (17b)

see (13a) with (16) and (15); for the quantity related to the momentum,∫
ξiJME(f)dξ

=− σ2

m

∫
αiV

2
α θ(Vα)g(X+

σα,X)f(X+
σα)f∗(X)dΩ(α)dξdξ∗, (18a)

and ∫
ξiJME(f)dξ = − ∂

∂Xj
p
(c)
ij , (18b)

see (13a) with (16) and (15a).
Finally by integrating (17a) over the domain D and recalling (5a), it is seen that∫

D

∫
1

2
ξ2JME(f)dξdX
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=− σ2

2m

∫
[(ξ + ξ∗) ·α]V 2

α θ(Vα)g(X,X−σα)f(X)f∗(X
−
σα)dξdξ∗dΩ(α)dX

=
σ2

2m

∫
[(ξ + ξ∗) · β]V 2

β θ(−Vβ)g(X,X+
σβ)f(X)f∗(X

+
σβ)dξdξ∗dΩ(β)dX

=
σ2

2m

∫
[(ξ + ξ∗) · β]V 2

β θ(Vβ)g(X,X+
σβ)f∗(X)f(X+

σβ)dξ∗dξdΩ(β)dX

=−
∫
D

∫
1

2
ξ2JME(f)dξdX, (19)

where the position is shifted by −σα at the first equality, (II) and (I) are applied
respectively at the second and the third equality, and (17a) is used at the last
equality. Hence ∫

D

∫
1

2
ξ2JME(f)dξdX = 0, (20)

and by (17b)

−
∫
D

∂

∂Xi
(p

(c)
ij vj + q

(c)
i )dX =

∫
∂D

(p
(c)
ij vj + q

(c)
i )nidS = 0. (21)

Here the divergence theorem has been used and n is the inward unit normal to the
surface ∂D. In the same way, it can be shown that∫

D

∫
ξiJME(f)dξdX = 0, (22)

and by (18b)

−
∫
D

∂

∂Xj
p
(c)
ij dX =

∫
∂D

p
(c)
ij njdS = 0. (23)

Lemma 3.1. In total, there are no collisional contributions to the momentum and
energy transport:∫

D

∫
ξiJME(f)dξdX = 0,

∫
D

∫
1

2
ξ2JME(f)dξdX = 0. (24)

Accordingly, there are no collisional contributions to the net momentum and energy
transport to the surface ∂D:∫

∂D

p
(c)
ij njdS = 0,

∫
∂D

(p
(c)
ij vj + q

(c)
i )nidS = 0. (25)

In particular, if D is convex, p
(c)
ij ≡ 0 and q

(c)
i ≡ 0 on the surface ∂D.

Proof. Equations (24) and (25) are simply a summary of the present section. When
D is convex, χD(X+(λ−σ)α)χD(X+λα) = 0 for X ∈ ∂D, except for the special case
that ∂D is flat at X. However, the exception occurs only for α in the directions
tangential to ∂D and thus has no contribution to the integration of the angle in
(15a) and (15b).

Remark 3.2. Equation (24) in Lemma 3.1 is physically a natural consequence,
since the collisional transport of momentum and energy comes from interactions

within gas molecules. The collisional stress tensor p
(c)
ij and heat flow q

(c)
i are, how-

ever, not likely to vanish pointwisely on the surface ∂D if the domain D is not
convex.
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4. H function. In this section, we shall recall the discussions on the H theorem in
the literature [16, 15, 7]. Consider first the so-called kinetic part of the H function1

H(k) ≡
∫
D

∫
f ln fdξdX, (26)

Then, multiplying 1 + ln f with the modified Enskog equation (1a) gives

∂

∂t
〈f ln f〉+

∂

∂Xi
〈ξif ln f〉 = 〈JME(f)ln f〉, (27)

after the integration with respect to ξ, where 〈•〉 =
∫
• dξ. The first step toward

the H theorem is to apply (10) with ϕ = ln f to the right-hand side:
m

σ2
〈JME(f)ln f〉

=

∫
ln[f ′(X)/f(X)]g(X−σα,X)f∗(X

−
σα)f(X)Vαθ(Vα)dΩ(α)dξ∗dξ. (28)

