1	Long term prognosis of anti-melanoma differentiation-associated gene 5-positive
2	dermatomyositis with interstitial lung disease
3	
4	Tsuneo Sasai ¹ , Ran Nakashima ¹ *, Hideaki Tsuji ¹ , Toshiki Nakajima ² , Yoshitaka Imura ² ,
5	Yusuke Yoshida ³ , Shintaro Hirata ³ , Mirei Shirakashi ¹ , Ryosuke Hiwa ¹ , Koji Kitagori ¹ ,
6	Shuji Akizuki ¹ , Hajime Yoshifuji ¹ , Tsuneyo Mimori ^{1, 4} , Akio Morinobu ¹
7	
8	ORCID iD
9	RN: 0000-0001-6247-0647
10	
11	Sources of support
12	No specific funding was received from any bodies in the public, commercial, or not-for-
13	profit sectors to carry out the work described in this article.
14	
15	¹ Department of Rheumatology and Clinical Immunology, Kyoto University Graduate
16	School of Medicine, Kyoto, Japan: T. Sasai, M.D.; R. Nakashima, M.D., Ph.D.; H. Tsuji,
17	M.D., Ph.D.; M. Shirakashi, M.D., Ph.D.; R. Hiwa, M.D., Ph.D.; K. Kitagori, M.D.,
18	Ph.D.; S. Akizuki, M.D., Ph.D.; H. Yoshifuji, M.D., Ph.D.; T. Mimori, M.D., Ph.D.;

19	А.	Morinob	u, M.D.	, Ph.D.
----	----	---------	---------	---------

- 20 ²Department of Clinical Immunology and Rheumatology, Medical Research Institute
- 21 Kitano Hospital, Osaka, Japan: T. Nakajima, M.D., Ph.D.; Y. Imura, M.D., Ph.D.
- ³Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital,
- 23 Hiroshima, Japan: Y. Yoshida, M.D., Ph.D.; S. Hirata, M.D., Ph.D.
- ⁴Ijinkai Takeda General Hospital, Kyoto, Japan: T. Mimori, M.D., Ph.D.
- 25

26 **Conflict of interest**

- 27 The authors declare no conflicts of interest.
- 28

29 ***Corresponding author**

- 30 Ran Nakashima, M.D., Ph.D.
- 31 Department of Rheumatology and Clinical Immunology
- 32 Graduate School of Medicine, Kyoto University
- 33 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
- 34 E-mail: ranran@kuhp.kyoto-u.ac.jp
- 35
- 36 Keywords: autoantibody, dermatomyositis, interstitial lung disease

37 Abstract

38 **Objective:** Anti-melanoma differentiation-associated gene 5 (MDA5)-positive 39 dermatomyositis with interstitial lung disease (DM-ILD) progresses rapidly and has a poor prognosis. Recently, we reported the efficacy of a combination therapy comprising 40 high-dose glucocorticoids (GCs), calcineurin inhibitors (CNIs), and intravenous 41 42 cyclophosphamide (IVCY) in a multicenter clinical trial (UMIN000014344). In the 43 present study, we evaluated the long-term outcomes and effects of induction therapy on 44 the maintenance of remission. Methods: All participants from our previous trial were followed-up for more than 5 years. 45 Seventy-three other patients with anti-MDA5-positive DM-ILD from our institute were 46 retrospectively integrated into the previous trial for further analysis. Sixty-eight patients 47 achieved remission and survived for >6 months. Based on the induction treatment, we 48 classified the patients into 2 groups: group T (n=56), triple combination therapy (GCs, 49 CNIs, and IVCY) and group C (n=12), mono/dual-therapy. The recurrence-free and drug-50 51 withdrawal rates of immunosuppressive agents were compared. Results: The overall survival and recurrence-free survival rates at 5 years were 100% for 52 53 the participants in the previous trial. The 5-year cumulative withdrawal rates for CNIs

54 and GCs were 70% and 53%, respectively. In a comprehensive analysis, the recurrence-

- 55 free rates in group T were higher than those in group C (90% vs. 56%, P<0.05). The drug-
- 56 withdrawal rates of CNIs and GCs at 10 years in group T were also higher than those in
- 57 group C (79% vs. 0%, 43% vs. 0%, respectively, P<0.05).
- 58 **Conclusion:** Triple combination therapy in the induction phase can reduce the risk of
- ⁵⁹ recurrence and facilitate drug withdrawal in anti-MDA5-positive DM-ILD.

60 Introduction

61	Clinically, amyopathic dermatomyositis (CADM) is a disease with the typical
62	skin manifestations of dermatomyositis (DM), with few or no features of myopathy (1,
63	2). The anti-melanoma differentiation-associated gene 5 (MDA5) antibody is strongly
64	associated with CADM (3, 4). Interstitial lung disease (ILD) accompanied by anti-
65	MDA5-positive DM/CADM is often rapidly progressive and associated with a poor
66	prognosis, particularly in Japanese patients (5, 6). In the past, approximately 50% of
67	patients died from ILD exacerbation within 6 months of presentation (7). The mortality
68	seemed to be due to the insufficiency of immunosuppressants, such as the administration
69	of only glucocorticoids (GCs) or GCs and calcineurin inhibitors (CNIs).
70	Recently, we reported the efficacy of combined immunosuppressive therapy
71	comprising high-dose GCs, CNIs, and intravenous cyclophosphamide (IVCY) for anti-
72	MDA5-positive DM/CADM-ILD in a single-arm prospective trial (8). With this triple-
73	combination therapy, the 6-month survival rates improved to 89% compared with those
74	with conventional therapy (8). The efficacy of plasma exchange (PE) as an additional
75	therapy for anti-MDA5-positive DM/CADM has also been reported (9). These triple
76	combination therapies and additional PE have improved survival rates and prolonged
77	survival.

