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Abstract
The architecture of species interaction networks is a key factor determining the stability of ecological communities. However, the fact 
that ecological network architecture can change through time is often overlooked in discussions on community-level processes, 
despite its theoretical importance. By compiling a time-series community dataset involving 50 spider species and 974 Hexapoda prey 
species/strains, we quantified the extent to which the architecture of predator–prey interaction networks could shift across time 
points. We then developed a framework for finding species that could increase the flexibility of the interaction network architecture. 
Those “network coordinator” species are expected to promote the persistence of species-rich ecological communities by buffering 
perturbations in communities. Although spiders are often considered as generalist predators, their contributions to network flexibility 
vary greatly among species. We also found that detritivorous prey species can be cores of interaction rewiring, dynamically 
interlinking below-ground and above-ground community dynamics. We further found that the predator–prey interactions between 
those network coordinators differed from those highlighted in the standard network-analytical framework assuming static topology. 
Analyses of network coordinators will add a new dimension to our understanding of species coexistence mechanisms and provide 
platforms for systematically prioritizing species in terms of their potential contributions in ecosystem conservation and restoration.
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Introduction
In nature, numerous species form entangled webs of interactions 
(1), collectively driving community-scale dynamics (2–5). Since 
May's seminal work on the relationship between community com-
plexity and stability (6), potential mechanisms by which species- 
rich communities are maintained have attracted scientists. 
Mathematical models with minimal assumptions basically pre-
dict that species-rich ecological communities are inherently un-
stable (i.e. likely to collapse after perturbation) (6, 7). However, it 
has been proposed that introducing key features of real ecological 
communities can reorganize our knowledge of how species-rich 
communities are maintained in natural ecosystems (8–12).

One of the key properties of ecological communities is the 
architecture of interaction networks (13–16). In classic mathemat-
ical models of community dynamics, interactions have been 

assumed between randomly selected pairs of species in a commu-
nity (6, 7). Meanwhile, studies on empirical datasets of species in-
teractions have revealed that community-scale organization of 
interactions is never random (13, 15, 17, 18). Theoretical studies 
assuming nonrandom networks have then predicted that specific 
types of network architecture, such as nested or compartmental-
ized architecture, can increase/decrease community stability (11, 
19, 20). Although the application of network science has signifi-
cantly promoted theories on species coexistence, the majority of 
studies have still relied on unrealistic assumptions about eco-
logical interaction networks. Specifically, a fixed architecture of 
interaction networks has been often assumed in theoretical and 
empirical investigations of ecological networks.

The concept that ecological network architecture can dynamic-
ally change in nature is central to our understanding of species 
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coexistence in real ecological communities (21–25). If a food web 
has a fixed (rigid) network structure, extinction or population de-
cline of a predator species may trigger the burst of the population 
size of some prey species, resulting in extinctions of competing 
prey species and subsequent cascade extinctions through the 
interaction network (26–28). In contrast, if species interactions 
in a food web are flexible (29–33), ecological effects of the extinc-
tion of a predator species can be buffered by prey range shifts or 
functional responses of other predator species (12). Thus, the 
flexibility of interaction networks is considered as the key factor 
determining community stability (12, 31, 34). Nonetheless, due 
to difficulty in obtaining time-series datasets of species interac-
tions, few studies have revealed how network architecture can 
shift through time in species-rich communities (e.g. communities 
with >100 species).

We here examine whether species-rich predator–prey commu-
nities can show drastic network architectural dynamics in nature. 
By compiling an empirical dataset involving 50 spider (predator) 
species and 974 prey species/strains (35), we quantitatively evalu-
ate shifts in network architecture across 8 months. We then 
decompose the network architectural changes into two compo-
nents, namely, network shifts due to interaction rewiring and 
those due to species turnover. Based on the analysis of network 
dynamics, we develop a framework for evaluating the extent to 
which respective species in a community contribute to the flexi-
bility of network architecture. In the framework, species with 
high potential impacts on network flexibility are of particular 
interest because those species could buffer environmental pertur-
bations for communities. Overall, we propose that insights into 
such “network coordinators” will reorganize our understanding 
of the mechanisms by which keystone species govern coexistence 
in species-rich communities.