Then, the integration of (28) over the domain D is again a relevant step for the
position shift by +σα and gives

m

σ2

∫
D

〈JME(f)ln f〉dX

=

∫
ln[f ′(X+

σα)/f(X+
σα)]g(X,X+

σα)f∗(X)f(X+
σα)Vαθ(Vα)dΩ(α)dξ∗dξdX

=

∫
ln[f ′∗(X

−
σα)/f∗(X

−
σα)]g(X,X−σα)f(X)f∗(X

−
σα)Vαθ(Vα)dΩ(α)dξdξ∗dX

=
1

2

∫
ln
(f ′∗(X−σα)f ′(X)

f∗(X
−
σα)f(X)

)
g(X,X−σα)f(X)f∗(X

−
σα)Vαθ(Vα)dΩ(α)dξdξ∗dX,

(29)

where (II) and (I) are applied at the second equality, while the third line and (28)
are combined at the last equality. Since for any x, y > 0

x ln(y/x) ≤ y − x, (30)

where equality holds if and only if y = x,∫
D

〈JME(f)ln f〉dX ≤ I(t), (31)

holds, where

I(t) =
σ2

2m

∫
g(X,X−σα)[f ′∗(X

−
σα)f ′(X)− f(X)f∗(X

−
σα)]Vαθ(Vα)dΩ(α)dξdξ∗dX.

(32)
Equation (32) can be transformed as

I(t) =− σ2

2m

∫
g(X,X−σα)f ′∗(X

−
σα)f ′(X)V ′αθ(−V ′α)dΩ(α)dξdξ∗dX

− σ2

2m

∫
g(X,X−σα)f(X)f∗(X

−
σα)Vαθ(Vα)dΩ(α)dξdξ∗dX

=
σ2

2m

∫
g(X,X−σα)f(X)f∗(X

−
σα)[(ξ − ξ∗) ·α]dΩ(α)dξdξ∗dX

1To be precise, it is necessary to make the argument of the logarithmic function dimensionless,

like ln(f/c0) with a constant c0 having the same dimension as f . We, however, leave the argument
dimensional to avoid additional calculations that do not affect the results.
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=
σ2

2m

∫
g(X,X−σα)ρ(X)ρ(X−σα)v(X) ·αdΩ(α)dX

− σ2

2m

∫
g(X,X−σα)ρ(X)ρ(X−σα)v(X−σα) ·αdΩ(α)dX

=
σ2

2m

∫
g(X+

σα,X)ρ(X+
σα)ρ(X)v(X+

σα) ·αdΩ(α)dX

+
σ2

2m

∫
g(X,X+

σα)ρ(X)ρ(X+
σα)v(X+

σα) ·αdΩ(α)dX

=
σ2

m

∫
g(X,X+

σα)ρ(X)ρ(X+
σα)v(X+

σα) ·αdΩ(α)dX, (33)

where V ′α ≡ (ξ′∗ − ξ′) · α = −Vα is used at the first equality, (III) is used at the
second equality, the integration with respect to ξ and ξ∗ is performed at the third
equality, and the shift operation by +σα and (II) are used at the fourth equality.
The last line of (33) is further transformed as

