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Abstract

Introduction: Meningiomas are the most common primary central nervous system

tumors. Predicting the grade and proliferative activity ofmeningiomaswould influence

therapeutic strategies. We aimed to apply the multiple parameters from preoperative

diffusion tensor images for predictingmeningioma grade and proliferative activity.

Methods: Nineteen patients with low-grade meningiomas and eight with high-grade

meningiomas were included. For the prediction of proliferative activity, the patients

were divided into two groups: Ki-67 monoclonal antibody labeling index (MIB-1

LI) < 5% (lower MIB-1 LI group; n = 18) and MIB-1 LI ≥ 5% (higher MIB-1 LI group;

n= 9). Six features, diffusion-weighted imaging, fractional anisotropy, mean, axial, and

radial diffusivities, and raw T2 signal with no diffusion weighting, were extracted as

multiple parameters from diffusion tensor imaging. The two-level clustering approach

for a self-organizing map followed by the K-means algorithm was applied to cluster

a large number of input vectors with the six features. We also validated whether the

diffusion tensor-based clustered image (DTcI) was helpful for predicting preoperative

meningioma grade or proliferative activity.

Results: The sensitivity, specificity, accuracy, and area under the curve of receiver

operating characteristic curves from the 16-class DTcIs for differentiating high- and

low-grade meningiomas were 0.870, 0.901, 0.891, and 0.959, and those from the 10-

classDTcIs for differentiating higher and lowerMIB-1 LIswere0.508, 0.770, 0.683, and

0.694, respectively. The log-ratio values of class numbers 13, 14, 15, and 16 were sig-

nificantly higher in high-grademeningiomas than in low-grademeningiomas (p< .001).

With regard toMIB-1 LIs, the log-ratio values of class numbers 8, 9, and 10were higher

in meningiomas with higherMIB-1 groups (p< .05).

Conclusion: The multiple diffusion tensor imaging-based parameters from the voxel-

based DTcIs can help differentiate between low- and high-grade meningiomas and

between lower and higher proliferative activities.
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1 INTRODUCTION

Meningioma is the most common primary central nervous system

tumor (Ostrom et al., 2013), histologically classified into three grades

(I–III), according to the World Health Organization (WHO) classifica-

tion (Louis et al., 2007). Grade II and III meningiomas have a greater

risk of recurrence with increased mortality: the 5-year survival rates

are 78 and 44%, respectively (Durand et al., 2009). Themost important

prognostic question regarding meningioma concerns the prediction

of recurrence after treatment. The histopathological grade of menin-

gioma is currently the most useful morphological tool for predicting

recurrence (Louis et al., 2007; Louis et al., 2016). The recurrence rates

of grade II (atypical) and grade III (malignant) meningiomas at 5 years

of follow-up are about 40 and 50−80%, respectively (Santelli et al.,

2010). Patients with malignant meningiomas have increased survival

benefits if surgery is followed by fractionated external beam radiation

therapy or stereotactic radiosurgery (Hanft et al., 2010). Therefore,

preoperative characterization ofmeningiomas is significant in deciding

therapy.

As another indicator of tumor growth, the Ki-67 monoclonal anti-

body labeling index (MIB-1 LI) has been reported to be useful (Matsuno

et al., 1996).MIB-1LI hasbeenextensively used in studies todetermine

the prognosis of several types of various tumors in central nervous

system, including meningiomas, and an elevated MIB-1 LI has been

associated with an increased recurrence rate (Abry et al., 2010). Pre-

operative prediction by the value of MIB-1 LI would lead us to optimal

decision-making about the resection area or enable us to decide, first

of all, whether we should perform an operation or not.

Differentiation of cerebral tumor pathology currently relies on the

interpretation of conventional structural magnetic resonance imaging

(MRI). However, it is difficult to predict histological grade by conven-

tional MRI (Demaerel et al., 1991). Diffusion-weighted images (DWI)

have been used to investigate primary brain neoplasms (Bulakbasi

et al., 2004; Kono et al., 2001; Krabbe et al., 1997; Stadnik et al.,

2001). Some studies have shown that atypical meningiomas show

lower apparent diffusion coefficient (ADC) values compared with typ-

ical (benign) meningiomas (Filippi et al., 2001; Gupta et al., 2013;

Hakyemez et al., 2006; Nagar et al., 2008), whereas other studies

suggest that ADC values have no role in the preoperative grading of

meningiomas (Santelli et al., 2010; Sanverdi et al., 2012). Diffusion ten-

sor images (DTI) is a noninvasive technique that measures the random

motion of water molecules across the brain due to thermal energy

(Basser et al., 1994). It provides two common biomarkers of tissue

microstructure: mean diffusivity (MD), which measures the magnitude

of watermolecule diffusion, and fractional anisotropy (FA), whichmea-

sures directional coherence. Twoother biomarkers providedbyDTI are

axial and radial diffusivities (AD and RD), which represent water diffu-

sion parallel and perpendicular to the axonal fibers, respectively. From

previous DTI studies (Bastin et al., 2002; De Belder et al., 2012; Jola-

para et al., 2010; Sanverdi et al., 2012; Tang et al., 2014; Toh et al.,

2008; Zikou et al., 2016), the parameters of DTI remain controversial

for differentiatingmeningioma grade or proliferative parameters.