Results
Analyses of network dynamics
Changes in network architecture can be evaluated based on 
β-diversity metrics, which are frequently used in measuring spe-
cies compositional dissimilarity between local communities 
(25, 36, 37). When network data matrices of multiple time points 
or multiple local communities are available, we can calculate 
not only dissimilarity (β-diversity) in species (vertex) composi-
tions (βS) but also that in interaction (edge) compositions (βINT) 
for each pair of community matrices (25). Dissimilarity in inter-
actions can be then decomposed into two components, specific-
ally, network architectural dissimilarity due to interaction 
rewiring (βRW) and that due to species turnover (βST) as detailed 
in previous studies (25, 36, 37) (see Materials and methods for 
details; Fig. 1A).

In addition to comparisons between different time points or lo-
cal sites, a comparison of network architecture can be performed 
between each community matrix representing species interac-
tions realized at specific time or space (hereafter, realizations) 
and the “meta-network” matrix consisting of all the species inter-
actions observed across the realizations (Fig. 1B). Specifically, for 
each pair of a realization and the meta-network, total dissimilar-
ity in network architecture (β ′INT), dissimilarity in network archi-
tecture due to rewiring (β ′RW), and dissimilarity in network 
architecture due to species turnover (β ′ST) can be calculated (25).

Based on the platform, we here propose a framework for evalu-
ating the potential contributions of each species to the flexibility 
of ecological network architecture. The extent to which dissimi-
larity in network architecture between a realization and the 

meta-network can change due to interaction rewiring effects of 
species i is quantified as:

Δβ ′RW,i = β ′RW − β ′RW,Δi, 

where β ′RW is the original value of dissimilarity in network architec-
ture due to rewiring as defined above, and β ′RW,Δi denotes the simu-
lated value of dissimilarity calculated by removing species i from 
the dataset (Fig. 1). By definition, this Δβ ′RW, i index can be calcu-
lated for each species in the dataset in each pair of a realization 
and the meta-network. Therefore, for each species i, the maximum 
value of Δβ ′RW, i across the dataset (i.e. max(Δβ ′RW, i)) is used as a 
measure of the potential magnitude of contributions to network 
architectural flexibility. In addition to max(Δβ ′RW, i), we can calcu-
late max(Δβ ′INT, i), which represents the potential magnitude of 
contributions to total network dissimilarity between realizations 
and the meta-network (see Materials and methods for details).

Transitions in network architecture
We first evaluated the extent to which network architecture could 
change through time by compiling the time-series dataset of 
predator–prey interactions in a warm-temperate grassland (35). 
The dataset based on high-throughput DNA metabarcoding in-
cluded 50 spider (predator) species and 974 prey Hexapoda spe-
cies/strains in its meta-network (Figs. 2A and S1), which 
consisted of eight realizations of predator–prey interaction net-
works observed from April to November (Fig. 2B). Because the net-
work data included frequency information for each edge (i.e. the 
number of predator samples from which a focal prey was de-
tected), we used a β-diversity metric for quantitative data in the 
calculations of the indices discussed above. Specifically, the 
Bray–Curtis metric of β-diversity was applied after converting fre-
quency information into proportions. Thus, the term “network 
architecture” represents not only the presence/absence of net-
work edges (i.e. network topology) but also the organization of 
interaction intensity or frequency (i.e. edge weights) in this study. 
This assumption of network architectural dynamics is compatible 
with that of theoretical studies incorporating changes in inter-
action coefficients (i.e. functional responses) as essential factors 
determining community stability (12).

In the spider–prey system, both species (vertex) compositions 
(βS) and interaction (edge) compositions (βINT) continually shifted 
between consecutive months from April to November (Fig. 3A). In 
terms of network architectural shifts, not only changes due to spe-
cies turnover (βST) but also changes due to interaction rewiring 
(βRW) played major roles. The proportion of interaction rewiring 
effects to total changes in network architecture (βRW/ βINT) varied 
from 28.6 to 61.0%, showing the lowest and highest values in April 
and October, respectively (Fig. 3B).

Dissimilarity between each realization and the 
meta-network
We also found that the network architecture of each month devi-
ated considerably from that of the meta-network (0.583 ≤  β ′INT ≤  
0.925; Fig. 3C). In all the months, effects of interaction rewiring 
(β ′RW) exceeded those of species turnover (β ′ST; Fig. 3C).

