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We propose a method to reconstruct the phase dynamics in rhythmical interacting systems from macroscopic
responses to weak inputs by developing linear and nonlinear response theories, which predict the responses in
a given system. By solving an inverse problem, the method infers an unknown system: the natural frequency
distribution, the coupling function, and the time delay which is inevitable in real systems. In contrast to previous
methods, our method requires neither strong invasiveness nor microscopic observations. We demonstrate that
the method reconstructs two phase systems from observed responses accurately. The qualitative methodological
advantages demonstrated by our quantitative numerical examinations suggest its broad applicability in various
fields, including brain systems, which are often observed through macroscopic signals such as electroencephalo-
grams and functional magnetic response imaging.
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I. INTRODUCTION

Rhythmical phenomena have been observed ubiquitously
in nature as well as in engineering systems and attracted
a wide spectrum of interests [1–3]. Specific rhythmical dy-
namics have been reported to play crucial functional roles
in information processing in the brain [4,5]. Theoretical
analysis has contributed to understanding the nature of in-
teracting rhythmical systems. A highly beneficial tool is
provided by the framework of phase reduction, which re-
duces a high-dimensional rhythmic dynamical system to a
one-dimensional phase-oscillator system by eliminating the
other nonessential degrees of freedom [6–8]. In this frame-
work, a collective system of interacting units can be described
by a coupled phase-oscillator system, which consists of the
natural frequency distribution, coupling function, and time
delay in interactions. A dynamical system behind an observed
rhythmic phenomenon in the real world is mostly, however,
unknown; the identification of the phase dynamics may help
to understand the mechanism, predict the dynamics, and con-
trol the system [9]. It is thus in high demand to specify the
underlying dynamical equations of coupled phase oscillators
from accessible data.

While the inference problem has been extensively stud-
ied in coupled phase-oscillator systems [10–19] as well as
other dynamical systems [20–23], there are still two cru-
cial problems inseparable from their methods: The first is
the assumption of accessibility to time series in almost all

*yyama@amp.i.kyoto-u.ac.jp
†yuterada@ucsd.edu

individual elements. This assumption often cannot be satisfied
in large complex systems: for example, in experiments of
brain systems with electroencephalograms or functional mag-
netic response imaging (fMRI) signals, we record mesoscopic
or macroscopic activity of neuronal populations and do not
have full access to their microscopic details. The second is
the neglect of the time delay. The existence of the delay is in
principle inevitable in real systems, and can drastically change
dynamics, for example, the stability of the nonsynchronized
state [24,25]. It is a next step to develop a method that can be
implemented with unknown delay in interactions.

Here, we utilize the linear response theory to infer coupled
phase-oscillator systems [26–28] with the aid of a nonlin-
ear response theory. We apply weak and oscillating external
forces into a system, observe asymptotic responses of order
parameters (macroscopic variables) with varying frequency
of the external force, and infer the underlying phase dynam-
ics by solving an inverse problem. Further, applied external
forces are assumed substantially weak, since we focus on a
regime where the linear response theory is valid. The weak-
ness implies another advantage of noninvasiveness: the weak
input prevents undesirable changes of the system [29,30]. We
remark that our main target is the coupled phase-oscillator
systems as previous works [10–19], and applicability of our
method to an experimental system will be discussed lastly.

The assumptions on models here are that the system has
mean-field, all-to-all homogeneous interactions and that the
system lies in the nonsynchronized state, which is defied as
the state with vanishing order parameters without an input
in the limit of large system size. For the first assumption,
it is worth remarking that the mean-field interaction is not
extremely special, because the mean-field analysis is allowed
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in many other networks: small-world networks [31–33], scale-
free networks [34], random networks [35], and oscillators on
the one-dimensional lattice whose interaction strength decays
algebraically with distance [36]. See also [37–39]. In addi-
tion, fMRI data suggest in functional connectivity a network
structure with long-range interactions [40], which imply the
potential approximate closeness to the mean-field class. As
for the second assumption, experimental observations suggest
that nonsynchronized states in neural activity are associated
with cognitive functions [41,42], and therefore it is an impor-
tant issue to study nonsynchronized states. Moreover, inferred
results in the nonsynchronized state apart from the coupling
strengths are carried over to partially synchronized states even
after a spontaneous synchronization emerges. We remark that
a repetition of observation is reasonably practical for different
external frequencies, since the system returns to the nonsyn-
chronized state exponentially fast after cutting off the external
force [43].

This paper is organized as follows. The coupled phase-
oscillator model and the linear susceptibility are introduced
in Sec. II. The inference theory proposed in this paper is
reported in Sec. III with a nonlinear susceptibility. The theory
is examined in two models in Sec. IV. Section V is devoted to
a summary and discussions.

II. SUSCEPTIBILITY IN COUPLED PHASE OSCILLATORS

Based on the phase reduction [44], we consider mean-field
coupled oscillators governed by the phase equation

dθ j

dt
= ω j + 1

N

N∑
k=1

�[θ j (t ) − θk (t − τ )] + H (θ j (t ), t ; ωex).