We recently reported a method of predicting glioma grade with a

two-level clustering approach, an unsupervised clusteringmethodwith

a self-organizing map (SOM) followed by K-means (KM) (Inano et al.,

2016, 2014). SOM is a well-known type of neural network unsuper-

vised learning that simplifies features and shows good visualization of

results for data understanding and survey using component planes. In

addition, features that have similar patterns can be identified by KM

clustering of the results of SOM. This two-level clustering approach

has two important benefits in terms of noise reduction and computa-

tional cost (Inano et al., 2014). First, because the KM algorithm is very

sensitive to outliers (Velmurugan & Santhanam, 2010), any outlier can

adversely affect theaccuracyof the clustering.WhenanSOMisapplied

prior to KM, the outliers can be filtered out, improving clustering

accuracy. Second, the computational time of the two-level clustering

approach is considerably shorter than that of KM alone.

The purpose of our study was to apply the two-level clustering

methodwith multiple DTI-based parameters for voxel-based clustered

images in meningiomas and to estimate whether the method is helpful

for preoperative meningioma grading and differentiating high and low

MIB-1 LIs.

2 MATERIALS AND METHODS

2.1 Subjects

We retrospectively reviewed 114 patients aged 24−87 years who

had histologically confirmed meningiomas, defined according to the

WHO classification (Louis et al., 2007), andwere treated betweenMay

2014 and October 2016 at Kyoto University Hospital. Twenty-nine

patients underwent both DTI and three-dimensional magnetization-

prepared rapid gradient-echo (MP-RAGE) preoperatively.Weexcluded

one patient who was later found to have a solitary fibrous tumor by

immunohistochemical staining and one patient because of appreciable

motion artifacts on DTI. Consequently, 27 patients (aged 24−87 years,

13men and 14women) were enrolled in the study.

2.2 Histopathological diagnosis

The surgical samples were fixed with formalin, and paraffin-embedded

tissues were stained with hematoxylin and eosin (H&E) and MIB-1.

They were categorized into meningioma subtypes according to the

WHO classification (David N. Louis et al., 2007). We classified grade I
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TABLE 1 Summary of data from patients withWHO grade I or II and III meningiomas.

Histopathology n WHOgrade Age (years) Sex (M/F) MIB-1 LI (%) Location

Total 27 58.3± 14.3 13/14 6.6± 10.8

Grade I 19 59.5± 11.9 8/11 3.4± 4.5

Meningothelial 12 I 58.0± 14.5 3.1± 4.5 Convexity, sphenoid ridge,

parasagittal, intraventricular,

planum sphenoidale, olfactory

groove, petroclival

Transitional 3 I 60.0± 7.1 7.4± 5.8 Convexity, planum sphenoidale,

petroclival

Fibrous 2 I 67.0± 0.0 2.0± 1.4 Parasagittal, intraventricular

Psammomatous 1 I 61 1.0 Parasagittal

Angiomatous 1 I 56 0.5 Convexity

Grades II, III 8 55.4± 19.5 5/3 14.1± 17.0

Atypical 6 II 56.7± 21.0 5.5± 2.5 Convexity, parasagittal, petroclival

Anaplastic 2 III 51.5± 20.5 40.0± 14.4 Parasagittal, middle fossa

Age andMIB-1 LI are given asmeans± standard deviation.

MIB-1 LI, Ki-67monoclonal antibody labeling index;WHO,World Health Organization.

meningiomas as low-grade (n= 19) and grade II and III meningiomas as

high-grade (n= 8) in this study. Among the low-grademeningiomas, 12

were classified as meningothelial, three as transitional, two as fibrous,

one as psammomatous, andoneas angiomatous. Among thehigh-grade

meningiomas, six were classified as atypical and two as anaplastic.

Nineteen patients reported no prior surgery, seven patients had a prior

craniotomy, and one had undergone prior radiosurgery. There were

no significant differences between the two groups in age (59.5 ± 11.9

years in the low-grade group and 55.4 ± 19.5 years in the high-grade

group; p= .50) or sex ratio (eightmales and 11 females in the low-grade

groupand fivemales and three females in thehigh-gradegroup;p= .33)

(Table 1). MIB-1 LIs were significantly higher in the high-grade group

(3.4 ± 4.5 in low-grade and 14.1 ± 17.0 in high-grade meningiomas;

p= .015 by the Student’s t-test).

Immunohistochemistry was performed with a fully automated mul-

timodal slide-staining system (Ventana Benchmark ULTRA) according

to themanufacturer’s protocols, using the followingprimary antibodies

and dilutions: MIB-1: monoclonal mouse Ki-67 Clone MIB-1/M7240,

Dako, dilution 1:300. The largest representative tumor tissue section

available was selected for immunohistochemistry. Diffuse glioma and

normal tonsil tissue served as positive controls. Bufferwithout primary

antibody was used for negative controls. The immunohistochemical

stains were scoredmanually by neuropathologists independently from

radiological findings. The anti-Ki-67 immunoreactive tissue section

was scanned at low magnification to identify the area with the high-

est density of immunolabeled tumor cell nuclei (the “hot spot”). In

these areas, tissue sections were examined at high-power magnifica-

tion (×400). The number of cells stained positively with MIB-1 and

the total number of tumor cells were counted in several represen-

tative fields containing nearly 1000 cells. Their ratio was indicated

as MIB-1 LI (%). In the areas of heterogeneous distribution of MIB-

1 immunopositive cells, the area containing the largest number of

MIB-1 immunostained cells was regarded as the area representing the

proliferative activity of the tumor. For the prediction of meningioma

recurrence, the patients were divided into two groups: MIB-1 LI < 5%

(lower MIB-1 LI group; n = 18) and MIB-1 LI ≥ 5% (higher MIB-1 LI

group; n = 9) (Table 2). The MIB-1 LI cutoff value was adopted for the

detection of meningiomas with more aggressive features (Abramovich

& Prayson, 1998; Abry et al., 2010; Ohta et al., 1994). The lowerMIB-1

LI group consisted of 16 low-grade and two high-grade meningiomas,

and the higher MIB-1 LI group consisted of three low-grade and six

high-grade meningiomas. The distribution of WHO grades was signif-

icantly different between the two groups (p = .002, chi-squared test).

