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A B S T R A C T

The direct use of detailed chemical kinetics in combustion simulations is limited by the extremely high
computational costs. Recently, Owoyele and Pal (Energy and AI, 2022), proposed the neural ordinary differential
equations (NODE) method to accelerate calculations of chemical kinetics and proved its effectiveness in
zero-dimensional calculations of hydrogen combustion considering 9 species and 21 reactions. However,
its performance for more realistic high-dimensional calculations and more complex kinetic systems remains
unexplored. Therefore, this study further applies the method for more complex chemical kinetics of ammonia
combustion, especially with optimizations in the data sampling, model training strategies, and model appli-
cation methods that remedy the problems of versatility and application to more practical simulations. The
newly developed NODE models are comprehensively validated in the zero-dimensional calculations of ammonia
auto-ignition, one-dimensional calculations of laminar freely-propagating ammonia-premixed flames, and two-
dimensional direct numerical simulation (DNS) of ammonia-premixed flames in a temporally evolving jet.
Present NODE models focus on seven chemical species, namely NH3, O2, H2, OH, H2O, N2, and NO, and the
results show that, compared with the results obtained by using detailed chemical kinetics, this method is able
to reduce the computational costs of the zero-dimensional auto-ignition reaction to 1/24 while reproducing
the ignition delay time for a wide range of initial temperatures and equivalence ratios with relatively good
accuracy. Additionally, the method is able to reduce the computational costs of the one-dimensional freely
propagating flame and two-dimensional jet flame to 1/4 and 1/38 respectively, while acceptable reproduction
of the laminar flame speed and temporal evolution of the gas temperature and mass fractions of the interested
species can be achieved.
1. Introduction

Numerical simulations for combustion with direct use of detailed
chemical kinetics that consider a large number of chemical species and
reactions can be computationally expensive when there are significant
differences in the time scales of the reactions [1]. For example, while
the reaction mechanism of hydrogen combustion proposed by Conaire
et al. [2] has the order of 10 species and 20 reactions, the reaction
mechanisms of ammonia (NH3), which is considered one of the next-
generation fuels [3], or methane (CH4) [4] has over 50 species and
hundreds of reactions, and to simulate the reactions stably, small time
steps must be employed. Therefore, when dealing with the combustion
of fuels with such complex chemical kinetics, it is common to use
reduced chemical kinetics that only consider a handful of reactions in
order to reduce the computational costs [5] or use tabulated chemistry
such as flamelet models [6].

In recent years, various calculation methods have been proposed
to replace the conventional calculation of the reaction rates of each
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chemical species using the Arrhenius equation with machine learn-
ing, in order to reduce the computational costs while maintaining
the generality to apply the method to a variety of conditions. For
example, several researchers [7–9] utilized an artificial neural network
(ANN) to store flamelet library that exceeds the memory capacity of a
general computer while successfully reproducing the result using the
conventional flamelet model. Also, the utilization of ANN to predict
the reaction rates from the thermochemical states with high precision
and generality to solve the stiffness problems in chemical reaction
calculations are investigated for fuels such as hydrogen and syngas
[10,11]. The output of ANN is often the source terms of the mass
fraction of the species, since when a specific time integration procedure
is required, the source terms are more convenient and accurate to
use in the time integration of mass fractions compared to the directly
predicted mass fractions in a fixed time step, which would require
interpolations to estimate the source terms.
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Another example that is recently developed is the method of reduc-
ing the computational costs of the reaction rate calculation by applying
the neural ordinary differential equations (NODE) [12]. NODE is a
computational method that uses a neural network as an ODE solver and
directly learns and predicts the derivatives of the ODE. Therefore, when
applied to combustion simulations, it is possible to predict the reaction
rates in chemical reaction calculation without depending on the time
interval, and it is easy to be applied to combustion simulations with
various time scales. Owoyele and Pal [13] successfully used NODE to
learn and predict the reaction rates of the species and temperature in
hydrogen combustion, reducing the computational costs and accurately
reproducing the zero-dimensional auto-ignition reaction. However, the
applicability of the same method to more complex chemical kinetics
with a larger number of chemical species and elementary reactions,
such as NH3 or CH4 combustion, and higher dimensional calculations
one-, two- or three-dimensional calculations) have not been fully
nvestigated.

Therefore, this study proposes a method that can be applied to
hemical reaction calculations with more complex chemical kinetics,
ased on the chemical reaction calculation method using NODE that
woyele and Pal [13] conducted, and its effectiveness on calcula-

ions for different dimensions is verified. Specifically, the chemical
eaction calculation method using NODE is applied to numerical sim-
lations of NH3 combustion (zero-dimensional auto-ignition reaction,

one-dimensional freely propagating flame, and two-dimensional tem-
porary evolving planar jet flame). The ignition delay time, laminar
burning velocity, temperature, and mass fraction distribution of various
chemical species, as well as the computational efficiency, are compared
with the chemical reaction calculation using detailed chemical kinetics,
to verify the ability of this method.