78	In accordance with the improvement in the survival rate associated with
79	induction therapy, more patients that are anti-MDA5-positive can be followed-up for a
80	longer time. However, no study, to our knowledge, has evaluated long-term maintenance
81	therapy for anti-MDA5-positive DM/CADM-ILD and the management of patients who
82	are anti-MDA5-positive in remission.
83	In this study, long-term follow-up data for participants from our previous
84	multicenter, single-arm clinical trial (UMIN000014344) (8) were analyzed. Subsequently,
85	by combining the participants of the clinical trial with another cohort, we retrospectively
86	investigated the effect of the induction therapy on long-term outcomes and the changes
87	in maintenance immunosuppressive therapy for anti-MDA5-positive DM/CADM-ILD.
88	
89	Methods
90	Study overview

First, we analyzed the long-term outcomes and maintenance therapy of all participants from our previous trial (UMIN000014344) (8) who were followed-up for more than 5 years. Eligible patients were anti-MDA5 positive and diagnosed as having definite, probable, or possible DM or CADM with ILD, without immunosuppressive treatment before admission to one of the registered hospitals, and who were followed-up

96	for more than 5 years from initial therapy by March 2022. Patients with the following
97	conditions were excluded: deceased patients who did not achieve remission and patients
98	followed-up for less than 6 months from initial therapy. DM was diagnosed according to
99	the criteria of Bohan and Peter (10). CADM was diagnosed when patients demonstrated
100	typical cutaneous lesions of DM without clinical evidence of myositis, with minimal or
101	no increase in serum creatine kinase (2, 10, 11). ILD diagnosis was based on respiratory
102	symptoms, physical examination, high-resolution chest computed tomography (CT)
103	findings, and respiratory function tests. Serum anti-MDA5 antibodies were detected by
104	immunoprecipitation using ³⁵ S-labeled HeLa cells and enzyme-linked immunosorbent
105	assay (MESACUP anti-MDA5 test, MBL Co., Ltd., Tokyo, Japan) (4, 12). Remission was
106	defined as survival for >6 months after initial treatment without active exacerbation of
107	ILD.
108	Second, to investigate the influence of induction therapy on long-term outcomes
109	and management, we retrospectively enrolled 73 consecutive Japanese patients with anti-
110	MDA5-positive DM/CADM-ILD who were aged ≥ 18 years and had visited or been
111	referred to Kyoto University Hospital from October 2001 to March 2022. We combined
112	them with the participants of the clinical trial and analyzed prognosis, such as recurrence-

113 free rate or drug-withdrawal rate. Inclusion criteria were as follows: Japanese patients

114	aged ≥ 18 years with anti-MDA5-positive DM/CADM-ILD who had achieved remission
115	and survived without relapse of ILD. The criteria of DM, CADM, ILD, and remission
116	and the measuring method for anti-MDA5 antibodies were as described above. Relapse
117	of ILD was defined as a deterioration in the respiratory function test or new ground-glass
118	opacities on chest CT, assessed by both a radiologist and a rheumatologist, and the
119	requirement for intensified treatment (13).
120	Patients with the following conditions were excluded: deceased patients who
121	could not achieve remission, patients who had received initial therapy mainly at another
122	hospital, patients who had been followed-up for less than 6 months from initial therapy,
123	patients who had been diagnosed with malignancy at the same time, and patients who had
124	other myositis-specific autoantibodies, such as anti-aminoacyl-transfer ribonucleic acid
125	synthetase antibodies. Eligible patients for combined analysis are shown in Figure 1. We
126	excluded 28 patients, including 17 who were not in remission and died less than 6 months
127	after the initial therapy, 6 who received undetermined induction therapy at another
128	hospital, 3 for whom remission could not be confirmed because the follow-up time was
129	less than 6 months, 1 who was diagnosed with malignant lymphoma just after remission

- 130 of lung disease, and 1 who was positive for both anti-ARS and anti-MDA5 antibodies.
- 131 There were 68 Japanese adult patients with anti-MDA5-positive DM/CADM-

132	ILD who achieved remission and survived for >6 months. These patients were divided
133	into Group T, comprising patients treated with triple combination therapy
134	(GCs+CNIs+IVCY) (n=56) and group C, comprising patients treated with conventional
135	therapy (only GCs, GCs+CNIs, or GCs+IVCY) (n=12), although the treatment regimen
136	was decided on by each attending physician at the time. Furthermore, to investigate the
137	effect of early initial IVCY, patients in group T were subdivided into early group T and
138	late group T, based on the timing of IVCY initiation.
139	All patients provided written informed consent to participate in this study prior

to sample collection. The study was conducted in accordance with the Declaration of
Helsinki. The study design was approved by the Ethics Committee of the Kyoto
University Graduate School and Faculty of Medicine (approval number; R1540).

143

144 Triple combination therapy (group T)

The triple combination therapy regimen comprised high-dose GCs, CNIs, and IVCY as remission induction agents. The regimen was initiated soon after or up to 3 months after the diagnosis of DM or CADM with ILD. Prednisolone was used as the main GC and initially administered at 1 mg/kg/day for 4 weeks; thereafter, the existing dose was reduced by 10% every 2 weeks. Tacrolimus or cyclosporine A was used as a CNI.

150	Tacrolimus was adjusted to maintain a 12-hour blood trough level of 10-12 ng/mL. IVCY
151	was initiated at 500 mg/m ² of body surface area (BSA) biweekly, then gradually increased
152	to a maximum dose of 1,000 mg/m ² of BSA according to a nadir leukocyte count from
153	baseline. The intended number of IVCY administrations was 10-15. Patients who
154	received initial IVCY within 7 days after GC administration were categorized into the
155	early group T (n=45), whereas patients who received initial IVCY later than 7 days after
156	GC administration were categorized into the late group T (n=11).
157	
158	Conventional therapy (group C)
159	Group C patients received monotherapy (only GCs) or dual therapy (GCs with
160	CNIs or IVCY) as remission induction therapy. Although methods of using GCs, CNIs,
161	and IVCY have not been strictly defined, we defined "late addition of CNIs" as when
162	patients had CNIs added after 3 months from GC administration. Other
163	immunosuppressants were not strictly restricted at initial therapy.
164	The choice of treatment regimen was dependent on the attending physicians. In
165	both groups, patients underwent PE as additional therapy when they worsened clinically
166	and required oxygen administration during remission induction therapy.
167	

168 *End points*

The primary endpoint was the comparison of the recurrence-free rate at 120 169 170 months after the initial therapy between groups T and C. Recurrence-free time was defined as the interval between the initiation of induction therapy for lung disease and the 171 exacerbation of lung disease or the last follow-up. Secondary endpoints included the 172 173 drug-free rate of GCs and/or CNIs at 60 or 120 months from initial therapy and the median 174 prednisolone dose at 36 months after initial induction therapy. We defined drug-free as 175 complete withdrawal of GCs and/or CNIs (temporal withdrawal of drugs was not defined 176 as drug-free). We also collected the clinical data of remission, adjusting for the time from 177 initial therapy and serious adverse events after initial therapy. Serious adverse events were defined as unexpected admissions, such as infection or emergent surgery. We also 178 179 analyzed the differences in these end points among the 3 groups.

180

181 *Statistics*

182 Recurrence-free and drug-free rates were estimated by Kaplan–Meier analysis. 183 The log-rank test was also used for comparison. The Wilcoxon test and Fisher's exact test 184 were used to assess the associations of clinical features between the groups. A P-value of 185 <0.05 was considered statistically significant. The P-values for multiple comparisons

186	were adjusted using Bonferroni correction. All statistical analyses were performed using
187	EZR (Saitama Medical Center, Jichi Medical University, Saitama, Japan) for R (The R
188	Foundation for Statistical Computing, Vienna, Austria) (14).