Species contributions to network flexibility
Potential contributions to network flexibility (max(Δβ ′RW, i)) dif-
fered considerably among the spider species examined (Figs. 4A, 
S2, and S3). The presence of Oxyopes sertatus (Oxyopidae), which 
showed the highest contributions to network flexibility, was ex-
pected to increase the β-diversity component due to interaction 
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rewiring (β ′RW) by 0.0587 at the maximum (Fig. 4A). Likewise, 
Argiope bruennichi (Araneidae) was inferred to increase β ′RW 

by 0.0387 (Fig. 4A). In addition to those species, Salticidae 
sp.1, Tetragnatha caudicula (Tetragnathidae), Pachygnatha tenera 
(Tetragnathidae), Neoscona adianta (Araneidae), and Ebrechtella tri-
cuspidata (Thomisidae) displayed relatively high contributions to 
network flexibility. We also found that O. sertatus and A. bruennichi 
had the greatest contributions to total network dissimilarity be-
tween realizations and the meta-network (max(Δβ ′INT, i); Fig. S4).

Among the 974 prey species/strains, those belonging to the 
nonbiting midge genus Chironomus (Chironomidae; Diptera) and 
the springtail genus Homidia (Entomobryidae; Collembola) had 
the highest potential contributions to network flexibility (Figs. 
4B, S2, and S3). Likewise, relatively high contributions to network 
flexibility were inferred for a mosquito species (Culex sp.; Diptera) 
and some aphid species (Aphis sp. and Sitobion sp.; Hemiptera). 
These prey species/strains were preyed on by various spider spe-
cies (Fig. 5A), showing relatively high-degree centrality (i.e. the 
number of edges connected to spider species) within the network 
(Fig. 4B).

Flexible network links
We next evaluated the flexibility of respective network links based 
on the multiplication of spiders’ potential contributions to net-
work flexibility by those of prey (spider's max(Δβ ′RW, i) × prey's 
max(Δβ ′RW, i)). Within the meta-network (Figs. 5A and S5), the 
link between O. sertatus and a nonbiting midge (Chironomus), that 
between O. sertatus and a springtail (Homidia), and that between 
A. bruennichi and a midge (Chironomus) showed the highest levels 

of flexibility (Fig. 5B). Meanwhile, these network links did not 
have high-edge betweenness centrality, which represented the 
degree to which a focal edge (link) was located within the shortest 
paths connecting pairs of vertices within a network (38). We also 
found that links with the highest edge betweenness, such as 
Xysticus-midge (Chironomus) links and a E. tricuspidata–unidentified 
Diptera link, showed low flexibility scores (Fig. 5B).

Discussion
We here quantitatively evaluated the extent to which predator– 
prey interaction networks vary through time in the wild. 
Although there have been classic studies reporting entangled 
webs of consumer–victim interactions (33, 39–41), our study, as 
far as we know, is the first to evaluate the architectural flexibility 
of networks involving hundreds of species. As shown in this study, 
network architecture of predator–prey systems shifts within short 
time windows due to seasonal turnover of species compositions 
(as represented by βST) as well as due to rewiring of interactions 
(βRW). Without considering the flexibility of ecological networks, 
mechanisms determining community stability will never be fully 
understood. Thus, fueling feedback between empirical and theor-
etical studies beyond a static view of interaction networks is the 
starting point for reorganizing our recognition of species coexist-
ence mechanisms.

Comparing the magnitude of network architectural shifts be-
tween different types of species interactions is of particular im-
portance for comprehensively understanding the consequences 
of network dynamics. A pioneering work on plant–pollinator 