There were no significant differences between the two groups in age

(59.8 ± 14.0 years in the lower MIB-1 group and 55.3 ± 15.3 years

in the higher MIB-1 group; p =.45) or sex ratio (nine males and nine

females in the lower MIB-1 group and four males and five females in

the higherMIB-1 group; p= .78) (Table 2).

2.3 MRI data acquisition and preprocessing

MRI data were acquired on a 3 Tesla Trio Tim (Siemens) equipped

with a 32-channel phased-array head coil. DWI in an axial orientation

used the following parameters: repetition time = 4200 ms, echo

time = 104 ms, flip angle = 90◦, field of view = 192 × 192 mm,

slices= 78, and voxel size= 1.7× 1.7× 1.7mm. To resolve the geomet-

rical distortions, we acquired two images for each diffusion gradient:

one with anterior–posterior and one with posterior–anterior k-space

in the phase-encode direction. DWIwas isotropically distributed along

40 directions using a b-value of 1000 s/mm2. Eight volumes with

no diffusion weighting (b = 0 s/mm2) were also acquired at points

throughout acquisition. MP-RAGE using the following parameters was

used to acquire three-dimensional T1-weighted anatomical images:

repetition time= 1900ms, echo time= 2.58ms, flip angle= 9◦, field of

view=230×230mm, slices=192, and voxel size=0.9×0.9×0.9mm.
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TABLE 2 Summary of data from patients withMIB-1 LI<5% and≥5%meningiomas.

Histopathology n WHOgrade Age (years) Sex (M/F)

MIB-1 LI

(%) Location

Total 27 58.3± 14.3 13/14 6.6± 10.8

MIB-1 LI< 5% 18 59.8± 14.0 9/9 1.9± 1.2

Meningothelial 11 I 57.9± 15.2 6/5 1.8± 1.2 Convexity, sphenoid ridge, parasagittal,

intraventricular, planum sphenoidale,

petroclival

Transitional 1 I 68 0/1 3.0 Planum sphenoidale

Fibrous 2 I 67.0± 0.0 0/2 2.0± 1.4 Parasagittal, intraventricular

Psammomatous 1 I 61 0/1 1.0 Parasagittal

Angiomatous 1 I 56 1/0 0.5 Convexity

Atypical 2 II 60.0± 28.3 2/0 3.0± 1.4 Parasagittal, petroclival

MIB-1 LI≥5% 9 55.3± 15.3 4/5 15.9± 15.1

Meningothelial 1 I 62 0/1 16.9 Olfactory groove

Transitional 2 I 56.5± 3.5 1/0 9.7± 6.2 Convexity, petroclival

Atypical 4 II 55.0± 21.4 3/1 6.7± 2.0 Convexity, parasagittal

Anaplastic 2 III 51.5± 20.5 0/2 40.0± 14.1 Parasagittal, middle fossa

Age andMIB-1 LI are given asmeans± standard deviation.

MIB-1 LI, Ki-67monoclonal antibody labeling index;WHO,World Health Organization.

A dual-gradient field map in an axial orientation was also obtained

using the following parameters: repetition time = 1100 ms, echo

time=35ms, flip angle=60◦, field of view=192×192mm, slices=46,

and voxel size = 3 × 3 × 3 mm. Regions of interest (ROIs) for analysis

were manually traced in the DTI space according to abnormalities on

MP-RAGE and well-circumscribed gadolinium-enhanced T1-weighted

images, obtained on another 3T machine (Skyra; Siemens) using the

following parameters: repetition time= 1900ms, echo time= 2.58ms,

flip angle = 9◦, field of view = 229 × 229 mm, slices = 58, and voxel

size= 0.9× 0.9× 1.0mm.

TheDTI datawere analyzed by FSL [FMRIB Software Library v5.0.9,

http://www.fmrib.ox.ac.uk/fsl (Smith et al., 2004)]. The data were cor-

rected for eddy currents and head motion using affine registration to

the first b = 0 reference volume. The data were also corrected for

geometric distortions occurring in an echoplanar image (Jezzard&Bal-

aban, 1995) by TOPUP, which is a part of the FSL tool for correction

of distortions (Andersson et al., 2003). Six features, that is, DWI, FA,

MD, AD, RD, and raw T2 signal with no diffusion weighting (S0), were

extracted using the FMRIB diffusion toolbox (FDT) program (Smith

et al., 2004), as reported previously (Inano et al., 2016, 2014).

2.4 Feature extraction for clustering

The details of the clusteringmethodswere described previously (Inano

et al., 2014). The summary of the processing pipeline is as follows

(Figure 1).

1. Feature extraction fromDTI (the number of extracted features was

9564± 4260 for each subject).

2. Clustering using SOM followed by KM.

3. Visualization of whole-brain images by diffusion tensor-based clus-

tering images (DTcIs).