190 **Results**

191 Long-term follow-up data of the clinical trial

192 The overall survival and recurrence-free survival rates of the participants who 193 achieved remission in our previous multicenter, single-arm clinical trial 194 (UMIN000014344) (9) are demonstrated in Figure 2A. Twenty-three patients were 195 enrolled and all patients survived without relapse of ILD. The overall survival and recurrence-free survival rates at 60 months after the initial therapy were both 100% (the 196 197 overall survival rate is not shown in the figure). Drug withdrawal rates of immunosuppressants in these patients are exhibited in Figure 2B-2D. The 60-month 198 199 cumulative withdrawal rates for CNIs and GCs were 70% and 53%, respectively. The 200 cumulative achievement rate for being drug-free of both CNIs and GCs at 60 months was 201 38%. The changes in clinical parameters from the induction phase to the remission phase 202 are shown in Table 1. The median time of analyzing clinical remission was 2,330 days from initial therapy. Respiratory function and Krebs von den Lungen 6 (KL-6) were 203

204	significantly improved in the remission phase. Disease activity markers, such as serum
205	ferritin, KL-6, and anti-MDA5 antibody titers, improved 12 months after the induction of
206	initial therapy and remained within the normal range during the remission phase
207	(Supplementary Figure S1). All patients enrolled in our previous trial maintained
208	remission and had improved disease activity markers and respiratory functions.
209	
210	Characteristics of patients for the combined retrospective analysis
211	A comparison of the clinical characteristics and laboratory tests between the
212	groups is displayed in Table 2. Fifty-six patients were treated with triple combination
213	therapy (group T) and 12 patients with conventional therapy (group C). There were no
214	significant differences in age or sex between the 2 groups. Although the time from
215	disease-onset to initial treatment was significantly longer in group C (P<0.001), the
216	severity of ILD, such as saturation of peripheral oxygen and oxygen therapy at initial
217	therapy, was not different between the 2 groups. Serum ferritin and KL-6 levels were
218	elevated in both groups, with no significant differences between the groups.
219	The predicted percent of diffusing capacity for carbon monoxide (%DLco) was
220	significantly lower in group C than in group T (P<0.01). However, the predicted percent
221	of forced vital capacity did not differ between the groups. GCs were used for all patients

222	in both the groups and the initial median dose of prednisolone was significantly higher in
223	group T (P<0.01). CNIs were used for all patients in group T, and not all patients in group
224	C were treated with triple combination therapy due to the protocol. CNIs were started at
225	approximately the same time as the GCs in all patients in group T, which was significantly
226	earlier than group C. Immunosuppressants other than GCs, CNIs, or IVCY were not used
227	at initial therapy in either of the groups (data not shown). PE was used more frequently
228	for patients in group T than in group C (18% vs. 0%), although this difference was not
229	significant. The median follow-up time was not significantly different between the groups.
230	The clinical characteristics of the 3 groups (early group T, late group T, and group
231	C) are shown in Supplementary Table S1. Group C had a significantly greater time from
231 232	C) are shown in Supplementary Table S1. Group C had a significantly greater time from disease onset to initial therapy compared with the early and late group T (P< 0.05 ,
231 232 233	C) are shown in Supplementary Table S1. Group C had a significantly greater time from disease onset to initial therapy compared with the early and late group T (P<0.05, Bonferroni adjustment). The %DLco and initial median dose of prednisolone in group C
231 232 233 234	C) are shown in Supplementary Table S1. Group C had a significantly greater time from disease onset to initial therapy compared with the early and late group T (P<0.05, Bonferroni adjustment). The %DLco and initial median dose of prednisolone in group C were significantly lower compared to the early group T (both P<0.01, Bonferroni
 231 232 233 234 235 	C) are shown in Supplementary Table S1. Group C had a significantly greater time from disease onset to initial therapy compared with the early and late group T (P<0.05, Bonferroni adjustment). The %DLco and initial median dose of prednisolone in group C were significantly lower compared to the early group T (both P<0.01, Bonferroni adjustment). The frequency of tacrolimus use, total dose, and IVCY count in group C was
 231 232 233 234 235 236 	C) are shown in Supplementary Table S1. Group C had a significantly greater time from disease onset to initial therapy compared with the early and late group T (P<0.05, Bonferroni adjustment). The %DLco and initial median dose of prednisolone in group C were significantly lower compared to the early group T (both P<0.01, Bonferroni adjustment). The frequency of tacrolimus use, total dose, and IVCY count in group C was significantly lower than in both the early and late group T (both P<0.01, Bonferroni

Recurrence-free rate of the patients in the combined retrospective analysis

240	The overall survival rates for groups T and C were both 100% (data not shown).
241	The overall recurrence-free survival is exhibited in Figure 3A. The cumulative
242	recurrence-free rates at 120 months were 90% and 56% in group T and group C,
243	respectively; these were significantly different (log-rank test, P=0.021). All patients who
244	required oxygenation during the induction phase in both groups recovered to a stage
245	where supplemental oxygen could be withdrawn. Group T was divided into the early and
246	late groups. The overall recurrence-free rates at 120 months from initial therapy of the
247	early T, late T, and C groups were 92%, 83%, and 56%, respectively (Supplementary
248	Figure S2). Although there were no significant differences (log-rank test, P=0.06), the
249	early group T demonstrated the highest recurrence-free survival rate among the 3 groups.
250	In terms of clinical characteristics and laboratory tests performed during the
251	remission phase, KL-6 was significantly higher in group C, although respiratory function
252	tests were not significantly different between both groups. However, this is only for
253	reference due to the small number of patients in group C (Supplementary Table S2).
254	

255 Drug withdrawal rate of immunosuppressants

The cumulative withdrawal rates of immunosuppressants, as well as drug-free
rates, are exhibited in Figure 3B-3D. The 60-month cumulative withdrawal rates of CNIs

258	were 59% and 0% in group T and group C, respectively, which were significantly different
259	(log-rank test, P<0.01). Moreover, the 120-month cumulative withdrawal rate of CNIs in
260	Group T was 79%. The 60-month cumulative withdrawal rates of GCs were 32% and 0%
261	in group T and C, respectively, which were significantly different (log-rank test, P<0.05).
262	The cumulative drug-free rates for GCs at the 120-month point were 43% and 0% in
263	groups T and C, respectively. Although there was no significant difference (P=0.13), only
264	the patients in group T achieved drug-free (withdrawal of both CNIs and GCs) remission
265	(17% at 60 months and 36% at 120 months).
266	The cumulative withdrawal rates for CNIs or GCs and drug-free rates for the
267	early T, late T, and C groups are demonstrated in Supplementary Figure S3. The 60-month
268	cumulative withdrawal rate for CNIs in group T was 68%, which was significantly higher
269	than that in group C (P<0.001, with Bonferroni adjustment). The 60-month cumulative
270	withdrawal rate for GCs in the early group T was 38%, which was also significantly
271	higher than that in group C (P<0.05, Bonferroni adjustment). The 60-month and 120-
272	month drug-free rates in the early T and late T groups were 22% and 43%, respectively,
273	which were the highest among the values for the 3 groups. However, the difference was
274	not significant.