A

B

Fig. 1. Evaluating dissimilarity in the architecture of species interaction networks. A) Network architectural dynamics. Both species compositions 
(network vertices) and interactions (network edges) can vary among communities realized at a specific time or space (“realizations”). B) Meta-networks 
and realizations. Compiling the information from all the realizations yields the data matrix of the meta-network including all nodes and interactions 
observed through a defined period of time or across metacommunities. In this study, dissimilarity (β-diversity) between realizations is designated as β, 
while dissimilarity between a realization and the meta-network is described as β ′. Subscripts of β and β ′ represent targets of dissimilarity analyses: INT, 
total dissimilarity in network architecture; RW, dissimilarity in network architecture due to rewiring of species interactions; ST, dissimilarity in network 
architecture due to species turnover; S, dissimilarity in species compositions are represented. The contributions of each species to respective β-diversity 
components are evaluated as shown in the box.
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interactions (24) reported that total changes in network architec-
ture could be large (βINT > 0.50) across seasonal transitions and 
that changes due to interaction rewiring could consistently ex-
ceed those due to species turnover (βRW >  βST). In our analysis 
of predator–prey interactions, total changes in network archi-
tecture were large as well (βINT > 0.50), while balance between 

interaction rewiring and species turnover effects shifted across 
the seasons (Fig. 3A and B). These findings lead to the working 
hypothesis that flexibility in network architecture is a basic 
property common to mutualistic and antagonistic interactions 
despite potential differences in factors driving such network 
architectural dynamics.

A B

Fig. 2. Topology of spider–prey networks. A) Meta-network, including all the spider–prey interactions, observed from April to November. Spider species 
and prey Hexapoda OTUs are shown on the left and right, respectively. See Fig. S1 for the abbreviations of spiders and the information about prey OTUs. 
B) Network topology for each month. Reproduced from the time-series dataset of spider–Hexapoda interactions. Reproduced from the data of a previous 
study (35).

A B C

Fig. 3. Network dissimilarity scores. A) Changes in network architecture through time. Dissimilarity in network architecture between each pair of 
consecutive months (e.g. from April to May) is shown for each β-diversity component. B) Ratio of interaction rewiring effects to total dissimilarity in 
network architecture. For each pair of consecutive months, relative contributions of interaction rewiring are evaluated by βRW/βINT. C) Dissimilarity with 
the meta-network. For each pair of a realization (month) and the meta-network, dissimilarity in network architecture is shown. Note that dissimilarity in 
network architecture (βINT) consists of dissimilarity due to interaction rewiring (βRW) and that due to species turnover (βST): i.e. βINT = βRW + βST.
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Based on the time-series analysis of predator–prey interac-
tions, we developed a framework for evaluating species’ contribu-
tions to the flexibility of ecological network architecture. 
Theoretical studies have predicted that predators’ adaptive food 
choice (30), which is represented by dynamically changing inter-
action coefficients in mathematical models, can aid the long-term 
stability of complex communities (i.e. communities with high spe-
cies richness and connectance) (12). Without such adaptive for-
aging, community complexity is negatively associated with 
stability, as suggested by May's classic model (6), while with pred-
ators’ adaptive choice, complexity can promote community per-
sistence (12). Consequently, species increasing network 
architectural flexibility are possibly keys to understand the reason 
why classic models do not explain empirical observations on the 
positive relationship between community complexity and stabil-
ity (42).

In our analysis of spider–prey interactions, a sit-and-wait-type 
spider O. sertatus and a web-weaving spider A. bruennichi had 
much greater impacts on network flexibility than other species 
(Fig. 4A). Although spiders are often considered as generalist pred-
ators (43), having broad potential prey ranges does not necessarily 
guarantee high contributions of the species to network architec-
tural plasticity. In other words, responsiveness to biotic/abiotic 
environmental changes is another essential factor to be explored 
through community dynamics.

Investigations of such “network coordinators” add a new di-
mension to the discussion of “keystoneness” in ecosystems (44). 
Since Paine's seminal work (3, 45), keystone species, which impose 
great impacts on ecosystem-level dynamics (44), have been de-
tected based on the experimental exclusion of candidate species 
(28). However, pinpointing candidates for keystone species out 
of hundreds or thousands of species within ecosystems per se is 
basically an exhausting task. In this respect, network information 
provides bird's-eye views for exploring potential keystone species 
(46–48), which should be subjected to detailed experimental in-
vestigations. The framework proposed in this study is expected 
to highlight predators imposing flexible top-down control on di-
verse prey and thereby promoting species coexistence at the lower 
trophic level (27, 28). It is also expected to illuminate prey species 
buffering biotic/abiotic perturbations by being flexibly consumed 
by diverse predator species. In advancing the application of this 

network-based approach, benchmark analyses quantifying the 
extent to which classic examples of keystone species (e.g. sea stars 
in intertidal communities (3, 45)) contribute to network flexibility 
are awaited.