4. Classification using DTcIs by the support vector machine (SVM).

2.5 Definition of ROI

Meningiomas generally show clear and smooth boundaries, but some

of them infiltrate surrounding brain matter and have unclear bound-

aries and discontinuities. ROIs were manually traced in the DTI space

according to abnormalities on MP-RAGE, with reference to well-

circumscribed gadolinium-enhanced T1-weighted images, without any

knowledge of the clinical or pathological data. It should be noted

that ROIs were defined on the basis of abnormal signal intensities in

MP-RAGE and gadolinium-enhanced T1-weighted images, excluding

perifocal edema and surrounding cerebrospinal fluid but including cys-

tic parts of the tumors. Finally, the number of voxels in eachROI ranged

from100 to 17,463.Weonly used theseROIs for feature extraction for

the SVM.

2.6 Statistical analysis

As reported previously (Inano et al., 2014), to determine whether the

classification performances were significantly different according to

the number of K in the KM++ method (K = 4, 6, 8, 10, 12, 16, 20),

we repeated the leave-one-out cross-validation (LOOCV) strategy 100

times. The area under the curve (AUC) in different K were then ana-

lyzed by one-way ANOVA followed by Tukey’s multiple comparison

tests. p< .05 was considered significant.
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F IGURE 1 Simplified graphical overview of the processing pipeline.

To evaluate the behavior of the classifier in the K class that showed

thebest classificationperformance,weused the “pROC library” forR to

generate receiver operating characteristic curveswith 95%confidence

intervals (CIs) (Robin et al., 2011).Wilcoxon–Mann–Whitney testswith

exact p values and CIs calculated by a permutation test were used to

compare the log-ratio values of each class in the K class.

The ratios of normalized intensities on the sixDTI of each class in the

K class that showed the best classification performance were analyzed

with the bootstrapped 95%CIs. The statistical software packageR ver-

sion 3.0.2 (The R Foundation for Statistical Computing, http://www.r-

project.org/) was used to perform all statistical analyses.

3 RESULTS

3.1 Unsupervised clustering

Figure 2 illustrates the component planes in six DTI-based variables

by SOM analysis. Visual inspection of the SOMpatterns demonstrated

that the component planes of DWI and FA were obviously different

from the others. Although the general patterns of the S0, MD, AD, and

RDcomponent planes seemed similar, the details differed among them.

In the case of K = 16 (Figure 2a), for example, the FA values in class

number 14, the DWI values in class number 5, and the S0, MD, AD, and

RD values in class number 16were the highest among all classes. In the

case of K = 10 (Figure 2b), the FA values in class number 9, the DWI

values in class number 2, and the S0, MD, AD, and RD values in class

number 8 were the highest among all classes. SOM also showed that

the DWI components of class numbers 8, 6, and 15 (K = 16) and class

numbers 3, 4, 5, 6, and 9 (K = 10) varied from low to high values, and

that the FA components of class numbers 3, 6, and 11 (K=16) and class

numbers2, 4, and10 (K=10) varied from lowtohighvalues.Class num-

bers 1, 2, 4, and 5 in the S0 component plane were higher than those

in the MD, AD, and RD component planes (K = 16). Class numbers 10,

12, and 13 in theMD, AD, and RD component planes were higher than

those in the S0 component plane (K= 16).

Representative cases of low-grade and high-grademeningiomas are

shown in Figure 3. Almost all the boundaries of low-grade menin-

giomas could be clearly recognized, but it was much more difficult to

recognize the boundaries of high-grade meningiomas. In high-grade

meningiomas, DTcIs revealedwarm-colored classes, such as class num-

bers 13, 14, 15, and 16, mainly in their tumor cysts or probably in the

necrotic region. Thus, the clear differentiation between low-grade and

high-grademeningiomas onDTcIs could be visually recognized.

In general, DTcIs could also distinguish the lesions of meningiomas

with higher MIB-1 LIs (Figure 4). The area with warm-colored classes

(class numbers 8, 9, and 10) seemed to roughly correspond with the

area shown as warm colors in the WHO grading (class numbers 13,
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F IGURE 2 Visualization of six DTI-based variables on component
planes with 20× 20 SOM. Each node (protocluster) is colorized from
blue to red according to the intensities in each diffusion tensor image.
The white lines between nodes denote interclass borderlines obtained
by KM++with K= 16 (a) and K= 10 (b) on SOM. SOM component
planes can help to interpret detailed intensity profiles or patterns in
each diffusion tensor image. Each class number corresponds to the
intensity on DTI-based clustered images. DTI, diffusion tensorMRI;
SOM, self-organizingmap; DWI, diffusion-weighted imaging; FA,
fractional anisotropy; S0, raw T2 signal without diffusion weighting;
MD, mean diffusivity; AD, axial diffusivity; RD, radial diffusivity.

14, 15, and 16) (Figure 4). Although a warm-colored pattern in a low-

grademeningiomawith a higherMIB-1 LI seemed similar in the images

of K = 16 (WHO grading) and K = 10 (MIB-1 LI), there were some dif-

ferences in detail (Figure 5). The areawithwarm color inK= 10 (higher

MIB-1 LI) was also warm colored in K = 16 (WHO grading); however,

the colors weremostly green or yellow, which is not indicative of a high

WHO grade. The result was similar in a patient with high-grademenin-

gioma with a lower MIB-1 LI. The area with hot color in K = 16, which

wasassumed tobehigh-grade in theWHOgrading,was greenor yellow

in K= 10, which did not indicate higherMIB-1 LIs.