(1)

See Appendix A for a derivation and assumptions. The vari-
able θ j (t ) represents the phase of the jth oscillator at time
t , the constant ω j is the natural frequency that follows the
natural frequency distribution g(ω), the function � represents
the coupling function, and the constant τ is the time delay
for the couplings. The function H represents the external
force and the constant ωex is its frequency. The 2π -periodic
functions � and H are expanded into the Fourier series as

�(θ ) = −
∞∑

m=1

Km sin(mθ + αm) (2)

and

H (θ, t ; ωex) = −�(t )
∞∑

m=1

hm sin[m(θ − ωext )], (3)

where hm is nonnegative strength and �(t ) is the unit step
function. We neglect the zero mode m = 0 in � since the
constant can be included in ω j , and in H since there is no
corresponding linear response in the order parameters [45]
[see (B10)]

zn(t ) = 1

N

N∑
k=1

einθk (t ). (4)

The intrinsically determined but unknown objects in (1) are
g(ω), �(θ ) (namely {Km, αm}), and τ , while the controllable

parameters are ωex and

h = (h1, h2, . . . ). (5)

We will infer the unknown objects from asymptotic responses
of the order parameters (4) with varying the external fre-
quency ωex and fixing h. We assume that all elements of h
are sufficiently small. This assumption ensures highly weak
invasiveness of our method.

The inference theory developed in Sec. III is based on the
assumptions that we can apply the above external force h
arbitrarily and that we can observe corresponding responses
in zn. Due to these assumptions, applicability of the theory
to experimental data is not obvious and will be discussed in
Sec. V. Nevertheless, we underline that a benefit of our infer-
ence theory is its universality founded on the phase reduction.

The asymptotic response is written up to O(‖h‖2) as

e−inωext zn(t )
t→∞−−−→ χn(ωex)hn +

∑
l,m

χ lm
n (ωex)hlhm. (6)

Taking the limit N → ∞ [46], the linear response coefficient,
susceptibility χn(ωex) is obtained as [28]

χn(ωex) = G(ωex)

2 − Ln(ωex)G(ωex)
(n > 0), (7)

where

Ln(ωex) = Kne−i(αn+nωexτ ), (8)

G(ωex) = πg(ωex) + i P.V.

∫ ∞

−∞
dω

g(ω)

ω − ωex
, (9)

and the symbol P.V., indicates the Cauchy principal value. The
left-hand side of (7) corresponds to observed data while the
right-hand side consists of the unknown objects. While the
derivation of (7) for a given system is a forward problem, we
address here the inverse problem to infer the unknown objects.

III. INFERENCE THEORY

We underline that the inference using (7) is not straight-
forward. For a fixed ωex and a mode n, the left-hand side
contains one known complex value (χn), while the right-hand
side contains two unknown complex values (G and Ln). To
overcome this difficulty, we introduce two ideas. The first
one is orthogonality of {e−inωexτ }, which permits us to infer
all the unknown objects, if the time delay is not zero, τ �= 0.
The second one is the incorporation of a nonlinear suscepti-
bility, which covers the case τ = 0. Here we use a nonlinear
response:

χ11
2 (ωex) = 2iG ′(ωex)

[2 − L2(ωex)G(ωex)][2 − L1(ωex)G(ωex)]2
.

(10)

See Appendix B for a derivation. We note that, once we infer
one Lm, say Ln, the other ones are inferred through the relation

Lm(ωex) = Ln(ωex) + 1

χn(ωex)
− 1

χm(ωex)
. (11)
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With an inferred Lm(ωex), g(ω) is also inferred by

g(ω) = 1

π
ReG(ω) = 1

π
Re

[
2χm(ω)

1 + Lm(ω)χm(ω)

]
. (12)

Therefore, the key task is to infer one Lm.
Our method is twofold: inference of τ (procedure 1) and of

Kme−iαm (procedure 2). The latter is further decomposed into
the two cases of τ �= 0 (procedure 2A) and τ = 0 (procedure
2B).

Before going into details, we define the reliable sam-
pling. We observe χn(ωex) and χ22

1 (ωex) for a set of external
frequency 
S = {ω1

ex, . . . , ω
S
ex} (ω1

ex < · · · < ωS
ex). We call a

sampling set 
S reliable, when the range ωS
ex − ω1

ex is suffi-
ciently large and the gaps ωi+1

ex − ωi
ex are sufficiently small.

Procedure 1 performs a finite Fourier transform:

Lmn(t ) = 1

ωS
ex − ω1

ex

∫ ωS
ex

ω1
ex

[
1

χn(ωex)
− 1

χm(ωex)

]
eiωext dωex.

(13)

Looking back at the relation (11) and the definition of Lm,
the absolute value |Lmn(t )| has two peaks (τ �= 0) or one peak
(τ = 0) at t = mτ and nτ because of the orthogonality of
{e−inωexτ }, if the sampling set is reliable. The peak positions
infer the time delay τ . We give two remarks. First, in an actual
sampling, discreteness and finiteness of the sampling set 
S

cause errors of the orthogonality. Second, since Lmn(mτ ) =
Kme−iαm , the errors should be sufficiently small to observe a
clear peak of the height Km at t = mτ .