276 The maintenance dose of prednisolone at 36 months

277	The prednisolone dose required 36 months after the initial induction therapy is
278	demonstrated in Figure 4. The median dose of prednisolone at 36 months in group T was
279	significantly lower than that in group C (3.0 mg/day and 6.0 mg/day, respectively;
280	P<0.01). The median doses of prednisolone at 36 months in the early T, late T, and C
281	groups were 3.0 mg/day, 3.5 mg/day, and 6.0 mg/day, respectively (Supplementary Figure
282	S4). The median dose of prednisolone in the early group T was significantly lower than
283	that in group C (P<0.05, Bonferroni correction).

284

285 **Details of relapsed patients**

There were 2, 1, and 4 patients who experienced lung relapse in the early T, late 286 T, and C groups, respectively. The detailed clinical course of the patients with lung relapse 287 is shown in Supplementary Table S3. One patient in the early group T was newly 288 289 diagnosed with breast cancer several months before the relapse of ILD, and another 290 patient experienced ILD relapse approximately 1 year after tacrolimus discontinuation due to liver dysfunction. Most of the relapsed patients could be re-induced to remission 291 292 by increasing GCs to moderate or high doses and restarting IVCY and/or CNI; however, 293 2 patients in group C experienced a second relapse of skin manifestations or ILD after reinduction therapy.

295

297	During the observation period, there were 14 (10 patients) and 6 (3 patients)
298	serious adverse events in group T and group C, respectively. Most of the events were
299	bacterial or viral infections. There was no malignancy, such as leukemia, myelodysplastic
300	syndromes, malignant lymphoma, and bladder cancer, which are thought to be induced
301	by cyclophosphamide (Supplementary Table S4), in either group. Serious adverse events
302	of the 3 groups (early group T, late group T, and group C) are shown in Supplementary
303	Table S5.

304

305 **Discussion**

We previously reported the importance of early intervention with triple combination therapy for remission induction and 6-month survival of patients with anti-MDA5-positive DM-ILD in a multicenter prospective trial. However, there is no reported evidence regarding management during the remission phase (8). To our knowledge, this is the first study to demonstrate the effects of induction therapy on long-term outcomes or maintenance treatment for anti-MDA5-positive DM/CADM-ILD.

312	In the present study, the long-term survival and relapse-free rates of patients with
313	anti-MDA5-positive DM-ILD treated with triple combination therapy remained high.
314	Some patients achieved complete drug-free status after the withdrawal of both GCs and
315	CNIs. Disease monitoring markers of interstitial pneumonia, such as KL-6 and respiratory
316	function tests, demonstrated significant improvement 12 months after the initial treatment.
317	These improvements were maintained for an extended period of time. These findings
318	suggested that the efficacy of triple combination therapy, including IVCY, affected not
319	only survival in the remission induction phase but also disease stability with minimum
320	immunosuppressants agents in the maintenance phase. Based on these results, the present
321	study investigated whether the difference in remission induction therapies affects long-
322	term prognosis and stability during the maintenance phase in patients with anti-MDA5-
323	positive DM-ILD who survived the acute phase of their disease.
324	In order to collect data from and analyze patients with anti-MDA5-positive DM-
325	ILD who had achieved remission, we integrated another retrospective cohort of 73
326	patients from our institution into the previous clinical trial (8) and divided them into 2
327	groups for retrospective analysis, based on the remission induction treatment received.
328	There were no significant differences between the 2 groups in terms of age, lactate
329	dehydrogenase, C-reactive protein, and ferritin levels, which have been reported as poor

330 prognostic factors (15).

331 However, the time from onset to treatment was significantly longer in group C, 332 and respiratory function tests, such as %DLco, were also significantly poorer in group C. Group C included more patients who were treated during the previous era than group T. 333 This suggested that the diagnosis and initiation of treatment had been delayed, and 334 335 interstitial pneumonia may have progressed due to the lack of established testing methods 336 for anti-MDA5 antibodies. However, after remission, group C patients demonstrated 337 improvement in respiratory function, which was not significantly different from that of 338 group T (Supplementary Table S2). This suggested that the respiratory function of patients who are anti-MDA5-positive can be improved to some extent after remission induction, 339 even if their ILD is somewhat advanced before treatment. Therefore, it is unlikely that 340 differences in diagnosis-delay and respiratory function prior to induction therapy affected 341 342 relapse or drug-withdrawal rates during long-term observation. 343 Some patients were treated with plasma exchange in group T, although there are 344 conflicting reports of the effectiveness of PE (9, 16). PE in this study was only used in 345 the induction phase and the number of patients treated with PE was low. Thus, this was 346 not thought to influence the duration of remission achievement. Considering this, we do not believe that there were any major differences in patient background between the 2 347

groups in this study, other than differences in treatment protocols. Comparison between

349 the 3 groups after subdividing group T into 2 groups exhibited the same trend.

350 The relapse-free rate was significantly higher for patients in Group T than in Group C. There was no significant difference between the rates in the early and late T 351 groups. However, relapses in the early group T included patients who had discontinued 352 353 immunosuppressive agents due to adverse effects and a patient who had experienced 354 comorbid malignancy during the course of their disease (Supplementary Table S3). In 355 contrast, relapses in the late group T and group C did not include patients with unintended 356 treatment changes or coexisting malignancy. Therefore, early administration of a sufficient amount of cyclophosphamide might be beneficial for maintaining long-term 357 remission. 358

The drug withdrawal rates were also significantly higher in group T than in group C. Although there was no statistical significance, a substantial number of group T patients achieved complete discontinuation of both GCs and CNIs, while none of the patients in group C achieved drug-free remission. The decision to withdraw drugs, such as GCs or immunosuppressive agents, was dependent on the discretion of the attending physician. Considering the medical record information, the attending physician decided to reduce or discontinue the drug based on the titer of anti-MDA5 antibodies, length of the relapse-