I(t) =
σ2

m

∫
g(X,X+

σα)ρ(X)ρ(X+
σα)v(X+

σα) ·αdΩ(α)dX

=
σ2

m

∫
δ(|X − Y | − σ)g(X,Y )ρ(X)ρ(Y )v(Y ) · Y −X

σ2|Y −X|
dY dX

=
1

m

∫
g(X,Y )ρ(X)ρ(Y )v(Y ) · ∂

∂Y
θ(|X − Y | − σ)dY dX

=
1

m

∫
D×D

g2(X,Y )ρ(X)ρ(Y )v(X) · ∂

∂X
θ(|X − Y | − σ)dXdY , (34)

and the last line is reduced by (60) in Appendix A to

I(t) =

∫
D

ρv · ∂

∂X
ln
ρ

w
dX

= −
∫
∂D

ρv · nln
ρ

w
dS −

∫
D

(ln
ρ

w
)
∂

∂X
· (ρv)dX

=

∫
D

∂ρ

∂t
ln
ρ

w
dX

=
d

dt

∫
D

ρ(ln
ρ

w
− 1)dX +

∫
D

ρ

w

∂w

∂t
dX

=
d

dt

(∫
D

ρln
ρ

w
dX +m lnφ

)
. (35)

Here v · n = 0 on ∂D, the continuity equation (11), and the relation

1

φ

dφ

dt
=
N

φ

∫
DN

∂w(X1)

∂t
w(X2) · · ·w(XN )Θ(X1, · · · ,XN )dX1 · · · dXN

=
1

m

∫
D

∂w(X1)

∂t

ρ(X1)

w(X1)
dX1, (36)

have been used; see (54a), (54b), and (56) in Appendix A, as for (36). Hence, we
finally arrive at

I(t) = −dH
(c)

dt
, (37)
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where H(c) is a so-called collisional part of the H function defined by

H(c)(t) ≡ −
∫
D

ρ(X)ln
ρ(X)

w(X)
dX −m lnφ. (38)

The total H function H ≡ H(k) +H(c) thus satisfies the following inequality:

dH
dt

+

∫
D

∂

∂Xi
〈ξif ln f〉dX ≤ 0, (39)

where the equality holds if and only if f ′∗(X
−
σα)f ′(X) = f∗(X

−
σα)f(X).

Remark 4.1. The above H is bounded. See Appendix B.

Remark 4.2. If the system is isolated, the second term on the left-hand side of
(39) vanishes, and H monotonically decreases in time as shown in [15]. Therefore,
−RH is identified as a natural extension of the thermodynamic entropy to the case
of non-equilibrium state. Equation (39) combined with the following lemma, i.e.,
Lemma 4.3, can be found in [7, p. 270].

Lemma 4.3. (Darrozes–Guiraud [6, 2, 17]) If the velocity distribution function f
satisfies the boundary condition (8), then it holds that∫

∂D

〈(ξ · n)f ln
f

fw
〉dS ≤ 0, (40)

where n is the inward unit normal to the surface ∂D and the equality holds if and
only if f = fw.

5. Main results: Free energy and its monotonicity. After the presentation
of the known results [16, 15, 1] in Sec. 4, we now discuss the thermal relaxation of a
dense gas in a closed system with the aid of Lemma 3.1. Consider the multiplication
of 1+ln(f/fw) with the modified Enskog equation (1a) and integrate it with respect
to ξ. Since fw depends on neither t nor X, we have

∂

∂t
〈f ln(f/fw)〉+

∂

∂Xi
〈ξif ln(f/fw)〉 = 〈ln(f/fw)JME(f)〉. (41)

Since ln fw = aw−ξ2/(2RTw) with aw being a constant, the right-hand side of (41)
is reduced to

〈ln(f/fw)JME(f)〉 = 〈JME(f)ln f〉+
1

2RTw
〈ξ2JME(f)〉. (42)

Once we integrate (41) with respect to X over the domain D, the contribution from
〈ξ2JME(f)〉 vanishes by Lemma 3.1 and we arrive at

d

dt

∫
D

〈f ln(f/fw)〉dX =

∫
∂D

〈ξinif ln(f/fw)〉dS +

∫
D

〈JME(f)ln f〉dX

≤
∫
∂D

〈ξinif ln(f/fw)〉dS − dH(c)

dt
≤ −dH

(c)

dt
, (43)

where Lemma 4.3 has been used at the last inequality. By transposing the most
right-hand side to the left-hand side, it is seen that F defined by