3.2 SVM classification using DTcI

The performance of LOOCV using DTcI and SVM is shown in Figure 6a.

The differences in AUC among the classes were significant [F(6,

693) = 181.11, p < 10−138, 𝜂2p = 0.61]. Tukey’s post hoc tests showed

that the AUC was significantly higher for the 16-class DTcIs than for

the others (p < .001). The tests showed that the AUCs were signifi-

cantly higher for the 8-, 10-, 12-, and 20-class DTcIs than for the 4- and

6-class DTcIs (p < .001). The tests also showed that the AUC was sig-

nificantly lower for the 4-class DTcIs than for the others (p< .001). The

AUC of the 16-class DTcIs was the highest among classes (0.959; 95%

CI=0.951−0.967) (Figure 6b). The sensitivity, specificity, and accuracy

of the 16-class DTcIs were 0.870 (95% CI= 0.865−0.873), 0.901 (95%

CI = 0.897−0.904), and 0.891 (95% CI = 0.889−0.894), respectively.

In contrast, the AUC of the 4-class DTcIs was the lowest (0.833; 95%

CI= 0.814−0.853).

We separated the patients into two MIB-1 LI groups with a thresh-

old of 5.0% (Abramovich & Prayson, 1998, 1999; Abry et al., 2010).

The results are shown in Figure 7a. The differences in AUCs among

the classes were significant [F(6, 693) = 60.349, p < 10−60, 𝜂2p = 0.34].

Tukey’s post hoc tests showed thatAUCwas significantly higher for the

10-class DTcIs than for the others (p < .001). The tests also showed

that the AUC was significantly lower for the 6-class DTcIs than for

the others (p < .001). The AUC of the 10-class DTcIs was the highest

among classes (0.694; 95% CI = 0.672−0.716) (Figure 7b). The sensi-

tivity, specificity, and accuracy of the 10-class DTcIs were 0.508 (95%

CI = 0.493−0.523), 0.770 (95% CI = 0.766−0.774), and 0.683 (95%

CI= 0.677−0.688), respectively.

3.3 Differences in log-ratio values

The log-ratio values of each class of the 16-class DTcIs that had the

highest classification performancewere compared between low-grade

and high-grade meningiomas (Figure 8a). The values of class numbers

13, 14, 15, and 16were significantly higher in high-grademeningiomas

than in low-grade meningiomas (p < .001, r = 0.61; p < .001, r = 0.69;

p < .001, r = 0.73; p < .001, r = 0.77, respectively). The values of

class numbers 11 and 12 were also higher in high-grade meningiomas

(p< .005, r= 0.55; p< .005, r= 0.58, respectively). However, the value

of class number 1 was higher in low-grade meningiomas (p < .005,

r= 0.50) than in high-grademeningiomas.

With regard toMIB-1LIs, the log-ratio values of each class of the10-

class DTcIs were compared with the threshold of 5% (Figure 8b). The

values of class numbers 8, 9, and 10 were higher in meningiomas with

higher MIB-1 LIs (p < .05, r = 0.38; p < .05, r = 0.45; p < .05, r = 0.46,

respectively).

3.4 Ratio of DTI-based parameters

In the comparisonof low-grade andhigh-grademeningiomas, the ratios

of the normalized intensities of the six DTIs for each class number in

the 16-class DTcIs that showed the highest classification performance

are shown in Figure 9a. The ratios of class numbers 13, 14, 15, and 16

were significantly higher in high-grade meningiomas than in low-grade

meningiomas. The chart patterns of class number 16 comprised high

S0,MD, AD, and RD values, whereas DWI and FAwere quite low. Class

number 15 also showed low FA values; however, the variables of class

number 14 included prominently high FA values. The quite low values

of DWI of class number 13 stood out against high AD,MD, and RD val-

ues. All these characteristics were composed of multiple parameters

and were difficult to explain by brief visual inspection and by a distinct

trend of a single parameter.
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7 of 15 TAKAHASHI ET AL.

F IGURE 3 Representative cases of low- and high-grademeningiomas, including the 16-class DTcIs that showed the highest classification
performance. The preoperative and postoperative T1-weighted images, DTcIs, six diffusion tensor images, and the ratios in each class number are
shown for each patient. The arrows show the areas of warm-colored classes, which indicateWHOhigh grades. The colors on the DTcIs and circular
charts correspond to the class numbers shown in the color bar. DWI, diffusion-weighted imaging; FA, fractional anisotropy; S0, raw T2 signal
without diffusion weighting;MD, mean diffusivity; AD, axial diffusivity; RD, radial diffusivity; DTcI, diffusion tensor-based clustering image;WHO,
World Health Organization.

With regard to MIB-1 LI, the ratios of class numbers 8, 9, and 10

tended to be higher in meningiomas with higher MIB-1 LIs (Figure 9b).

The chart patterns of class number 10 comprised lowDWI, FA, S0,MD,

AD, and RD values, and class number 9 had quite high FA values. The

patternsof class numbers6, 8, and10werevery similar to thoseof class

numbers 15, 16, and 11 in the 16-class DTcIs, respectively. However,

the pattern of class number 9 was different from that of class number

14 in the 16-class DTcIs, whereas its FA values were the highest.