366	free period, and presence of clinical symptoms related to dermatomyositis, such as skin,
367	joint, and respiratory symptoms, although there is no pre-defined protocol for decreasing
368	and discontinuing drugs. Although the prednisolone dose was significantly higher in
369	group T than in group C during induction therapy, the prednisolone dose at 36 months
370	was significantly lower in group T. This suggests that the disease activity in group T was
371	stabilized earlier than that in group C, which resulted in a steady reduction in the GC dose.
372	When group T was further divided into 2 groups, patients who were able to discontinue
373	both GCs and CNIs were observed only in the early group T. This could be attributed to
374	the fact that triple combination therapy, including early IVCY, led to long-term deep
375	remission. About adverse events, although we did not compared statistically, there were
376	not seemed to be differences about serious adverse events in group T and group C.
377	Moreover, group T was treated a high total dose of cyclophosphamide, there were no
378	malignancies that could be induced by cyclophosphamide.
379	There have been several reports on the long-term prognosis of anti-MDA5-
380	positive DM-ILD. Isoda et al. (17) reported a significantly lower relapse rate in anti-

MDA5-positive DM-ILD than in anti-ARS-positive DM-ILD over a 2-year observation period. With regards to long-term prognostic data, there are reports of a case involving anti-MDA5-positive DM-ILD that remained in remission for approximately 7 years after

384	initial treatment and a case where ILD recurrence was only observed after 9 years (18,
385	19). However, these were relatively short-term studies with a small number of patients.
386	Hence, these studies were insufficient to evaluate the long-term prognosis and
387	management of anti-MDA5-positive DM-ILD during the remission period.
388	In our study, we included a substantial number of patients with anti-MDA5-
389	positive DM-ILD, standardized the induction of remission therapy, and analyzed the data
390	obtained from long-term observation (median: 5.0 years, range: 0.50-20.3 years). The
391	survival and relapse-free rates of anti-MDA5-positive DM-ILD were clearly higher
392	during the remission maintenance period in the initial triple combination therapy group.
393	Even in relapse cases, re-induction therapy, including IVCY, demonstrated a high rate of
394	remission re-induction.
395	This study had several limitations. First, there was selection bias regarding the
396	inclusion of patients. We only analyzed patients who had survived for more than 6 months,
397	and severe patients at initial therapy were excluded if they died within 6 months.
398	Furthermore, patients in group C were diagnosed in the older era, so most patients had

delayed diagnosis because the recently established commercial base method for detecting
anti-MDA5 was not used. As a result, in this study we analyzed patients with generally
mild disease activity. Second, this study included indication bias because this was a

402	retrospective study conducted by reviewing the charts and the management, including the
403	prescription of drugs, dependent on the attending physician. Third, we only examined the
404	activity of pulmonary lesions and did not assess other organ activities, such as skin or
405	joint lesions. Since residual skin and joint lesions could affect the dose adjustment of GCs
406	and CNIs, we preferred to evaluate overall disease activity using an established scoring
407	system.

In conclusion, the induction of remission with triple combination therapy reduced the relapse risk of ILD and led to early dose reduction and discontinuation of immunosuppressive agents in the maintenance phase in many cases. Further investigation and validation are needed to establish a prospective study in which a drug-tapering protocol during the remission phase is defined and a multifaceted and standardized disease activity core set is used.

414

415 **Author contributions**

RN conceived the study. TS, HT, TN, YI, YY, and SH collected the clinical samples. TS analyzed the data and wrote the main manuscript. RN, HT, MS, RH, KK, SA, HY, TM, and AM contributed to the study design and manuscript writing. All authors have reviewed the manuscript and approved the final version for submission.

420	
421	Data availability
422	The data underlying this article will be shared on reasonable request to the
423	corresponding author.
424	
425	
426	

428 **References**

429	1.	Sontheimer RD. Would a new name hasten the acceptance of amyopathic
430		dermatomyositis (dermatomyositis siné myositis) as a distinctive subset within the
431		idiopathic inflammatory dermatomyopathies spectrum of clinical illness? J Am
432		Acad Dermatol 2002;46:626-36.
433	2.	Euwer RL, Sontheimer RD. Amyopathic Dermatomyositis: A Review. J Invest
434		Dermatol 1993;100:124S-7S.
435	3.	Sato S, Kuwana M, Fujita T, Suzuki Y. Amyopathic dermatomyositis developing
436		rapidly progressive interstitial lung disease with elevation of anti-CADM-
437		140/MDA5 autoantibodies. Mod Rheumatol 2012;22:625-9.
438	4.	Nakashima R, Imura Y, Kobayashi S, et al. The RIG-I-like receptor IFIH1/MDA5 is
439		a dermatomyositis-specific autoantigen identified by the anti-CADM-140 antibody.
440		Rheumatology 2010;49:433-40.
441	5.	Koga T, Fujikawa K, Horai Y, et al. The diagnostic utility of anti-melanoma
442		differentiation-associated gene 5 antibody testing for predicting the prognosis of

443 Japanese patients with DM. Rheumatology 2012;51:1278-84.

444	6.	Gono T, Kawaguchi Y, Satoh T, et al. Clinical manifestation and prognostic factor
445		in anti-melanoma differentiation-associated gene 5 antibody-associated interstitial
446		lung disease as a complication of dermatomyositis. Rheumatology 2010;49:1713-9.
447	7.	Moghadam-Kia S, Oddis C V, Sato S, Kuwana M, Aggarwal R. Anti-Melanoma
448		Differentiation-Associated Gene 5 Is Associated With Rapidly Progressive Lung
449		Disease and Poor Survival in US Patients With Amyopathic and Myopathic
450		Dermatomyositis. Arthritis Care Res 2016;68:689-94.
451	8.	Tsuji H, Nakashima R, Hosono Y, et al. Multicenter Prospective Study of the
452		Efficacy and Safety of Combined Immunosuppressive Therapy With High-Dose
453		Glucocorticoid, Tacrolimus, and Cyclophosphamide in Interstitial Lung Diseases
454		Accompanied by Anti-Melanoma Differentiation-Associated Gene 5-Positive
455		Dermatomyositis. Arthritis Rheumatol 2020;72:488-98.
456	9.	Shirakashi M, Nakashima R, Tsuji H, et al. Efficacy of plasma exchange in anti-
457		MDA5-positive dermatomyositis with interstitial lung disease under combined
458		immunosuppressive treatment. Rheumatology 2020;59:3284-92.
459	10.	Bohan A, Peter JB. Polymyositis and Dermatomyositis (First of Two Parts). N Engl
460		J Med 1975;292:344-7.