The present constraint limiting our knowledge of network 
architectural dynamics is the scarcity of empirical datasets cover-
ing multiple time points (25). Therefore, it is worthwhile to exam-
ine whether some network indices deriving from static network 
analyses can be used as proxies for the network coordinator index. 
In this respect, network centrality metrics, such as degree and be-
tweenness centralities (38, 46, 47), may provide a broadly applic-
able platform. However, we found that species with high 
network centralities do not necessarily have high potential contri-
butions to network flexibility (Fig. S4). This result suggests that 
time-series analyses shed new light on the organization of eco-
logical networks and that more empirical datasets covering mul-
tiple time points are required to deepen our understanding of 
keystone species.

Further conceptual advances are necessary for systematically 
exploring species controlling ecological community dynamics 
and stability. Keystone species have been conventionally defined 
as species having disproportionately large impacts on ecosystems 
relative to their abundance (44). In this respect, it may be import-
ant to compare network coordinator scores among species with 
the same levels of abundance within a community dataset. 
Salticidae sp. 1 and P. tenera, for example, showed much higher 
values of contributions to network flexibility than other spider 
species with the comparable abundance (Fig. S6A). Furthermore, 
the assumption that keystone species can be replaced through 
time (35) would be an alternative basis for interpreting real com-
munity dynamics.

The guild or functional group of highlighted network coordina-
tors is another important target of discussion. For example, the 
fact that possibly detritivorous prey, such as nonbiting midges 
(Chironomus) and springtails (Homidia), showed high contributions 
to network flexibility is of particular interest. This result leads to 
the hypothesis that stability of above-ground food webs is main-
tained by subsidy from below-ground ecosystems (49, 50). Thus, 
ecological roles of the potential network coordinators at the inter-
face of different energy channels deserve extensive studies (50, 
51). In this respect, the interactions between the network 

A B

Fig. 4. Estimates of each species’ contribution to network flexibility. A) Contributions of spider species to network rewiring. The maximum value of 
contributions to network rewiring effects (max(Δβ′RW, i)] is shown for each spider species on the vertical axis. Species with higher max(Δβ ′RW, i) values have 
higher potential impacts on the flexibility of interaction networks. The horizontal axis indicates network degree within the meta-network (Fig. S1). The 
network degree centrality (the number of edges connected to the target vertex [species or OTU]) was standardized by dividing the number of links by 
N  −1, where N was the total number of vertices within the network.
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coordinator prey and network coordinator predators (O. sertatus 
and A. bruennichi) are keys to understand flexible linkage between 
above-ground and below-ground ecosystems (Fig. 5). Given that 
those network links with high flexibility were different from those 
highlighted in the standard network-analytical framework as-
suming static topology (Fig. 5B), analyses of network flexibility 
will provide novel insights into community stability and ecosys-
tem dynamics.

Albeit informative, our approach to evaluating contributions to 
network flexibility currently has several limitations. First, the spi-
der–prey interactions inferred with the DNA metabarcoding are 
just fractions of the entangled web species interactions in the 
wild (35). Thus, it is important to extend the targets of the DNA 
metabarcoding analysis to “external” interactions involving diverse 
vertebrate and invertebrate species. Second, such an extension of 
the approach to datasets of hyper-species-rich communities may 
ultimately make it difficult to calculate each species’ contribution 
score. Nonetheless, DNA-metabarcoding-based methods can be 
flexible in this respect because interaction networks can be re- 
defined by grouping species (or OTUs) into taxonomic groups. 
Such analyses with reduced complexity will highlight ecological 
guilds with high impacts on community dynamics and stability. 
Third, it is important to appreciate that the accuracy of network- 
based inferences depends on the completeness of the source 
data. Although our data included 168–441 spider individuals each 
month, more comprehensive datasets (e.g. datasets involving 

>1,000 spider samples per month) will provide more reliable infer-
ences. Likewise, the taxonomic coverage of prey-detection analyses 
is an important factor potentially affecting statistical results. 
Although we have carefully selected PCR primers covering diverse 
taxonomic groups of Hexapoda through previous studies (35, 52), 
continual efforts should be made to increase the comprehensive-
ness of the network analyses. Fourth, the potential influence of 
background abiotic factors on network architectural dynamics 
needs to be examined in future studies. In this respect, the 
causal-inference analyses based on nonlinear mechanics (53, 54) 
will allow us to decipher how each species’ contributions to the 
interaction network structure are driven by temporal changes in 
abiotic factors (e.g. temperature and aridity) (47).