4 DISCUSSION

We investigated a two-level clustering approach using SOM followed

by KM to identify the WHO grade and higher MIB-1 LI values of

meningiomas. DTcIs enabled us to predict the meningioma grades

even though they were calculated from preoperative images. Next, we

assessed the validity of DTcIs for meningioma grading in a supervised

manner using SVM. The 16-class DTcIs had the highest classification

performance for predicting meningioma grade, and the 10-class DTcIs

had the highest classification performance for MIB-1 LI grouping. The

classifier in the 16-class DTcIs showed that the ratios of classes 13−16

were significantly higher in high-grademeningiomas and those of class

1 were significantly higher in low-grade meningiomas. These results

indicate that our clustering method with six DTI-derived parameters

can be useful for predicting meningioma grade visually. The compar-

atively homogeneous structures of meningiomas would lead to good

results, although the number of subjects is less than that in our pre-

vious study of gliomas (Inano et al., 2014). With regard to MIB-1 LIs,
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TAKAHASHI ET AL. 8 of 15

F IGURE 4 Representative cases of meningiomas with lower and higherMIB-1 LIs, including the 10-class DTcIs that showed the highest
classification performance. The preoperative and postoperative T1-weighted images, DTcIs, six diffusion tensor images, and the ratios in each class
number are shown for each patient. The arrows show the areas of warm-colored classes, which indicate the areas with higherMIB-1 LI. The colors
on the DTcIs and circular charts correspond to the class numbers, which are shown in the color bar. MIB-1 LI, Ki-67monoclonal antibody labeling
index; DWI, diffusion-weighted imaging; FA, fractional anisotropy; S0, raw T2 signal without diffusion weighting;MD, mean diffusivity; AD, axial
diffusivity; RD, radial diffusivity; DTcI, diffusion tensor-based clustering image.

classes 8, 9, and 10 indicate a higher MIB-1 LI group. The sensitivity,

specificity, accuracy, and AUC of the 10-class DTcIs for differentiat-

ing between lower and higher MIB-1 LIs were not as high as those of

16-class DTcIs for differentiating between low- and high-grade menin-

giomas; however, the 10-class DTcIs would be possible to predict areas

with higherMIB-1 LIs.

Class numbers 13−16 with hotter colors in DTcIs, which indicate

high-grade meningiomas, seem to be found in tumor cysts or necro-

sis. This is consistent with previous reports of conventional studies of

the use of MRI for meningioma grading (Hsu et al., 2010; Radeesri &

Lekhavat, 2023). Conventional MRI can provide information for the

diagnose ofmeningiomas due to its high resolution, but sometimes fails

to provide a differentiation of meningiomas’ grade due to the over-

lap of imaging features (She et al., 2023). Thus, radiomics including

this two-level clustering approach can extract and analyze numerous

high-level, quantitative imaging features to differentiate the grade of

meningiomas. Although the area with hot color in 16-class DTcIs of

the WHO grading basically overlapped with the hot area in 10-class

DTcIs about MIB-1 LIs, the hot areas in 10- or 16-class DTcIs did not

always correspond with each other (Figures 3 and 4). Furthermore,

some patients with high-grade meningiomas could have lower MIB-1

LIs, whereas some patients with low-grade meningiomas could have

higher MIB-1 LIs (Figure 5). Atypical or malignant meningiomas do not

require higher MIB-1 LIs for diagnosis. The use of MIB-1 LI as a prog-

nostic indicator in meningioma has been the subject of many studies.

Most, but not all, studies have found significant differences between

the MIB-1 labeling indices of benign, atypical, and anaplastic menin-

giomas. The means, ranges, and cutoff values for the prediction of
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9 of 15 TAKAHASHI ET AL.

F IGURE 5 Representative cases of 16- and
10-class DTcIs, which respectively showed the
highest performance for classification between
low- and high-grademeningiomas and lower
and higherMIB-1 LIs, of a low-grade
meningiomawith a higherMIB-1 LI (upper) and
a high-grademeningiomawith a lowerMIB-1
LI (lower). The upper and lower arrows show
the areas of warm-colored classes, which
indicate ameningiomawith higherMIB-1 LI
and a high-grademeningioma, respectively.
MIB-1 LI, Ki-67monoclonal antibody labeling
index; DTcI, diffusion tensor-based clustering
image; DWI, diffusion-weighted imaging; FA,
fractional anisotropy; S0, raw T2 signal without
diffusion weighting;MD, mean diffusivity; AD,
axial diffusivity; RD, radial diffusivity.

meningioma recurrence have not been established. From 3 to 10% or

more of MIB-1 LIs of meningiomas have been reported to be related

to higher recurrence rates or to be a prognostic factor for radiosur-

gical outcomes (Kim et al., 2012; Nakaya et al., 2009), whereas other

studies have found that MIB-1 LI is not useful for predicting tumor

recurrence (Tyagi et al., 2004; Zhu et al., 2015). This discrepancy could

be explained by the heterogeneous nature of these tumors. Neverthe-

less, it is difficult to say on the basis of our results which class of DTcIs

would be associated with which type of tumor tissue. Further patho-

logical studies of each class by biopsy or resection could clarify the

relationship.

The patterns of six DTI parameters in each class were characteris-

tic. Class numbers 13 and 14 of 16-class DTcIs of the WHO grading

showed low DWI values; however, low DWI values were also revealed

in lower class numbers. Class number 1, which indicates low-grade

meningiomas, had lowFAvalues, as previously reported (Jolapara et al.,

2010; Toh et al., 2008). Nevertheless, it is difficult to predict high-grade

meningiomas by FA values alone. For instance, class numbers 13, 15,

and 16, which indicate high-grademeningioma, also had low FA values,

whereas class number 14 had the highest FA values. These findings are

consistentwithprevious studies that showed that lowFAvaluesdidnot

always indicate low grades (Santelli et al., 2010; Stadnik et al., 2001).