Procedure 2A directly uses Lmn(mτ ) = Kme−iαm for any m,
and the factor Lm(ω) is obtained with τ inferred in proce-
dure 1. The natural frequency distribution g(ω) is inferred for
each m from (12). We solely used linear responses up to this
procedure.

Procedure 2B is for τ = 0, since the peak at t = 0 mixes
the modes m and n, Lmn(0) = Kme−iαm − Kne−iαn . To decom-
pose the mixture, we use the nonlinear response (10). z2 in
O(‖h‖2) can be directly observed by applying the external
force in the first mode h = (h1, 0, 0, . . . ), because χ2(ωex) ≡
0 in this setting. Solving (10) we have one expression of
G ′(ωex). We independently have another expression of G ′(ωex)
through solving (7) by G and deriving it. The combination of
the above two expressions of G ′(ωex) gives

L1 = K1e−iα1 = 2χ11
2 (ωex)

iχ2(ωex)χ ′
1(ωex)

− 1

χ1(ωex)
(14)

for τ = 0 (see Appendix C1). We take the average over S es-
timated values of L1 from ω1

ex, . . . , ω
S
ex. The other coefficients

Lm (m > 1) are estimated from (11) by taking the average. We
remark that procedure 2B is also applicable for τ > 0, where
L1 is obtained as a solution to a quadratic equation. However,
procedure 2A provides higher performance in inference for a
nonzero time-delay case as compared in an application (see
Appendix C2).

IV. NUMERICAL TESTS

By employing the theory developed above, we tackle a
reconstruction problem in two models: model 1 has a delay,
that is, τ > 0 and procedure 2A is applied, while model 2

TABLE I. True and inferred parameter values of model 1 and
model 2. The inferred values are given for each sampling set. NI
means noninferred values, because there is no clear peak around
t = 3τ in either |L34| or |L35|. Procedure 1 implies that K4 should
be sufficiently small from absence of a clear peak of |L45(t )| [see
Fig. 1(d)].

Model 1 τ K1 α1 K2 α2 K3 α3

Truth 2 1.379 0.7884 0.568 −3.0316 0.154 −0.7546

50

1 1.987 1.383 0.820 0.596 −3.016 0.153 −0.864

25

1 1.995 1.381 0.793 0.582 −3.111 NI NI

Model 2 τ K1 α1 K2 α2

Truth 0 1 1 0 0

81

2 0.001 0.958 1.001 0.044 −2.119

41

2 −0.001 1.063 0.497 0.521 −0.706

does not and procedure 2B is in use. Their system param-
eters are arranged in Table I. Numerical simulations of (1)
are performed in the use of the second-order Runge-Kutta
algorithm with the time step �t = 0.01. Responses of order
parameters are obtained as the average in the time interval
t ∈ (50, 150]. The number of oscillators is N = 105. All the
numerical simulations are performed by activating only one
mode in h with strength 0.1: hm = 0.1 and hn = 0 (n �= m) for
the mth mode. This strength is sufficiently small for the lin-
ear response but sufficiently large for overcoming finite-size
fluctuation of order O(1/

√
N ) by the second-order response

of order O(‖h‖2).
Model 1 is motivated by neurobiological systems and is

connected directly to a network of the Hodgkin-Huxley neu-
rons. As in [47,48], the Fourier components of the modes
m (m � 4) are zero. The time delay is set as τ = 2, which is
compatible with experimental observations [49]. Taking an-
other experimental observation [50] into account, we assume
the log-normal natural frequency distribution:

g1(ω) = 1

ω

√
2πσ 2

1

exp

[
− (ln ω − μ1)2

2σ 2
1

]
(15)

with μ1 = ln 5 and σ1 = 1. The external frequency is sampled
from the interval ωex ∈ [0.2, 10] with the step �ωex = 0.2 for
the sampling set 
50

1 , and �ωex = 0.4 for the set 
25
1 . We

start from procedure 1. We approximately compute Lmn(t )
(13) by using the midpoint algorithm, where a sampling
point ωi

ex is the midpoint. Absolute values |Lmn(t )| for the
set 
50

1 are reported in Fig. 1. We obtain the estimate τ =
1.987 by taking the average over the largest peak positions
for the pairs (m, n) = (3, 4) and (m′, n′) (m′ = 1, 2; n′ = m′ +
1, . . . , 5). A graph should have two large peaks at t = mτ and
nτ , although some peaks are not visible in Fig. 1. No clear
peak at t = nτ implies that Kn is smaller than the error level.
Indeed, no clear peak of |L45(t )| in Fig. 1(d) is consistent
with K4 = K5 = 0. Procedure 2A infers the coefficients Lm are
from the value of Lmn(t ) at the peak position, where the above
mentioned pairs are in use to take the average. Performing
the same procedure but using the set 
25