In the era of worldwide biodiversity loss and ecosystem degrad-
ation, highlighting keystone species is an essential task in conser-
vation biology (26, 27, 48, 55). Considering concurrently escalating 
issues, such as global warming, frequent extreme weather events, 
and environmental pollution, prioritized conservation efforts that 
need to be directed to species buffering biotic/abiotic environmen-
tal changes within flexible webs of interactions. Given that high- 
throughput analyses of species interactions are becoming pos-
sible based on DNA metabarcoding (47), time-series analyses of 
interaction networks (56) will be widely applied as essential plat-
forms in ecosystem conservation and restoration programs. 
Bird's-eye views for exploring network coordinator species will ad-
vance both the basic and applied sides of ecosystem sciences.

A

B

Fig. 5. Species and links within a flexible network. A) Species’ contributions to network rewiring. For each spider species or prey OTU, the maximum value 
of contributions to network rewiring effects (max(Δβ ′RW, i)) is represented by vertex (node) size within the meta-network. Among the spiders, O. sertatus 
and A. bruennichi showed the highest contributions to network rewiring. Likewise, among the prey, OTUs of Chironomus (H_0042) and Homidia (H_0046) 
displayed the highest levels of contributions to network rewiring. Spiders and prey discussed in the main text are highlighted with arrows. The thickness 
of edges (links) indicates prey-detection counts. Network ordination was optimized with the ForceAtlas2 algorithm. B) Static vs. dynamic views on the 
meta-network architecture. The standardized betweenness centrality of the links within the meta-network (edge betweenness) is shown along the 
horizontal axis. This index represents the degree to which a given edge is located within the shortest path connecting pairs of vertices in a static network 
topology. In contrast, flexibility of links within the meta-network is evaluated by multiplying spider's potential contributions to network rewiring (spider's 
max(Δβ ′RW, i) value) by prey's potential contributions to network rewiring (prey's max(Δβ ′RW, i) value; standardized between 0 and 1; vertical axis). Only the 
network links that appeared in 10 or more spider samples (prey-detection counts ≥10) are shown.
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Materials and methods
Dataset
We compiled the DNA metabarcoding dataset of spiders’ prey 
contents in a warm-temperate grassland located at the Center 
for Ecological Research, Kyoto University, Japan (34°58′16.7″N 
135; 57′32.3″E) (35). At the study site, spiders were haphazardly 
collected by sweeping with an insect net (diameter = 50 cm) on 
3–5 days in the middle of each month from April to November 
2018 (168–441 spider individuals per month). Note that spiders 
were hard to sample in winter (from December to March) due to 
their inactivity as well as the lack of grasses to sweep. Because 
all the spider individuals (>2 mm in body length) caught in the 
sweeping net were sampled, the collected specimens as a whole 
represented the species compositions of spiders at the study site 
in each month. In total, 2,224 spider samples representing 63 spe-
cies were sampled across the eight months (35). Each spider sam-
ple was washed sequentially with distilled water, 70% ethanol, 
and 100% ethanol. The prey repertoires of each spider sample 
were then reconstructed based on the DNA metabarcoding (illu-
mina amplicon sequencing) targeting the mitochondrial 16S 
rRNA region of Hexapoda (i.e. insects, springtails, etc.). Prey 
DNA was then detected in 1,556 out of the 2,224 spider samples 
examined (35). In the metabarcoding data, the presence (1) and 
absence (0) of each prey OTU in each spider sample (individual) 
were designated for each month. The information of each month 
was used to obtain a “species-level” matrix, in which cell entries 
represented the number of spider samples from which respective 
spider–Hexapoda OTU combinations were observed (i.e. prey- 
detection counts). Across the 8 months (realizations), 974 prey 
OTUs (defined with a 97% threshold identity of mitochondrial 
16S rRNA sequences) belonging to 120 families were present in 
the dataset. The total number of spider–Hexapoda links was 
2,247, representing 5,190 prey-detection counts (35). The network 
of each month (realization) and the meta-network containing all 
the interactions observed across the 8 months were visualized us-
ing the bipartite v.2.6-2 package of R 4.1.2.