461	11.	Gerami P, Schope J M, McDonald L, Walling H W, Sontheimer R D. A systematic
462		review of adult-onset clinically amyopathic dermatomyositis (dermatomyositis siné
463		myositis): A missing link within the spectrum of the idiopathic inflammatory
464		myopathies. J Am Acad Dermatol 2006;54:597-613.
465	12.	Sato S, Murakami A, Kuwajima A, et al. Clinical Utility of an Enzyme-Linked
466		Immunosorbent Assay for Detecting Anti-Melanoma Differentiation-Associated
467		Gene 5 Autoantibodies. PLoS One 2016;11:e0154285.
468	13.	Collard HR, Moore BB, Flaherty KR, et al. Acute exacerbations of idiopathic
469		pulmonary fibrosis. Am J Respir Crit Care Med. 2007;176:636-43.
470	14.	Kanda Y. Investigation of the freely available easy-to-use software 'EZR' for
471		medical statistics. Bone Marrow Transplant 2013;48:452-8.
472	15.	Sato S, Masui K, Nishina N, et al. Initial predictors of poor survival in myositis-
473		associated interstitial lung disease: a multicentre cohort of 497 patients.
474		Rheumatology 2018;57:1212-21.
475	16.	Bay P, de Chambrun MP, Rothstein V, et al. Efficacy of plasma exchange in patients
476		with anti-MDA5 rapidly progressive interstitial lung disease. J Autoimmun.

477 2022;133:102941.

478	18.	Sato Y, Otsuka K, Tamai K, Ono Y, Hamaguchi Y, Tomii K. An Atypical Clinical
479		Course of Anti-MDA5 antibody-positive Interstitial Lung Disease in a Patient with
480		Three Deteriorations in 9 years. Intern Med 2017;56:341-6.
481	19.	Endo Y, Koga T, Ishida M, et al. Recurrence of anti-MDA5 antibody-positive
482		clinically amyopathic dermatomyositis after long-term remission: A case report.
483		Medicine 2018;97: e11024.
484		
485		

487 **Figure legends**

488 **Figure 1.**

489 FLOW SCHEME FOR THE ANALYSIS OF PATIENTS WITH ANTI-MDA5-

490 **POSITIVE DM-ILD WHO ACHIEVED REMISSION**

- 491 Group T: Patients treated with GCs, CNIs, and IVCY.
- 492 Early group T: Patients who received initial IVCY within 7 days of GC administration.
- 493 Late group T: Patients who received initial IVCY within 3 months of GC administration.
- 494 Group C: Patients who received monotherapy (only GCs) or dual therapy (GCs with CNIs
- 495 or GCs with IVCY).
- 496 DM, dermatomyositis; CADM, clinically amyopathic dermatomyositis; ILD, interstitial
- 497 lung disease; MDA5, melanoma differentiation-associated gene 5; ARS, aminoacyl-
- 498 tRNA synthetase; GCs, glucocorticoids; CNIs, calcineurin inhibitors; IVCY, intravenous
- 499 cyclophosphamide
- 500
- 501 **Figure 2.**

502 CLINICAL COURSE OF PARTICIPANTS FROM THE PREVIOUS CLINICAL

503 **TRIAL**

- 504 (A) Recurrence-free rate (B) Drug-free rate for calcineurin inhibitors (C) Drug-free rate
- 505 for glucocorticoids (D) Drug-free rate for both calcineurin inhibitors and
- 506 glucocorticoids
- 507 Twenty-three patients were enrolled. The cumulative rates were analyzed using the
- 508 Kaplan–Meier test. GCs, glucocorticoids; CNIs, calcineurin inhibitors.

```
510 Figure 3.
```

511 CLINICAL COURSE OF PARTICIPANTS INCLUDED IN THE

512 COMPREHENSIVE ANALYSIS

- 513 (A) Comparison of recurrence-free rates between group T (triple combination therapy
- 514 group, n=56) and group C (conventional therapy group, n=12)
- 515 (B) Drug-free rate for calcineurin inhibitors
- 516 (C) Drug-free rate for glucocorticoids
- 517 (D) Drug-free rate for both calcineurin inhibitors and glucocorticoids
- 518 The recurrence-free rate and drug-free rates for calcineurin inhibitors and
- 519 glucocorticoids are significantly higher in group T than in group C (P<0.05,
- 520 respectively). The cumulative rates were calculated using the Kaplan–Meier method.

- 521 The log-rank test was used to compare the rates. GCs, glucocorticoids; CNIs,
- 522 calcineurin inhibitors.
- 523
- 524 **Figure 4.**

525 MAINTENANCE DOSE OF PREDNISOLONE AT 36 MONTHS AFTER

526 **INDUCTION OF INITIAL THERAPY**

- 527 The median doses of prednisolone are 3.0 mg/day and 6.0 mg/day in group T (n=45)
- 528 and group C (n=8), respectively, which are significantly different based on the Mann-
- 529 Whitney U test (P<0.01). Data are presented as box plots, where the boxes represent the
- 530 25th to 75th percentiles, the lines within the boxes represent the median values, and the
- 531 lines outside the boxes represent the minimum and maximum values.

1 **Table 1.**

	At initial t	herapy	At remis	At remission		
Serum ferritin, ng/ml	341.9	139.9-589.4	35.9	14.8-56.0	< 0.001	
Serum KL-6, U/ml	584	496.9-752.1	233	206.5- 255.5	< 0.001	
Anti-MDA5 antibody titer			5	4-8		
FVC, % predicted	88.4	80.2-95.4	104.5	96.7-115.4	< 0.001	
DLco/VA, % predicted	81.7	73.4-87.8	91.7	76.4-101.3	< 0.01	
DLco, % predicted	64	56.5-69.4	91.7	76.4-101.3	< 0.01	

2 Clinical parameter changes of participants in our previous clinical trial

Values are given as the median (interquartile range). Statistical analyses were performed
using Wilcoxon signed-rank sum test. Remission data were evaluated at median 2,320
days from initial therapy. FVC, forced vital capacity; DLco/VA, diffusing capacity for
carbon monoxide corrected for alveolar volume. We have few data of anti-MDA5
antibody titer at initial therapy because the measurement of anti-MDA5 antibody had
not standardized in Japan then.