2. Numerical methods

To investigate the accuracy of the chemical reaction calculation
ethod using NODE, direct numerical simulations (DNS) employing the

onventional detailed chemical kinetics [14] and NODE are performed
nd compared.

.1. Governing equations

The governing equations for conservation of mass, momentum, mass
raction of chemical species, and energy are written as
𝜕𝜌
𝜕𝑡

+ ∇ ⋅ (𝜌𝒖) = 0, (1)

𝜕𝜌𝒖
𝜕𝑡

+ ∇ ⋅ (𝜌𝒖𝒖) = −∇𝑝 + ∇ ⋅ 𝝉 , (2)

𝜕𝜌𝑌𝑘
𝜕𝑡

+ ∇ ⋅ (𝜌𝑌𝑘𝒖) = −∇ ⋅ (𝜌𝑽𝒌𝑌𝑘) + 𝜌�̇�𝑘, (3)

𝜕𝜌ℎ
𝜕𝑡

+ ∇ ⋅ (𝜌ℎ𝒖) = ∇ ⋅

[

𝜌𝐷ℎ

{

∇ℎ −
∑

𝑘

(

ℎ𝑘∇𝑌𝑘
)

}

− 𝜌
∑

𝑘

(

ℎ𝑘𝑌𝑘𝑽𝒌
)

]

+
𝜕𝑝
𝜕𝑡

+ 𝒖 ⋅ ∇𝑝 + 𝜏 ∶ ∇𝒖,

(4)

where 𝜌 is the density, 𝒖 is the velocity, 𝑝 is the pressure, 𝝉 is the viscous
tress tensor, ℎ is the enthalpy, 𝐷ℎ is the diffusion coefficient of heat,
𝑘 is the enthalpy of species 𝑘, 𝑌𝑘 is the mass fraction of species 𝑘, 𝑽𝒌 is

the diffusion velocity of species 𝑘, and �̇�𝑘 is the reaction rate of species
𝑘. 𝑽𝒌 is calculated from the following Stefan-Maxwell equation:

∇𝑋𝑘 =
∑

𝑗≠𝑘

{𝑋𝑗𝑋𝑘

𝐷𝑗𝑘

(

𝑽𝒋 − 𝑽𝒌
)

}

, (5)

here 𝑋𝑘 is the mole fraction of species 𝑘, and 𝐷𝑗𝑘 is the binary mass
iffusion coefficient of species 𝑘 into species 𝑗. The calculation of �̇�𝑘
onsiders the detailed chemical kinetics of 59 species and 356 reactions
roposed by Okafor et al. [14] for NH /CH combustion.
2

3 4
.2. Chemical kinetics calculation using NODE

In this study, first, zero-dimensional auto-ignition calculations of
H3 are calculated using detailed chemical kinetics for multiple initial

emperatures and equivalence ratios, and the training data of the re-
ction rates with respect to temperature and mass fraction of chemical
pecies is created. Then, NODE is trained from the data to reproduce
he reaction rates in chemical reaction calculations.

.2.1. Training data generation
The training data is generated by chemical reaction calculation

sing detailed chemical kinetics through Cantera [15]. The reaction
ate of the mass fraction, �̇�, is calculated using the following equation.

𝑑𝑌 𝑛

𝑑𝑡
=

�̇�𝑛(𝑌 𝑛, 𝑇 𝑛; 𝑡)
𝜌

, (6)

where �̇� is calculated using the Arrhenius equation, and it is implicitly
time integrated by Variable-coefficient ODE (VODE) [16]. Furthermore,
since the time scales for auto-ignition calculation for each initial condi-
tion are different, using a constant time step 𝑑𝑡 for all conditions results
in an imbalance in the number of data for each condition. In order to
train NODE accurately, it is necessary to prevent the imbalances in the
number of data among conditions. A straightforward solution would be
to make the number of data equal for each condition. Thus, the number
of data generated for each initial condition is defined as 𝑁 , and the time
step 𝑑𝑡 and elapsed time 𝑡elap are defined using the ignition delay time
𝜏ign as follows.

𝑑𝑡 = 4 ×
𝜏ign
𝑁

(7)

𝑡elap = 4 × 𝜏ign (8)

Here, the elapsed time 𝑡elap is four times the ignition delay time so that
ufficient time is taken for the reaction to become an equilibrium state
fter ignition. In this study, the training data consists of equivalence
atios of 0.6 to 1.4 with intervals of 0.2 and temperatures of 1500 K
o 2300 K with 200 K intervals. Each initial condition consists of 𝑁 =
0,000 points. The time step is different among initial conditions but
ixed in each training data for ease to balance the number of data.