F ≡ RTw(

∫
D

〈f ln(f/fw)〉dX +H(c)), (44)

decreases monotonically in time:
dF
dt
≤ 0, (45)
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where the equality holds if and only if f ′∗(X
−
σα)f ′(X) = f∗(X

−
σα)f(X) forX, X−σα ∈

D and f = fw on ∂D; see the equality condition for (39) and in Lemma 4.3. Since
F is bounded from below (see Appendix B), F approaches a stationary value as
t → ∞. The extension to the case of the modified Enskog–Vlasov equation is
discussed in Appendix C.

Theorem 5.1. (thermal relaxation in a closed system surrounded by a heat bath)
Suppose that the behavior of a dense gas in a closed system surrounded by a heat
bath with a constant temperature Tw is described by the modified Enskog equation
(1) and the boundary condition (8). Then a quantity F defined by

F = RTw(

∫
D

〈f ln(f/fw)〉dX +H(c)), (46)

monotonically decreases in time and approaches a stationary value as t→∞, where
fw and H(c) are respectively defined by (8d) and (38).

Remark 5.2. From (44) and (26), F can be rewritten as

F =RTw(

∫
D

〈f ln f〉dX −
∫
D

〈f ln fw〉dX +H(c))

=(H(k) +H(c))RTw +

∫
D

〈1
2
ξ2f〉dX + const. (47)

Since
∫
D
〈 12ξ

2f〉dX and −HR are respectively the internal energy E and the entropy
S of the closed system (see Remark 4.2), F is identified as E−TwS up to an additive
constant, i.e., an extension of the Helmholtz free energy in thermodynamics to a
non-equilibrium system. The present result shows that the same statement for the
Boltzmann equation mentioned in [7, p. 270] holds for the modified Enskog equation,
thanks to Lemma 3.1. In the case of the Boltzmann equation, the consideration of
Lemma 3.1 was not required.

When dF/dt = 0, two conditions

ln f ′∗(X
−
σα) + ln f ′(X) = ln f∗(X

−
σα) + ln f(X), for X,X−σα ∈ D, (48a)

f(t,X, ξ) =
ρ(t,X)

(2πRTw)3/2
exp(− ξ2

2RTw
), for X ∈ ∂D, (48b)

hold. On condition that (48a) is identical to

ln f(t,X, ξ) = b0(t,X) + bi(t)ξi + b4(t)ξ2 + ci(t)εijkXjξk, (49)

or equivalently to

f(t,X, ξ) =
ρ(t,X)

(2πRT (t))3/2
exp(− (ξ − v(t,X))2

2RT (t)
), (50)

with v(t,X) = V (t) +X ×W (t) [15], (48b) leads to T (t) = Tw and v(t,X) = 0.
Furthermore, ρ is independent of t because of the continuity equation (11) with
v = 0. Therefore, when dF/dt = 0, f is a time-independent resting Maxwellian

ρ(X)

(2πRTw)3/2
exp(− ξ2

2RTw
), (51)

which represents the thermal equilibrium state with the heat bath characterized by
the uniform temperature Tw.
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6. Conclusion. In the present work, the thermal relaxation of a dense gas in a
closed system surrounded by a heat bath has been studied on the basis of the
modified Enskog equation. The H theorem established by Resibois [16] for the
infinite domain and for a periodic domain and then later by Maynar et al. [15] for
a bounded domain surrounded by the specular-reflection wall has been arranged
in a form suitable for a closed system surrounded by a heat bath. The case of
the modified Enskog–Vlasov equation has also been considered in Appendix C.
Different from the case of the Boltzmann equation, it is required to pay attention
to collisional contributions to the momentum and the energy transport. We have
confirmed, however, that their net contributions on the boundary vanish. It is
physically natural in view of the origin of those transports. As the result, the
Darrozes–Guiraud inequality plays the same role as in the case of the Boltzmann
equation to find a quantity F that corresponds to the Helmholtz free energy in the
thermodynamics. This quantity has been shown to be bounded and to decrease
monotonically in time.