1 , we obtain another
set of inferences. The inferences are compared with the true
values in Table I. The coupling function �1(θ ) is directly ob-
tained from Lm, and the natural frequency distribution g1(ω) is
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FIG. 1. Procedure 1 in model 1. |Lmn(t )| (13) is computed from
the sampling set 
50

1 . (a) m = 1 and n ∈ {2, 3, 4, 5}. (b) m = 2 and
n ∈ {3, 4, 5}. (c) m = 3 and n ∈ {4, 5}. (d) m = 4 and n ∈ {5}. The
lines are n = 2 (purple chain), n = 3 (green broken), n = 4 (blue
dotted), and n = 5 (orange solid). The vertical dashed black lines
mark the inferred time delay mτ , and the horizontal solid black lines
mark the inferred Km.

inferred through the relation (12). They are in good agreement
with the true ones for the set 
50

1 as exhibited in Fig. 2.
Increasing the number of samples improves the inference,
because the sampling set becomes more reliable.

Model 2 is the Sakaguchi-Kuramoto model [51] which is
specified by the parameter set (K1, α1) = (1, 1) and the other
Fourier modes are zero. The time delay is zero: τ = 0. To
demonstrate the ability of the proposed method for general
natural frequency distributions, a nonunimodal and asymmet-
ric natural frequency distribution is assumed as

g2(ω) = ae−(x−μ2 )2/(2σ 2
2 ) + (1 − a)e−(x+μ2 )2/(2σ 2

2 )√
2πσ 2

2

, (16)

where a = 0.8, μ2 = 2, and σ2 = 1. The external frequency
is sampled from ωex ∈ [−4, 4] with the step �ωex = 0.1 for
the sampling set 
81

2 and �ωex = 0.2 for the set 
41
2 . To

compute the derivative χ ′
1(ωex), we use the central difference

except for the head and the end points, namely ω1
ex and ωS

ex,

FIG. 2. Comparison between the truth (purple solid line) and
the inference in model 1 having τ > 0. (a) The coupling function
is �1(θ ). The sampling sets are 
50

1 (green broken line) and 
25
1

(blue chain line). (b) The natural frequency distribution g1(ω) (15)
is obtained from the inferred L1 (green filled circles), L2 (blue open
circles), and L3 (orange triangles) by (12). The sampling set is 
50

1 .

FIG. 3. Model 2. (a) Procedure 1. The peak position is τ = 0.001
and the peak height is 1.014. (b) Procedure 2B is used to infer L1 by
(14) for each external frequency ωex. The real part ReLm (purple filled
circles) and the imaginary part ImLm (green open circles) are shown.
The purple and green horizontal solid lines mark the averaged values.
The sampling set is 
81

2 .

for which the forward and backward differences are in use,
respectively.

From now on, we concentrate on inferences of L1 and
L2. Procedure 1 confirms that |L12(t )| has a large peak at
t = 0.001 [see Fig. 3(a)], and hence we conclude no time
delay, τ = 0. The peak height 1.014 corresponds to |K1e−iα1 −
K2e−iα2 |, and the fact K2 = 0 implies that the peak height
approximately infers the value of K1 = 1. However, we do
not know the value of K2 a priori, and we cannot determine
K1 yet. We thus use procedure 2B, (14), for inferring L1, and
(11) for L2. They are obtained as functions of ωex, and L1(ωex)
is reported in Fig. 3(b). Fluctuation of L1 may be reasonable,
because procedure 2B, (14), uses a derivative χ ′

1 and a non-
linear susceptibility χ11

2 , while procedure 2A uses only the
linear susceptibilities χn. We determine the inferred values
of the constants L1 and L2 by taking the average over ωex,
and the constants Km and αm (m = 1, 2) from the averaged
Lm. The inferred values are arranged in Table I. The set 
81

2
infers good values, while the set 
41

2 does not provide good
inferences, owing to the lack of precision in computation of
the derivative χ ′

1(ωex). The inferred coupling function �2 and
the natural frequency distribution g2(ω) agree with the true
ones as reported in Fig. 4.

V. SUMMARY AND DISCUSSIONS

In summary, we proposed a method to reconstruct the
underlying coupled phase-oscillator model of a collective

FIG. 4. Comparison between the truth (purple solid line) and
the inference in model 2 having τ = 0. (a) The coupling function
is �2(θ ). The sampling sets are 
81

2 (green broken line) and 
41
2

(blue chain line). (b) The natural frequency distribution g2(ω) (16)
is obtained from the inferred L1 (green filled circles) and L2 (blue
open circles) through (12). The sampling set is 
81