Network dissimilarity between realizations
For a pair of ecological communities (realizations), difference in 
network architecture could be expressed as β-diversity of network 
edge (link) compositions (25). The β-diversity index representing 
dissimilarity in interaction network architecture (βINT) could 
have two additive components, namely, dissimilarity in network 
architecture among species that occurred in both months (i.e. dis-
similarity due to network rewiring; βRW) and dissimilarity in net-
work architecture due to differences in species compositions 
between the months (i.e. dissimilarity due to species turnover; 
βST) (24, 25). Therefore, the relationship among βINT, βRW, and βST 

can be expressed as:

βINT = βRW + βST. (1) 

Dissimilarity in network architecture can then be calculated 
based on various types of β-diversity metrics. When Sørensen's 
metric for binary data formats, for example, is used to evaluate to-
tal dissimilarity between networks (realizations) M and N, βINT can 
be expressed as

βINT =
b + c

2a + b + c
, (2) 

where a denotes the number of items (network edges) commonly 
observed in the two networks (M and N) compared, b is the num-
ber of items unique to network M, and c is the number of items 

unique to network N (25). Likewise, dissimilarity in network archi-
tecture due to rewiring is calculated by redefining networks to be 
compared. Specifically, by focusing on network components that 
contain only species shared between the two networks (realiza-
tions), subset networks Mshared and Nshared are obtained. βRW is 
then calculated as

βRW =
b′ + c′

2a′ + b′ + c′
, (3) 

where a′ denotes the number of items (network edges) commonly 

observed in the two networks (Mshared and Nshared) compared, b′ is 
the number of items unique to network Mshared, and c′ is the num-
ber of items unique to network Nshared. In this framework pro-
posed by Poisot et al (25). (hereafter, framework 1), βST is then 
calculated by substracting βRW from βINT, i.e.

βST = βINT − βRW. (4) 

This indirect estimation of βST is not guaranteed if the additivity 
of the β-diversity components is not met (36). Therefore, for accur-
ately partitioning network architectural dissimilarity into effects 
of network rewiring and those of species turnover, an alternative 
framework of β-diversity calculation has been proposed (36, 37) 
(hereafter, framework 2). Among the studies, Fründ (36) has pro-
posed to calculate both βRW and βST directly with Sørensen's 
β-diversity measure as follows:

βRW =
b′ + c′

2a + b + c
(5) 

and

βST =
bST + cST

2a + b + c
, (6) 

where bST and cST are obtained as b − b′ and c − c′, respectively. 
Because the two indices are calculated with the common denom-
inator (i.e. 2a + b + c), their sum is always equal to βWN as follows:

βINT = βRW + βST =
b′ + c′ + bST + cST

2a + b + c
. (7) 

In this study, we used framework 2 for partitioning network re-
wiring and species turnover effects in calculating dissimilarity in 
interaction network architecture. Meanwhile, we performed a 
comparative analysis based on framework 1 as shown in Figs. S7 
and S8. In both frameworks, prey-detection counts in the input 
data were converted into proportions using the “proportions =  
TRUE” option in the “betalinkr” function (36) of the R bipartite pack-
age (57). Each dissimilarity indices were then calculated based on 
Bray–Curtis metric of β-diversity using the “betalinkr” function.

Transitions of network architecture
Dissimilarity in network architecture through the time-series was 
evaluated based on the abovementioned β-diversity indices. For 
each pair of consecutive months (e.g. from April to May), total dis-
similarity in interaction network architecture (βINT), dissimilarity 
in network architecture due to rewiring (βRW), and dissimilarity 
in network architecture due to species turnover (βST) were eval-
uated. In addition to dissimilarity in network architecture, dis-
similarity in species compositions (βS) was calculated based on 
Bray–Curtis β-diversity.