Class number 16, which indicates high-grade meningioma, had lower

FA and higher MD and RD values, contrary to the previous report (Toh

et al., 2008). With regard to meningioma grade, there are some con-

tradictory studies. Sanverdi et al. (2012) found no correlation between

ADC value and grade. Most previous studies investigated a single MRI

parameter or analyzed data individually even if they obtained several
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TAKAHASHI ET AL. 10 of 15

F IGURE 6 (a) Plots of AUC versus the number of K in the KM++method for differentiating meningioma grades. Values aremeans and error
bars, and light purple shading represents 95%CIs. One-way ANOVA followed by Tukey’s multiple comparison tests. The 16-class DTcIs
significantly showed the highest AUC (0.959; 95%CI= 0.951−0.967). (b) ROC curves (dark purple line), with AUC and 95%CIs shown in purple
shading surrounding the dark purple line, for differentiating high-grade from low-grademeningiomas using the 16-class DTcIs. AUC, area under the
curve; CI, confidence interval; ANOVA, analysis of variance; DTcI, diffusion tensor-based clustered image; ROC, receiver operating characteristic.

F IGURE 7 (a) Plots of AUC versus the number of K in the KM++method forMIB-1 LI grouping. Values aremeans and error bars, and light
purple shading represents 95%CIs. One-way ANOVA followed by Tukey’s multiple comparison tests. The 10-class DTcIs significantly showed the
highest AUC (0.694; 95%CI, 0.672−0.716). (b) ROC curves (dark purple line), with AUC and 95%CIs shown in purple shading surrounding the dark
purple line, for differentiating meningiomas with anMIB-1 LI threshold of 5% using the 10-class DTcIs. AUC, area under the curve;MIB-1 LI, Ki-67
monoclonal antibody labeling index; CI, confidence interval; ANOVA, analysis of variance; DTcI, diffusion tensor-based clustering image; ROC,
receiver operating characteristic.

parameters, and hence the results might be controversial. Our results

demonstrated several heterogeneous patterns of six DTI parameters

that indicated high-grademeningiomas.

Class numbers 9 and 10 of 10-class DTcIs for the MIB-1 classifica-

tion had low DWI, S0, AD, RD, and MD values, which was consistent

with previous reports that showed a relationship between low ADC

values and higher MIB-1 LIs (Tang et al., 2014). Class number 8 also

had low DWI values, whereas the S0, AD, RD, and MD values were

prominently high. Higher T2 signal intensities were seen significantly

more often in higher MIB-1 LIs and were also significantly correlated

with peritumoral brain edema (Kim et al., 2011). With regard to FA,

both high and low values were seen in class numbers 8−10, which

indicated higher MIB-1 LIs. Previous studies of brain tumors reported

relationships between high FA values and high cellularity, high WHO

grades, and high MIB-1 LIs (Jolapara et al., 2010; Toh et al., 2008).

The factors that affect DTI parameters have proved to be microstruc-

tures, namely cellularity, nucleus-to-cytoplasm ratio, or vascularity, in

brain tumors. Nevertheless, the details have not yet been properly
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11 of 15 TAKAHASHI ET AL.

F IGURE 8 Strip chart and box plots showing themedian, interquartile range, inner fence, and outliers (open circles) for log-ratio values of each
class by 16-class DTcIs in patients with low-grade (blue) and high-grade (red) meningiomas (a), and by 10-class DTcIs in patients withMIB-1
LIs<5% (blue) and≥5% (red) (b). *p< .05, **p< .005, ***p< .001, ††p< .005 by the exactWilcoxon–Mann–Whitney rank sum test. DTcI, diffusion
tensor-based clustered image;MIB-1 LI, Ki-67monoclonal antibody labeling index.

analyzed. With regard to proliferative activity, there are some con-

tradictory studies with a single MRI parameter. Zikou et al. (2016)

reported that there were no significant correlations between ADC or

FA and MIB-1 LIs. These studies suggest that differentiating MIB-1

LIs on the basis of only a single parameter would be difficult. In the

present study, we used six DTI-derived parameters in combination,

thereby improving classification performance. In addition, Tang et al.

(2014) reported that low-grade meningiomas with higher MIB-1 LIs

and low ADC values had a high recurrence rate. Although the predic-

tors of meningioma recurrence have been studied from the viewpoint

ofWHOclassification, proliferative indices,molecular assessment, etc.,

the prediction of recurrence is still a challenge during management

of meningioma (Tyagi et al., 2004). Observation of changes in tumor

size for years is needed to verify the results for the prediction of

meningioma recurrence.

Our method is less effective for differentiating between higher

and lower MIB-1 LIs than it is for predicting WHO grade. Although

the classification performance is not high in our analysis, regional

visual inspections reveal the potential to detect atypical meningiomas

with lower MIB-1 LIs or benign meningiomas with higher MIB-1 LIs

(Figure 5). MIB-1 LI was calculated by different counting methods in

previous reports (Nakasu et al., 2001; Rezanko et al., 2008). Gener-

ally, the most densely staining areas were counted, and with another

method, randomly selected areas were counted. In the present study,

regions with the most immunostaining (known as “hot spots”) were

used for the determination of MIB-1 LI. However, in previous studies,

it was observed that MIB-1 staining was not uniform in the tumors

(Bohra et al., 2016; Iuchi et al., 1999). One of the reasons for lower per-

formance in the classification of MIB-1 LIs is that we analyzed DTcIs

from thewhole tumor,whereasMIB-1 LIwas determinedonly from the

hot spot. Further studieswith regional comparisons betweenDTcIs and

histological findings would improve classification performance.