2 .
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rhythmic system by observing responses in order param-
eters to weak external forces with varying the frequency.
A significant advantage of the proposed method is that it
requires neither severe invasiveness nor microscopic observa-
tions of individual elements. The effectiveness is confirmed
successfully by applying it to two representative phase mod-
els, where the unknown objects including the time delay in
interactions have been inferred accurately, when the sam-
pling of the external frequency lies on a sufficiently large
range with sufficiently small gaps. We note that the proposed
method has a potential to understand the criticality in com-
plex systems in terms of synchronization transitions, which
may reveal another perspective of the brain systems such
as their computational benefits [52]. Recently, experimental
observation techniques on mesoscopic neuronal activity have
been advanced rapidly, which may provide crucial insights on
whole-brain mechanisms of neural computation beyond tech-
nical limitation of microscopic observation [53]. Our method
is expected to bridge the gap between such data and the-
oretical analysis. To apply our method to biological data,
it is important to study how raw or processed mesoscopic
or macroscopic data (for example [54]) are related to order
parameters used here. It would be useful to export the idea
of our theory to synchronized states, noisy systems, complex
networks, and other dynamical systems [20–23,55].

Finally, we discuss three difficulties to apply the proposed
method to experimental data. The first difficulty is the com-
plexity of susceptibilities χn(ωex). These susceptibilities can
be obtained from the Daido-Kuramoto order parameters (4).
A methodology to connect experimentally observed quantities
and these order parameters should be sought. The second diffi-
culty is the restriction of observables. In the two-dimensional
FitzHugh-Nagumo model, for example, the membrane po-
tential v is observable and the other variable may not be.
The third difficulty is the restriction of the external force H .
Indeed, in coupled phase oscillators, the Fourier modes of the
external force are determined by the phase sensitivity function
Z(θ ) of the limit cycle oscillator (see Appendix A for details).
In other words, we cannot choose the external force vector
h = (h1, h2, . . . ) arbitrarily. We give a scenario to overcome
the above difficulties. First, the complexity of susceptibilities
is not essential, since the Kramers-Kronig relation reproduces
the imaginary part from the real part. Second, moments of
an observable variable, assumed to be observable, provide a
set of conditions which susceptibilities must satisfy. The third
difficulty is rather essential, since a Fourier mode of the cou-
pling function �(θ ) is not accessible in the linear level if the
external force H does not have the Fourier mode. However, a
nonlinear response helps to reveal a forbidden Fourier mode
of �(θ ) as the susceptibility χ11

2 provides information on the
second Fourier mode of � from the first Fourier mode of H .
We have to examine feasibility and precision of the above
scenario. We leave development of an inference theory for the
higher-dimensional dynamics as a future subject.
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APPENDIX A: PHASE REDUCTION

We consider a coupled high-dimensional dynamics

dx j

dt
= F j (x j ) + ε

N∑
k=1

G jk (x j, xk ) + εH j (t ), x j ∈ Rd

(A1)

which describes a realistic system. The dynamics F j may
be the van der Pole system (d = 2), the FitzHugh-Nagumo
system (d = 2), or the Hodgkin-Huxley model (d = 4). The
last term H j (t ) represents the external force, which does not
depend on θ j to avoid observation of individual elements. The
time delay in (1) is introduced phenomenologically, and we
skip it here (see [56,57] for phase reductions of differential
equations with a time delay).

We assume that |ε| is sufficiently small (|ε| 
 1) so that
we can perform the phase reduction and consider the lin-
ear response. Further, F j , G jk , and H j are assumed to be
expanded into

F j (x j ) = F(x j ) + ε f j (x j ), (A2)

G jk (x j, xk ) = G(x j, xk ) + εg jk (x j, xk ), (A3)

and

H j (t ) = H (t ) + εh j (t ). (A4)

Let U (t ) be the unique limit cycle solution with the period
2π/ω to the dynamical system ẋ = F(x). We introduce the
phase function φ(x) in the basin of the limit cycle, which
satisfies ∇φ(x) · F(x) = ω for any x in the basin. The phase
θ j of the jth element x j is defined as θ j = φ(x j ). Deriving the
phase with respect to t , we have

dθ j

dt
= ω + ε∇φ(x j ) ·

[
f j (x j ) +

N∑
k=1

G jk (x j, xk ) + H j (t )

]
.

(A5)

Asymptotically, we may write an orbit as x j = U (t ) + εu j (t ),
and it is sufficient to replace x j with U to have a phase
equation up to O(ε). Keeping in mind the phases of x j and
xk differ in general, taking the average over a period of the
limit cycle, we have the equation of θ j as

dθ j

dt
= ω j + 1

N

N∑
k=1

�(θ j − θk ) + H (θ j, t ), (A6)

where ω j − ω, �, and H respectively come from Z(θ j ) ·
f j , Z(θ j ) · G, and Z(θ j ) · H on the limit cycle, and Z(θ ) =
∇φ[U (θ/ω)] is the phase response function. Note that g jk ,
h j , and u j are absent in (A6).

APPENDIX B: LINEAR AND NONLINEAR
RESPONSE THEORIES

The response theories are derived from the equation of
continuity, which describes dynamics of phase oscillators in
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the limit N → ∞. The equation of continuity is introduced in
Appendix B1, the linear response theory reported in [28] is
reviewed in Appendix B2, and the nonlinear response theory
is developed in Appendix B3.