Appendix A. N -particle distribution and correlation function g2. In the
case of the modified Enskog equation, the N -particle (factorized) distribution func-
tion ρN is introduced:

ρN =
1

φ(t)
Θ(X1, · · · ,XN )W (t,X1, ξ1) · · ·W (t,XN , ξN ), (52)

and the velocity distribution function f is expressed in terms of ρN :

f(t,X1, ξ1) =mN

∫
(D×R3)(N−1)

ρN (t,Z1, . . . ,ZN )dZ2 · · · dZN

=
mN

φ(t)
W (t,X1, ξ1)Y (t,X1), (53)

where and in what follows Zi = (Xi, ξi), (D×R3)N (or DN ) is the N -times direct
multiple of D × R3 (or D), N is the number of molecules in D, and

Y (t,X1) =

∫
DN−1

w(t,X2) · · ·w(t,XN )Θ(X1, · · · ,XN )dX2 · · · dXN , (54a)

φ(t) =

∫
DN

w(t,X1) · · ·w(t,XN )Θ(X1, · · · ,XN )dX1 · · · dXN , (54b)

w(t,X) =

∫
W (t,X, ξ)dξ, (54c)

Θ(X1, · · · ,XN ) =

N∏
i=1

N∏
j>i

θ(|Xij | − σ), Xij = Xi −Xj . (54d)

Note that ρN is normalized as∫
(D×R3)N

ρNdZ1 · · · dZN = 1, (55)

and the density ρ is also expressed as

ρ(t,X) =
mN

φ(t)
w(t,X)Y (t,X), (56)

by a simple integration of (53) with respect to ξ1.
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The correlation function g2 in (5a) is then defined in terms of the quantities in
(54) as2

g2(t,X1,X2)

=
m2N(N − 1)

φ(t)

w(t,X1)w(t,X2)

ρ(t,X1)ρ(t,X2)

×
∫
DN−2

w(t,X3) · · ·w(t,XN )Θ(1,2)(X1, · · · ,XN )dX3 · · · dXN , (57a)

where

Θ(1,2)(X1, · · · ,XN ) =

N∏
i=1

N∏
j>max(i,2)

θ(|Xij | − σ). (57b)

Note that

Θ(X1, · · · ,XN ) = θ(|X12| − σ)Θ(1,2)(X1, · · · ,XN ), (57c)

by (54d) and (57b). By (56) with (54a), ρ can be regarded as a functional of w and,
if invertible, vice versa. Hence, φ and g2 can also be regarded as functionals of ρ.
It is seen from (57c) that∫

DN−1

Θ(1,2)(X1, . . . ,XN )
∂

∂X1
θ(|X12| − σ)F (X2, . . . ,XN )dX2 . . . dXN

=
1

N − 1

∂

∂X1

∫
DN−1

Θ(1,2)(X1, . . . ,XN )θ(|X12| − σ)F (X2, . . . ,XN )dX2 . . . dXN

=
1

N − 1

∂

∂X1

∫
DN−1

Θ(X1, . . . ,XN )F (X2, . . . ,XN )dX2 . . . dXN , (58)

if F (X2, . . . ,XN ) is a function such that

F (X2, . . . ,Xi . . . ,Xj . . . ,XN ) = F (X2, . . . ,Xj . . . ,Xi . . . ,XN ), (59)

for ∀i, j ∈ {2, . . . , N}.
Now, thanks to (58), the reduction used in Sec. 4 is possible as follows:

1

m

∫
D

ρ(X2)ρ(X1)g2(X1,X2)
∂

∂X1
θ(|X12| − σ)dX2

=
mN(N − 1)

φ(t)
w(X1)

∫
DN−1

w(X2) · · ·w(XN )

×Θ(1,2)(X1, · · · ,XN )
∂

∂X1
θ(|X12| − σ)dX2 · · · dXN

=w(X1)
∂

∂X1
{mN
φ(t)

∫
DN−1

w(X2) · · ·w(XN )Θ(X1, · · · ,XN )dX2 · · · dXN}

=w(X1)
∂

∂X1

ρ(X1)

w(X1)
= ρ(X1)

∂

∂X1
ln
ρ(X1)

w(X1)
, (60)

where (57a), (54a), and (56) have been used and the argument t is omitted from ρ
and w.