1 **Table 2.**

	Group T	r (n=56)	Group C	(n=12)	P-value
Age, years	48.0	(41.0-58.3)	50.5	(44.8- 53.0)	0.89
Female sex, %	73.2		83.3		0.72
Time from onset to treatment, days	69	(46-109)	251	(152- 347)	<0.001
SpO ₂ , %	97	(96-98)	97	(96-97)	0.42
Oxygen therapy, %	4		0		1
LDH, U/L	348.5	(257.5- 409.3)	379.0	(292.0- 463.0)	0.64
CRP, mg/dL	0.25	(0.1-0.725)	0.20	(0.1- 0.50)	0.76
Serum ferritin, ng/ml	357.4	(189.8- 658.6)	233.4	(75.3- 631.0)	0.36
Serum KL-6, U/ml	588	(497-771)	603	(538- 1255)	0.32
FVC, % predicted	85.4	(70.1- 100.0)	81.7	(62.2- 94.4)	0.60
DLco/VA, % predicted	81.7	(70.0-92.1)	67.8	(58.6- 70.7)	<0.01
DLco, % predicted	64.7	(52.5-74.1)	46.1	(35.4- 58.0)	<0.01

2 Comparison of clinical characteristics at baseline between group T and C

Treatments

Only PSL, n	0		3		< 0.01
PSL+Tac, n	0		3		< 0.01
PSL+CyA, n	0		1		0.18
Only PSL , lately adding Tac, n	0		2		< 0.05
Only PSL , lately adding CyA, n	0		2		< 0.05
PSL+IVCY, n	0		1		0.18
PSL+Tac+IVCY, n	37		0		< 0.001
PSL+CyA+IVCY, n	19		0		< 0.05
Initial dose of PSL, mg	55.0	(50.0-60.0)	30	(22.5- 45.0)	< 0.001
Timing of CNI, days	0	(0-0)	123	(23-255)	< 0.001
Timing of IVCY, days	2	(1-5)	34	(34-34)	0.13
Total dose of IVCY, mg	8965	(7888- 10590)	0	(0-0)	< 0.001
Number of IVCY, count	10	(9-10)	0	(0-0)	< 0.001
Rate of using PE, %	18		0		0.19
Follow-up time, days	1895	(1195- 2634)	2412	(757- 4289)	0.36

4	The values of age at initial therapy, time from onset to treatment, SpO ₂ , LDH, CRP,
5	serum ferritin, KL-6, FVC predicted, DLco/VA predicted, initial dose of PSL, total dose
6	of IVCY, number of IVCY and follow-up time indicate median (interquartile range)
7	compared with each group using the Wilcoxon test. Other values were assessed by the
8	Fisher's exact test. SpO ₂ , Oxygen saturation of peripheral artery; LDH, lactate
9	dehydrogenase; CRP, C-reactive protein; KL-6, krebs von den lungen; FVC, forced vital
10	capacity; DLco/VA, diffusing capacity for carbon monoxide corrected for alveolar
11	volume; CNI, calcineurin inhibitor; Tac, tacrolimus; CyA, cyclosporine A; IVCY,
12	intravenous cyclophosphamide; PE, plasma exchange. We described "lately adding
13	Tac/CyA" when these drug added after 3 months of starting PSL.

2 Supplementary Figure S1.

3 CHANGES IN CLINICAL PARAMETERS OF ANTI-MDA5-POSITIVE

4 **DERMATOMYOSITIS WITH INTERSTITIAL LUNG DISEASE**

5 Data are presented as box plots, where the boxes represent the 25th to 75th percentiles, the

6 lines within the boxes represent the median values, and the lines outside the boxes

7 represent the minimum and maximum values.

8 MDA5, melanoma differentiation-associated gene 5; KL-6, Krebs von den Lungen.

11 Supplementary Figure S2.

12 RECURRENCE FREE RATES IN EARLY GROUP T, LATE GROUP T AND

13 **GROUP C**

The recurrence-free rate at 60 months from initial therapy are 97%, 100%, and 68% in early group T, late group T, and group C, respectively. There are not any significant differences among the 3 groups (P=0.064). The cumulative recurrence-free rate was calculated using the Kaplan-Meier method. The log-rank test is also used to compare recurrence free rate.

33 Supplementary Figure S4.

34 THE MAINTENANCE DOSE OF PREDNISOLONE AT 36 MONTHS FROM 35 INITIAL THERAPY

Data are presented as box plots, where the boxes represent the 25th to 75th percentiles, the lines within the boxes represent the median values, and the lines outside the boxes represent the minimum and maximum. The median doses of prednisolone are 3.0 mg/day, 3.5 mg/day, and 6.0 mg/day in the early group T (n=35), late group T (n=10), and group C (n=8), respectively. The median dose in the early group T is significantly lower than that in group C, estimated by using Wilcoxon test with Bonferroni adjustment (P=0.011).

43 Supplementary table S1.

44 Comparison of baseline clinical characteristics between the early T, late T, and C

45 groups

	Early gro	oup T (45)	Late grou	ıp T (11)	Group C	(12)	P-value
Age, years	48	(41-59)	48	(41-57)	51	(45-53)	0.90
Female sex, %	71		82		83		0.71
Time from onset to treatment, days	68	(44-109)	82	(51-106)	251	(152- 347)	<0.001
SpO ₂ , %	97	(96-98)	97	(95-98)	97	(96-97)	0.65
Oxygen therapy, %	2		9		0		0.33
LDH	350	(272- 414.5)	328	(224- 371)	379	(292- 463)	0.46
CRP	0.30	(0.10- 0.75)	0.22	(0.10- 0.34)	0.20	(0.10- 0.50)	0.78
Serum ferritin, ng/ml	357.4	(188.3- 647.7)	417.3	(199.3 - 829.1)	233.4	(75.3- 631.0)	0.65
Serum KL-6, U/ml	627.0	(505.7 - 842.0)	542.5	(398.5- 644)	603.0	(538.0- 1255)	0.20
FVC, % predicted	84.8	(71.5- 95.8)	85.5	(73.2- 94.6)	81.7	(62.2- 94.4)	0.85
DLco, % predicted	63.7	(49.5- 72.5)	77.5	(63.3- 86.8)	46.1	(35.4- 58.0)	<0.01
Treatments							
Only PSL, n	0		0		3		<0.01
PSL+Tac, n	0		0		3		<0.01
PSL+CyA, n	0		0		1		0.34
Only PSL, late addition of Tac, n	0		0		2		0.053
Only PSL, late addition of CyA, n	0		0		2		0.053
PSL+IVCY, n	0		0		1		0.34
PSL+Tac+IVCY, n	28		9		0		<0.001
PSL+CyA+IVCY, n	17		2		0		<0.05
Initial dose of PSL, mg	55.0	(50.0- 60.0)	50.0	(42.5- 50.0)	30.0	(22.5- 45.0)	<0.001
Timing of CNI	0	(0-0)	10	(5-22)	123	(23-255)	<0.001
Timing of IVCY	1	(1-3)	22	(16-36)	34	(34-34)	<0.001
Total dose of IVCY, mg	9300	(8000- 10800)	8550	(6690- 8925)	0	(0-0)	<0.001
Number of IVCY, count	10	(9-10)	10	(8-10)	0	(0-0)	<0.001
Rate of using PE, %	20		9		0		0.20
Follow-up time, days	1867	(1085- 2797)	2017	(1636- 2384)	2413	(757- 4289)	0.66

46	The values of age at initial therapy, time from onset to treatment, SpO ₂ , LDH, CRP, serum
47	ferritin, KL-6, FVC predicted, DLco/VA predicted, initial dose of PSL, total dose of IVCY,
48	number of IVCY, and follow-up time indicate median (interquartile range) compared
49	between each group using the Wilcoxon test. Other values were assessed by the Fisher's
50	exact test. SpO ₂ , Oxygen saturation of peripheral artery; LDH, lactate dehydrogenase;
51	CRP, C-reactive protein; KL-6, krebs von den lungen; FVC, forced vital capacity;
52	DLco/VA, diffusing capacity for carbon monoxide corrected for alveolar volume; CNI,
53	calcineurin inhibitor; Tac, tacrolimus; CyA, cyclosporine A; IVCY, intravenous
54	cyclophosphamide; PE, plasma exchange. We described "late addition of Tac/CyA" when
55	these drugs were added after 3 months of starting PSL.