1. Equation of continuity

Dynamics of the system (1) is described in the limit N →
∞ by the equation of continuity

∂F

∂t
+ ∂

∂θ
{[ω + v[F ] + H (θ, t ; ωex)]F } = 0, (B1)

where F (θ, ω, t )dθdω represents the fraction of oscillators
which are found in the small area [θ, θ + dθ ] × [ω,ω + dω]
at time t , and

v[F ](θ, t ; τ ) =
∫ ∞

−∞
dω

∫ 2π

0
dθ ′ �(θ − θ ′)F (θ ′, ω, t − τ ).

(B2)
Suppose that the nonsynchronized state

F0(ω) = g(ω)

2π
(B3)

is stable stationary under H ≡ 0. We expand F around F0 as

F (θ, ω, t ) = F0(ω) + f (1)(θ, ω, t ) + f (2)(θ, ω, t ) + . . . ,

(B4)

where f (k) = O(‖H‖k ). Substituting the expansion (B4) into
the equation of continuity (B1), we have

∂ f (1)

∂t
+ ∂

∂θ

[
ω f (1) + (v[ f (1)] + H )F0

] = 0 (B5)

in the order of O(‖H‖), and

∂ f (2)

∂t
+ ∂

∂θ

{
ω f (2) + v[ f (2)]F0 + (

v[ f (1)] + H
)

f (1)
} = 0

(B6)

in the order of O(‖H‖2). We introduce the kth order part of
the order parameters as

z(k)
n (t ) =

∫ ∞

−∞
dω

∫ 2π

0
dθ einθ f (k)(θ, ω, t ). (B7)

From now on, we denote the Fourier series expansion of a
function ϕ(θ, t ) as

ϕ(θ, t ) =
∑

n

einθ ϕ̃n(t ), (B8)

and the Laplace transform of ϕ̃n(t ) as

ϕ̂(s) =
∫ ∞

0
e−st ϕ̃n(t )dt, Re(s) > 0. (B9)

The domain Re(s) > 0 is introduced to ensure the conver-
gence of the integral.

2. Linear response: O(‖H‖)

A derivation of the linear response has been reported in
[28]. We review a necessary part in computations of O(‖H‖2).
The Fourier-Laplace transform of f (1) satisfies

(s + inω) f̂ (1)
n + in

(
�ne−sτ ẑ(1)

−n + Ĥn
)
F0 = 0. (B10)

Using the definition (B7), we have

ẑ(1)
−n(s) = − Ĥn(s; ωex)

�n(s)
In(s), (B11)

where

�n(s) = 1 + �ne−sτ In(s) (B12)

and

In(s) =
∫

L

g(ω)

ω − is/n
dω. (B13)

In In(s), the singular point ω = is/n moves from the upper or
lower half of the complex ω plane with varying Re(s) from
Re(s) > 0 to Re(s) � 0. The integral contour L is modified
continuously from the real axis to avoid the singular point ω =
is/n, and the modification induces a residue part [28]. The
explicit form of In(s) is

In(s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫ ∞
−∞

g(ω)
ω−is/n dω (Re(s) > 0)

P.V.
∫ ∞
−∞

g(ω)
ω−is/n dω + n

|n| iπg(is/n) (Re(s) = 0)∫ ∞
−∞

g(ω)
ω−is/n dω + n

|n| i2πg(is/n) (Re(s) < 0)

(B14)

where P.V. represents the Cauchy principal value.
The linear susceptibility (7) is obtained by picking up the

pole of Ĥn(s; ωex), which survives in t → ∞. A notable fea-
ture is that no response appears in zn for an external force of a
different mode H̃m (|m| �= |n|).

3. Nonlinear response: O(‖H‖2 )

The Fourier-Laplace transform of f (2) satisfies

(s + inω) f̂ (2)
n + in

(
�ne−sτ ẑ(2)

−nF0 + N̂ (2)
n

) = 0, (B15)

where

N (2)
n (ω, t ) =

∑
m

Vm(t ) f (1)
n−m(ω, t ) (B16)

and

Vm(t ) = �mz(1)
−m(t − τ ) + Hm(t ). (B17)

The Laplace transform of z(2)
−n(t ) is obtained as

ẑ(2)
−n(s) = −2π

�n(s)

∫ ∞

−∞

N̂ (2)
n (ω, s)

ω − is/n
dω. (B18)

We need the Laplace transform of N (2)
n , which consists of

products of two functions.

a. Laplace transform of a product function

For analytic functions f (t ) and g(t ), we have the relation

f̂ g(s) = 1

2π i

∫ σg+i∞

σg−i∞
f̂ (s − s′ )̂g(s′)ds′, (B19)

where σg ∈ R is larger than the real parts of any singularities
of ĝ(s). A proof of (B19) is straightforward. We denote the
inverse Laplace transforms of f̂ (s) and ĝ(s) as

f (t ) = 1

2π i

∫ σ f +i∞

σ f −i∞
es1t f̂ (s1)ds1, (B20)
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where σ f ∈ R is larger than the real parts of any singularities
of f̃ (s), and

g(t ) = 1

2π i

∫ σg+i∞

σg−i∞
es2t ĝ(s2)ds2. (B21)

Changing the variables as (s, s′) = (s1 + s2, s2), the product
function ( f g)(t ) is expressed as

( f g)(t ) = 1

2π i

∫ σ f +σg+i∞

σ f +σg−i∞
ds est

×
[

1

2π i

∫ σg+i∞

σg−i∞
ds′ f̂ (s − s′ )̂g(s′)

]
. (B22)

The integral over s is the inverse Laplace transform of the
inside of the square brackets, and hence we have the relation
(B19).