2In the literature, Θ is often used in place of Θ(1,2) in the definition of g2. The definition (57a)

is adopted in order to avoid any ambiguity occurring in the derivation of (37).
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Appendix B. Boundedness of F . In this Appendix, we will show that F is
bounded.

With the preparations in Appendix A, we first show that H occurring in (39) is
identical to the following H: [16, 15]

H(t) = m

∫
(D×R3)N

ρN ln ρNdZ1 · · · dZN . (61)

Indeed, since Θ ln Θ ≡ 0, the integrations with respect to Z2, · · · ,ZN are simplified
to yield

H(t) =m

∫
DN×R3N

ρN (

N∑
i=1

lnW (t,Xi, ξi)− lnφ)dX1 · · · dXNdξ1 · · · dξN

=

∫
D×R3

f(t,X1, ξ1) lnW (t,X1, ξ1)dX1dξ1 −m lnφ. (62)

Because of (53) and (56),

lnW = ln f − ln
ρ

w
, (63)

and substitution to (62) leads to

H(t) =H(k) −
∫
D×R3

f(t,X1, ξ1) ln
ρ(t,X1)

w(t,X1)
dX1dξ1 −m lnφ

=H(k) −
∫
D

ρ(t,X1) ln
ρ(t,X1)

w(t,X1)
dX1 −m lnφ

=H(k) +H(c) = H. (64)

Now, thanks to the form (61), the same method as the case of the Boltzmann
equation (see, e.g., [3, Sec. 9.4]) is available to show that F is bounded from
below, which is as follows. As x increases from x = 0, x lnx first monotoni-
cally decreases and reaches the minimum at x = e−1, and then increases mono-
tonically for x > e−1. Hence, if ρN ≥ e−1, ρN ln ρN ≥ −ρN . If ρN < e−1,

we split this case into (i) ρN ≥ (4πRTw)−3N/2V −ND exp(−
∑N
i=1

ξ2i
4RTw

) and (ii)

ρN < (4πRTw)−3N/2V −ND exp(−
∑N
i=1

ξ2i
4RTw

), where VD is the volume of D. In

case (i), ρN ln ρN ≥ ρN [−(3N/2) ln(4πRTw) − N lnVD −
∑N
i=1

ξ2i
4RTw

]; in case (ii),

ρN ln ρN > (4πRTw)−3N/2V −ND exp(−
∑N
i=1

ξ2i
4RTw

)[−(3N/2) ln(4πRTw)−N lnVD−∑N
j=1

ξ2j
4RTw

]. Consequently, it holds that

ρN ln ρN ≥− ρN − ρNN ln[(4πRTw)3/2VD]− ρN
N∑
j=1

ξ2j
4RTw

−
N∑
i=1

ξ2i
4RTw

1

(4πRTw)3N/2V ND
exp(−

N∑
j=1

ξ2j
4RTw

)

− N ln[(4πRTw)3/2VD]

(4πRTw)3N/2V ND
exp(−

N∑
i=1

ξ2i
4RTw

), (65)

by which H is evaluated as

H(t) =m

∫
(D×R3)N

ρN ln ρNdZ1 · · · dZN
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≥−m
∫
(D×R3)N

{ρN + ρNN ln[(4πRTw)3/2VD] + ρN

N∑
j=1

ξ2j
4RTw

+

N∑
i=1

ξ2i
4RTw

1

(4πRTw)3N/2V ND
exp(−

N∑
j=1

ξ2j
4RTw

)