57 Supplementary Table S2.

	Group T ((n=41)	Group C	C (n=5)	P-value
Time from initial therapy, days	2289	(1721-2847)	2338	(2329- 2341)	0.407
Serum ferritin, ng/ml	39.0	(19.3-63.0)	26.8ª	(26.8- 30.6)	0.479
Serum KL-6, U/ml	224.5	(174.8- 268.3)	508.0	(306.0- 635.0)	<0.05
Anti-MDA5 antibody titer	4	(4-8)	14 ^b	(14-14)	0.118
FVC, % predicted	106.2	(95.6-113.6)	88.8 ^C	(87.2- 90.5)	0.0776
DLco, % predicted	79.2	(69.6-83.3)	67.3 ^C	(64.0- 70.6)	0.279

58 Comparison of clinical characteristics at remission between group T and C

The values of time from initial therapy, serum ferritin, KL-6, Anti-MDA5 antibody titer,
FVC predicted, and DLco/VA predicted indicate median (interquartile range) compared
between each group using the Wilcoxon test. Some patients in group C are not fully tested
for remission, ^an=3, ^bn=1, ^cn=2. FVC, forced vital capacity; DLco/VA, diffusing capacity
for carbon monoxide corrected for alveolar volume.

66 Supplementary Table S3.

	Group	Age (years)	Sex	Sex Relapse Therapy just Re- time before induct (months) relapse therap		Re- induction therapy	Outcome after re-induction therapy
	Early group T	41	F	45	PSL: 6mg	GCs (M) and IVCY (2)	Dead by breast cancer after 9 months
		58	F	75	PSL: 10mg+Tac: 3mg	GCs (M), CNIs, IVCY (6) and PE	Maintaining complete remission for 21 months
-	Late group T	43	F	66	PSL: 2mg	GCs (H), CNIs and IVCY (4)	Maintaining complete remission for 85 months
	Group C	45	Μ	98	PSL: 0.5mg	GCs (M), CNIs and IVCY (6)	Maintaining complete remission for 30 months
		47	F	59	PSL: 5mg+Tac: 2mg	GCs (L), CNIs and IVCY (6)	Relapseofskin and lunglesionsafter23 months
		50	F	20	PSL: 4mg	GCs (M) and IVCY (6)	Relapse of skin lesions after 10 months
		56	F	54	PSL: 1.5mg	GCs (M), CNIs and IVCY (6)	Dead by suicide after 4 months

67 Detailed clinical course of patients who had lung relapse

68	PSL, prednisolone; Tac, tacrolimus; GCs (H), high-dose glucocorticoid; GCs (M),
69	moderate-dose glucocorticoid; GCs (L), low-dose glucocorticoid; CNI, calcineurin
70	inhibitor; IVCY, intravenous cyclophosphamide; PE, plasma exchange. The number in
71	the parenthesis following "IVCY" represents the number of IVCY.
72	

73 Supplementary Table S4.

74 Serious adverse events between group T and C

	Group T	(56)	Group	C (12)
Number of patients	10	(17.9)	3	(25.0)
Number of serious adverse events	14		6	
Pneumonia	2	(3.6)	0	(0.0)
Pneumocystis pneumonia	1	(1.8)	0	(0.0)
Lung abscess	1	(1.8)	0	(0.0)
Enteritis	1	(1.8)	3	(25.0)
Herpes zoster	2	(3.6)	1	(8.3)
Cellulitis	0	(0.0)	2	(16.7)
Cytomegalovirus retinitis	1	(1.8)	0	(0.0)
Pyelonephritis	1	(1.8)	0	(0.0)
Sinusitis	1	(1.8)	0	(0.0)
Appendicitis	1	(1.8)	0	(0.0)
Reversible posterior leukoencephalopathy syndrome	1	(1.8)	0	(0.0)
Cerebral infarction	1	(1.8)	0	(0.0)
Pulmonary alveolar proteinosis	1	(1.8)	0	(0.0)
Malignancy thought to be induced by cyclophosphamide	0	(0.0)	0	(0.0)

75 Serious adverse events are defined as unexpected admissions, such as infection or

⁷⁶ emergency surgery. Multiple occurrences in one patient are counted. Data are n (%).

78 Supplementary Table S5.

79 Serious adverse events among early group T, late group T, and group C

	Early (45)	group T	Late (11)	group T	Grou	p C (12)
Number of patients	8	(17.8)	2	(18.2)	3	(25.0)
Number of serious adverse events	10		4		6	
Pneumonia	2	(4.4)	0	(0.0)	0	(0.0)
Pneumocystis pneumonia	1	(2.2)	0	(0.0)	0	(0.0)
Lung abscess	1	(2.2)	0	(0.0)	0	(0.0)
Enteritis	0	(0.0)	1	(9.1)	3	(25.0)
Herpes zoster	1	(2.2)	1	(9.1)	1	(8.3)
Cellulitis	0	(0.0)	0	(0.0)	2	(16.7)
Cytomegalovirus retinitis	1	(2.2)	0	(0.0)	0	(0.0)
Pyelonephritis	1	(2.2)	0	(0.0)	0	(0.0)
Sinusitis	0	(0.0)	1	(9.1)	0	(0.0)
Appendicitis	1	(2.2)	0	(0.0)	0	(0.0)
Reversible posterior leukoencephalopathy syndrome	0	(0.0)	1	(9.1)	0	(0.0)
Cerebral infarction	1	(2.2)	0	(0.0)	0	(0.0)
Pulmonary alveolar proteinosis	1	(2.2)	0	(0.0)	0	(0.0)
Malignancy thought to be induced by cyclophosphamide	0	(0.0)	0	(0.0)	0	(0.0)

Serious adverse events are defined as unexpected admissions, such as infection or
emergency surgery. Multiple occurrences in one patient are counted. Data are n (%).