We note that we pick up the singularities of ĝ only in the
integral with respect to s′. Let a be a pole of f̂ (s), and let
b be a pole of ĝ(s). By the definitions, we have Re(a) < σ1

and Re(b) < σ2. The convolution yields a pole of f̂ which lies
on the right side of the line Re(s′) = σg, since s′ = s − a =
σ f + σg − a > σg. Therefore, this singularity is not enclosed
by the integral counter, which consists of the line Re(s′) = σg

and the left half circle passing through the point at infinity on
the left half complex s′ plane.

b. Convolution in ̂N (2)
n

In this subsection we omit ωex in Hm for simplicity of
notation. The Laplace transform ẑ(2)

−n(s) is expressed as

ẑ(2)
−n(s) = −2π

�n(s)

∑
m

∫ ∞

−∞

L
[
Vm f (1)

n−m

]
(s)

ω − is/n
dω, (B23)

where L represents the Laplace transform operator. The
Laplace transform of Vm is

V̂m(s) = �me−sτ ẑ(1)
−m(s) + Ĥm(s) = Ĥm(s)

�m(s)
, (B24)

where we used (B11), (B12), and (B13). The Laplace trans-
form f̂ (1)

m (ω, s) is then from (B10)

f̂ (1)
m (ω, s) = − F0(ω)

ω − is/m

Ĥm(s)

�m(s)
. (B25)

The Laplace transform of Vm f (1)
n−m is, from Appendix B3a,

L
[
Vm f (1)

n−m

]
(s) = 1

2π i

∫ σ2+i∞

σ2−i∞

Ĥm(s′)
�m(s′)

F0(ω)

ω − i s−s′
n−m

× Ĥn−m(s − s′)
�n−m(s − s′)

ds′. (B26)

Remembering the note at the end of Appendix B3a and
keeping in mind that we are interested in the asymptotic
temporal evolution, we pick up the pole of Ĥm(s′) which is at

s′ = −imωex. The principal part of the Laplace transform is
then

PPL
[
Vm f (1)

n−m

]
(s)

= Res(Ĥm)

�m(−imωex)

H̃n−m(s + imωex)

�n−m(s + imωex)

F0(ω)

ω − i s+imωex
n−m

, (B27)

where PP represents the part surviving in the limit t → ∞,
and Res(Ĥm) = sgn(m)ihm/2 is the residue of Ĥm. Substitut-
ing the above expression into (B23), we have

PP̂z(2)
−n(s) = −1

�n(s)

∑
m

Res(Ĥm)

�m(−imωex)

× Ĥn−m(s + imωex)

�n−m(s + imωex)
Tn,m(s), (B28)

where

Tn,m(s) =
∫

L

g(ω)(
ω − i s+imωex

n−m

)(
ω − i s

n

)dω. (B29)

We pick up the pole of Ĥn−m(s + imωex), which is at s =
−inωex, for the asymptotic temporal evolution. Then,

einωext z(2)
−n(t )

t→∞−−−→ −1

�n(−inωex)

×
∑

m

Res(Ĥm)Res(Ĥn−m)Tn,m(−inωex)

�m(−imωex)�n−m(−i(n − m)ωex)
.

(B30)

We have to be careful for the value Tn,m(−inωex), because the
integrand of Tn,m(−inωex) has the pole of order 2 at ω = ωex.

c. Nonlinear response coefficient

From now on, we focus on the nonlinear response of mode
2 induced by the external force of mode 1, i.e. h1 > 0 and
hl = 0 (l > 1). Setting n = 2 and m = 1 in (B30), we have

e2iωext z(2)
−2(t )

t→∞−−−→ T2,1(−2iωex)

4�2(−2iωex)[�1(−iωex)]2
h2

1. (B31)

To obtain the value T2,1(−2iωex), we first perform the partial
fraction decomposition as

T2,1(s) = 2

i(s + 2iωex)
[I1(s + iωex) − I2(s)]. (B32)

In the limit s → −2iω′
ex (ω′

ex �= ωex) from the upper-half s
plane, we have

T2,1(−2iω′
ex) = i

ω′
ex − ωex

[G∗(2ω′
ex − ωex) − G∗(ω′

ex)].