Dissimilarity between each realization and the 
meta-network
We also calculated dissimilarity in network architecture between 
each realization (each month's network) and the meta-network 

Toju et al. | 7
D

ow
nloaded from

 https://academ
ic.oup.com

/pnasnexus/article/3/3/pgae047/7618480 by R
esearch R

eactor Inst Library user on 08 M
arch 2024

http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgae047#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgae047#supplementary-data


representing all the spider–prey interactions detected across the 8 
months (Fig. 1). Specifically, total dissimilarity in network archi-
tecture, dissimilarity in network architecture due to rewiring, 
and dissimilarity in network architecture due to species turnover 
were calculated as β ′INT, β ′RW, and β ′ST, respectively, for each pair of 
a realization and the meta-network (Fig. 1). Likewise, dissimilarity 
in species compositions between a realization and the meta- 
network (β ′S) was calculated.

Species contributions to network flexibility
To evaluate the potential contributions of each species to the 
flexibility of network architecture, we examined the extent to 
which dissimilarity in network architecture between a realization 
and the meta-network could change due to the interaction rewir-
ing effects of a target species. We then developed Δβ ′RW, i index, 
which was defined as follows:

Δβ ′RW,i = β ′RW − β ′RW,Δi, (8) 

where β ′RW was the original value of dissimilarity in network archi-

tecture due to rewiring as defined above, and β ′RW,Δi denoted the si-

mulated value of dissimilarity calculated by removing species i 
from the dataset. By definition, this Δβ ′RW, i index can be calcu-

lated for each species in the dataset in each pair of a realization 
(month) and the meta-network. Therefore, for each species i, we 
used the maximum value of Δβ ′RW, i across the time-series (i.e. 

max(Δβ ′RW, i)) as a measure of the potential magnitude of contribu-

tions to network architectural flexibility: a positive value of 
max(Δβ ′RW, i) indicated positive contributions of a target species 

to network flexibility.
For further evaluation of the roles of each species in total dis-

similarity in network architecture and dissimilarity through spe-
cies turnover, we also calculated the contributions of species i to 
β ′INT and β ′ST as defined below:

β ′INT,i = β ′INT − β ′INT,Δi, (9) 

β ′ST,i = β ′ST − β ′ST,Δi. (10) 

Likewise, contributions of species i to community compositional 
dissimilarity (β ′S) were calculated as follows:

β ′S,i = β ′S − β ′S,Δi. (11) 

The maximum values of those indices across the time-series were 
also calculated to evaluate the potential contributions of each 
species. Despite the complexity of the indices, the calculation 
for a network involving ca. 1,000 species usually ends within 1 h 
with an ordinary lap-top computer (e.g. Apple M1 CPU with 16 
GB RAM).

Network centrality indices
To evaluate the extent to which each spider species or prey OTUs 
was located at the core position within a network, we calculated 
degree, betweenness, eigenvector, and closeness centrality (58). 
Degree centrality was defined as the number of edges connected 
to the target vertex (species or OTU). The obtained degree central-
ity was then normalized by dividing it by N − 1, where N is the 
number of vertices within the target network. Betweenness cen-
trality is a measure of the degree to which a given vertex is located 
within the shortest paths connecting pairs of other vertices in a 
network (38). Scores of betweenness were normalized for within 
each network so that they varied from 0 (occupation at marginal 
positions within a network) to 1 (occupation at shortest paths 

for all pairs of vertices) using the igraph v.1.3.0 package (59) of 
R. Likewise, eigenvector centrality was scaled within the range 
from 0 to 1, while closeness was normalized by dividing the raw 
closeness value by N − 1, where N is the number of vertices within 
the target network.

Network edge flexibility
The topology of the meta-network involving all the spider–prey in-
teractions was shown based on the vertex ordination with the 
ForceAtlas2 algorithm (60) using the program Gephi 0.10 (61). 
Within the meta-network, the flexibility of respective network 
links was evaluated based on the multiplication of spiders’ poten-
tial contributions to network flexibility by those of prey (spider's 
max(Δβ ′RW, i) × prey's max(Δβ ′RW, i)). To examine how the results 
of the analyses assuming flexible network topology differ from 
those of the analyses assuming no rewiring of interactions, we 
also evaluated each network link based on the standard frame-
work of network analyses. Specifically, for each network link, 
edge betweenness, which represented the degree to which a focal 
edge (link) was located within the shortest paths connecting pairs 
of vertices within a network, was calculated.
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