With regard to the number of classes for the best classification

performance, 10-class DTcIs were the best for MIB-1 LI classification,

whereas 16-class DTcIs were the best for WHO classification. The

smaller number of classes inMIB-1 LIs is due to the fact thatMIB-1 LIs

have been shown to be correlated with cell proliferative potency and

cellularity. Class numbers 9 and 10 of 10-class DTcIs forMIB-1 classifi-

cation had lowMD values. Several previous studies have reported that

ADC values are negatively correlated with cell proliferative potential

and cellularity (Alexiou et al., 2014; Tang et al., 2014). Our clustering

method with multiple parameters is still promising, because cellularity
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TAKAHASHI ET AL. 12 of 15

F IGURE 9 Radar charts of six DTI-based variables in each class by
16-class DTcIs (a) and 10-class DTcIs (b), whose AUCswere the highest
forWHO grading andMIB-1 LI grouping, respectively. DTI, diffusion
tensorMRI; DTcI, diffusion tensor-based clustering image; AUC, area
under the curve;WHO,World Health Organization;MIB-1 LI, Ki-67
monoclonal antibody labeling index; DWI, diffusion-weighted imaging;
FA, fractional anisotropy; S0, raw T2 signal without diffusion
weighting;MD, mean diffusivity; AD, axial diffusivity; RD, radial
diffusivity.

is not equivalent to MIB-1 LI, although the MD values affected the

result through the close relation between MIB-1 LI and proliferative

potential or cellularity. Consequently, DTcIs with smaller numbers

of classes presumably enabled MIB-1 LI classification. DTcIs with

larger numbers of classes (16 classes) used for WHO classification

would reflect the diversity of the histological findings of meningiomas.

Cellularity is included in the diagnostic criteria for high-grade menin-

giomas; however, low-grade meningiomas do not always have sparse

cellularity. Meningothelial meningiomas have comparatively high cel-

lularity, and fibroblastic meningiomas consist of spindle cells forming

interlacing bundles in a collagen-rich matrix, whereas microcystic

meningiomas characterized by intracellular microcystic spaces have a

sparse distribution of cells (Louis et al., 2007; Louis et al., 2016). These

diverse factors other than cellularity could affect the DTI parameters,

and hence the best number of classes for classification might be larger

forWHO classification.

The present study has several limitations. First, because we did

not compare cellularity in low-grade and high-grade meningiomas, we

could not definitely state that the differences in ADC were due to dif-

ferences in cellularity. Second, we did not study other, less common

subtypes of WHO grade I meningiomas such as microcystic, secre-

tory, and metaplastic meningiomas. We also did not encounter other

WHO grade II meningiomas (chordoid and clear cell meningiomas)

or grade III meningiomas (rhabdoid meningiomas) during our study

period. These less common meningiomas form specific histological

architectural patterns (Louis et al., 2007). Therefore, we speculate that

their diffusion anisotropy would be different from that of atypical or

anaplastic meningiomas that are “featureless” on microscopic exami-

nation. Third, as mentioned above, we did not analyze DTI parameters

topologically with histopathological findings. Fourth, the study was

limited by its small sample size of 27 patients and lack of long-term

follow-up. A recent radiomics study with large sample size (Duan et al.,

2023) reported the differentiation of meningioma grading, using 2D

and 3D features obtained only from contrast enhanced T1-weighted

images. The AUC of 2D and 3D models was 0.717–0.773, which was

lower than that of our methods using DTcIs. Park et al. (2019) revealed

that the combination of T1 images with ADC and FAmaps were useful

for differentiating meningioma grades. In addition, gadolinium, which

is typically used as contrast agents, can cause side effects, such as

hypotension or cardiac arrest (Thomsen, 2003), or cannot be used

for patients with renal failure. Thus, the radiomics using only con-

trast enhanced T1-weighted images might not be used for definitive

preoperative grading. In another recent radiomics study with large

sample size (She et al., 2023), using three advanced diffusion models:

diffusion kurtosis imaging, mean apparent propagator, and neurite ori-

entation dispersion and density imaging, the benefits obtained from

these advanced models were small in grading meningiomas, compared

with the DTI. In addition, three models are weakly associated with the

Ki-67 proliferation. Further studies will be needed to evaluate the effi-

cacy of new advanced diffusion models. Compared with the recent

studies with large sample size, our method might be useful to dif-

ferentiate the grade of meningiomas, but the prognostic significance

could be emphasized by studies with larger sample sizes and long-term

follow-up.

5 CONCLUSION

This study applied a two-level clustering approach consisting of SOM

followed by theKM++ algorithm for unsupervised clustering of a large

number of input vectors with multiple features by DTI. The greatest

advantage of this method is that it enables clustering images called

DTcIs to be obtained,which can be used for the visual grading ofmenin-

giomas and to help differentiate not only between low- and high-grade

meningiomas but also between meningiomas with high and lowMIB-1

LIs, without pathological information. Our method could lead to more
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accurate noninvasive prediction of recurrence and more appropriate

treatment of brain tumors.
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