+
N ln[(4πRTw)3/2VD]

(4πRTw)3N/2V ND
exp(−

N∑
i=1

ξ2i
4RTw

)}dZ1 · · · dZN

=−m− 2mN ln[(4πRTw)3/2VD]−m{
∫
(D×R3)N

ρN

N∑
j=1

ξ2j
4RTw

+

N∑
i=1

ξ2i
4RTw

1

(4πRTw)3N/2V ND
exp(−

N∑
j=1

ξ2j
4RTw

)}dZ1 · · · dZN

=− {m+ 2mN ln[(4πRTw)3/2VD] +

∫
D×R3

f(t,X, ξ)
ξ2

4RTw
dXdξ

+mN

∫
R3

ξ2

4RTw

1

(4πRTw)3/2
exp(− ξ2

4RTw
)dξ}

≥ − {mN(
5

2
+ ln[(4πRTw)3V 2

D]) +

∫
D×R3

f(t,X, ξ)
ξ2

4RTw
dXdξ}

=− 1

2RTw

∫
D

〈1
2
ξ2f〉dX + const. (66)

Remind that mN is the total mass in D and thus is finite. Hence (66) means that
F ≥ 1

2

∫
D
〈 12ξ

2f〉dX + const. by (47). Moreover, if F is initially finite, then F , H,

and
∫
D
〈 12ξ

2f〉dX are bounded individually from both below and above for t ≥ 0.

Appendix C. The case of modified Enskog–Vlasov equation. In the case of
Enskog–Vlasov equation, an external force term Fi∂f/∂ξi is added on the left-hand
side of (1), where

Fi = −
∫
D

∂

∂Xi
Φ(|Y −X|)ρ(t,Y )dY , (67)

and Φ is the attractive isotropic force potential between molecules.
By taking the (1 + ln f)-moment of the external force term:

〈(1 + ln f)Fi
∂f

∂ξi
〉 = 〈Fi

∂

∂ξi
(f ln f)〉 = 0, (68)

and thus the external term is found to give no contribution to (27). Hence, (39)
remains unchanged.

Next consider the (1 + ln(f/fw))-moment:

〈(1 + ln
f

fw
)Fi

∂f

∂ξi
〉 = −〈(ln fw)Fi

∂f

∂ξi
〉 = Fi〈

ξ2

2RTw

∂f

∂ξi
〉 = −ρviFi

RTw
. (69)

Since Fi is given by (67),

−
∫
D

ρviFi
RTw

dX =

∫
D

ρvi
RTw

∂

∂Xi

∫
D

Φ(|Y −X|)ρ(t,Y )dY dX

=−
∫
∂D

ρvi
RTw

ni

∫
D

Φ(|Y −X|)ρ(t,Y )dY dS(X)
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−
∫
D

1

RTw

∂(ρvi)

∂Xi

∫
D

Φ(|Y −X|)ρ(t,Y )dY dX

=

∫
D

1

RTw

∂ρ(t,X)

∂t

∫
D

Φ(|Y −X|)ρ(t,Y )dY dX

=
1

2

d

dt

∫
D×D

Φ(|Y −X|)
RTw

ρ(t,X)ρ(t,Y )dXdY , (70)

where vini = 0 on ∂D and the continuity equation (11) have been used. Therefore,
in the case of the modified Enskog–Vlasov equation,

F ′ ≡RTw(

∫
D

〈f ln(f/fw)〉dX +H(c))

+
1

2

∫
D×D

Φ(|Y −X|)ρ(t,X)ρ(t,Y )dXdY , (71)

decreases monotonically in time:

dF ′

dt
≤ 0. (72)

This corresponds to the result in Appendix B of [18] for a simple kinetic model.
If Φ ≥ C holds for some constant C, F ′ is bounded from below and approaches a
stationary value as t→∞.
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