(B33)
Further taking the limit ω′

ex → ωex, we have

T2,1(−2iωex) = i(G∗)′(ωex). (B34)
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FIG. 5. Comparison between the truth and the inference in model 1 having τ > 0. (a) The coupling function �1(θ ) is produced from the
sample set 
50

1 (green broken line) and 
25
1 (blue chain line). (b) Same as (a) but the inferred �1(θ ) are truncated up to Fourier mode 3. (c) The

natural frequency distribution g1(ω) is obtained from the inferred L1 (green filled circles), L2 (blue open circles), L3 (orange triangles), L4

(yellow inverse triangles), and L5 (dark-blue diamonds). The sample set is 
50
1 .

The asymptotic temporal evolution of z(2)
2 (t ) is hence

e−2iωext z(2)
2 (t )

t→∞−−−→ χ11
2 (ωex)h2

1 + O(‖H‖3), (B35)

where

χ11
2 (ωex) = iG ′(ωex)

4�∗
2(−2iωex)[�∗

1(−iωex)]2
. (B36)

Substituting

�n(−inωex) = 1
2 [2 − L∗

nG∗(ωex)],

�−n(inωex) = 1
2 [2 − LnG(ωex)], (n > 0) (B37)

into the above expression, we have

χ11
2 (ωex) = 2iG ′(ωex)

[2 − L2(ωex)G(ωex)][2 − L1(ωex)G(ωex)]2

= 2iG ′(ωex)

[G(ωex)]3
χ2(ωex)[χ1(ωex)]2, (B38)

where we used (7).

APPENDIX C: INFERENCE OF L1

The nonlinear response coefficient (B38) gives

G ′(ωex) = χ11
2 (ωex)[G(ωex)]3

2iχ2(ωex)[χ1(ωex)]2
. (C1)

We have another expression of G ′(ωex). Solving (7) by G(ωex),
we have

G(ωex) = 2χn(ωex)

1 + Ln(ωex)χn(ωex)
. (C2)

The derivation of (C2) gives

G ′(ωex) = 2
χ ′

n[1 + Lnχn] − χn[Lnχn]′

[1 + Lnχn]2

= χ ′
n(ωex) + inτLn[χn(ωex)]2

2[χn(ωex)]2
[G(ωex)]2, (C3)

where we used the definition Ln = Kne−i(αn+nωexτ ). The com-
bination between (C1) and (C3) provides for n = 1

G(ωex) = iχ2(ωex)[χ ′
1(ωex) + iτL1[χ1(ωex)]2]

χ11
2 (ωex)

. (C4)

This expression and (C2) for n = 1 give the equality

1 + L1(ωex)χ1(ωex)

2χ1(ωex)
= χ11

2 (ωex)

iχ2(ωex){χ ′
1(ωex) + iτL1[χ1(ωex)]2} .

(C5)

This is the equation for determining L1.

1. For τ = 0

In particular, L1 is uniquely determined for τ = 0 as

L1 = K1e−iα1 = 2χ11
2 (ωex)

iχ2(ωex)χ ′
1(ωex)

− 1

χ1(ωex)
. (C6)

2. For τ > 0

We can infer L1 from the quadratic equation (C5) for τ > 0
as well as for τ = 0. The quadratic equation is rewritten into

AL2
1 + BL1 + C = 0, (C7)

TABLE II. True and inferred parameter values of model 1 from (C9) and (C10), by taking the average over ωex. The time delay τ is inferred
by procedure 1.

Model 1 τ K1 α1 K2 α2 K3 α3 K4 α4 K5 α5

Truth 2 1.379 0.7884 0.568 −3.0316 0.154 −0.7546 0 0

50

1 1.987 1.215 0.925 0.683 −2.663 0.257 0.694 0.119 2.108 0.289 0.991

25

1 1.995 0.857 0.806 0.956 −2.584 0.414 1.004 0.253 1.190 0.389 0.407
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where

A(ωex) = iτ
[χ1(ωex)]2

χ ′
1(ωex)

, B(ωex) = 1 + iτ
χ1(ωex)

χ ′
1(ωex)

,

C(ωex) = 1

χ1(ωex)
− 2χ11

2 (ωex)

iχ2(ωex)χ ′
1(ωex)

. (C8)

We have the two solutions to (C7), and we select the solution

L1(ωex) = − B(ωex)

2A(ωex)

⎛⎝1 −
√

1 − 4A(ωex)C(ωex)

[B(ωex)]2

⎞⎠ (C9)

to have (C6) in the limit τ → 0, namely A → 0. The inferred
L1 induces the other inferences of Lm through the relation

Lm(ωex) − L1(ωex) = 1

χ1(ωex)
− 1

χm(ωex)
(m � 2). (C10)

The inferred parameter values are summarized in Table II
for model 1. The inferred coupling function �1(θ ) and the
natural frequency distribution g1(ω) are compared with the
true ones in Fig. 5. We observe rather large errors in higher
order modes in �1(θ ), and precision is improved by truncating
the Fourier series up to mode 3. Moreover, the errors tend to
decrease as the number of samples increases, and g1(ω) is well
inferred irrespective of used modes.
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