.2.2. Multi-scale sampling method
In the generation of the training data, while the number of data

or each initial condition is kept constant, if random sampling from
he training data is performed for each initial condition during NODE
raining, data whose reaction rate is closer to 0 are sampled at high
requency. For example, Fig. 2.1 shows the reaction rate of the mass
raction of NH3 with respect to the mass fraction of NH3 for the training
ata at an initial temperature of 2100 K and an equivalence ratio of
.6. From this figure, it is apparent that the data distribution density is
igher when the mass fraction of NH3 is around 0 and 0.09. Therefore,
f random sampling from the training data of this initial condition is
erformed, the data with a higher data distribution density of 𝑌NH3
round 0 and 0.09 will be more frequently sampled than the data with
ower data distribution density. In addition to that, the sampling of data
ear 0.05 of 𝑌NH3

may not be sufficient, and the prediction accuracy in
his region may be poor. This issue with the training data distribution
as also discussed by Zhang et al. [10] to investigate its effect on
rediction accuracy. It was concluded that randomly generating the
raining data without any consideration of the training data distribution
ad a negative effect on the prediction accuracy of the reaction rate,
nd a method to balance the data distribution was necessary. Therefore,
n this study, instead of randomly sampling the data in the training
rocess, each data is weighed based on their data distribution density
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Fig. 2.1. Data distribution of mass fraction versus reaction rate of NH3 and data distribution density (𝜙 = 0.6, 𝑇init = 2100 K, plotted every 40 points).
Fig. 2.2. Comparison of sampled data distribution between random sampling and weighted sampling.
and the sampling frequency is adjusted to ensure that the data in low-
density regions are sufficiently taken into account. The weight value 𝑄
for each data is defined the following,

𝑄 =
𝑃min
𝑃

(9)

where 𝑃 is the data distribution density obtained by kernel density esti-
mation that estimates the probability density, and 𝑃min is the minimum
value of 𝑃 in the entire training data. As a result, by comparing the
data distribution of the 300 points that are randomly sampled with that
sampled with weighting using 𝑄 shown in Eq. (9), it can be clearly
seen that when weighting is applied using 𝑄, a better sampling can be
observed in the region of 0 ≤ 𝑌NH3

≤ 0.05 compared with randomly
sampled ones. This enables NODE to be trained uniformly across the
entire training data, leading to improvement in the accuracy of NODE
prediction (see Fig. 2.2).
3

2.2.3. Normalization
Mass fractions of species are normalized using customized Box–Cox

transformation (BCT) [17], which is defined as

𝑓 (𝑥) =

{

𝑥𝜆−1
𝜆 (consumption species)

(1−𝑥)𝜆−1
𝜆 (production species)

, (10)

where 𝜆 is set as 0.1, the consumption species are NH3 and O2, and the
production species are the rest. The transformation has two options,
and this is to avoid a significant increase in the transformed mass
fraction of the production species when their original mass fractions
are close to zero. For temperatures, it is normalized by simply dividing
by the maximum value in the entire training data.

2.2.4. Training
The generated training data and the sampling method are used to

train NODE. Fig. 2.3 shows the schematic of the training procedure.
The input of NODE is the mass fraction of each chemical species
and temperature, and the output is the reaction rate of one of the
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Fig. 2.3. Schematic of the training procedure of NODE.
Fig. 2.4. Comparison of reaction rate prediction of NH3 using NODE and VODE between species selection threshold of 1.0 × 10−2 and 1.0 × 10−3.
chemical species. Therefore, chemical reaction calculation using NODE
is represented as follows, and each chemical species is introduced
separately using NODE.

𝑑𝑌 𝑛+1
𝑘
𝑑𝑡

=
�̇�𝑛(𝑌 𝑛

𝑘 , 𝑇
𝑛; 𝑡)

𝜌
(11)

Here, 𝑌 𝑛 and 𝑇 𝑛 denote the mass fraction and temperature of the
chemical species considered in NODE, respectively. The mass fraction
of each chemical species used as input to NODE does not consider
all of the chemical species involved in the detailed chemical kinetics,
but only the mass fraction of the chemical species whose maximum
value of mass fraction in the training data exceeds a threshold. This
is because the use of all chemical species considered in the detailed
chemical kinetics as inputs to NODE results in the complexification of
the neural network used in NODE and an increase in computational
costs due to the enlargement of the number of parameters. In this study,
the threshold is set to 1.0 × 10−2, and as a result, the chemical species
used as inputs to NODE are seven species, namely NH3, O2, H2, OH,
H2O, N2, and NO. Additionally, the calculation for the mass fraction of
N2, which is an inert chemical species, is excluded from NODE, and it
is calculated by subtracting the mass fractions of the remaining species
from one. Therefore, 6 NODEs are considered to calculate the reaction
rates for NH , O , H , OH, H O, and NO.
4

3 2 2 2
As a preliminary analysis conducted prior to one- and two-dimensi-
onal calculations, the threshold is lowered from 1.0×10−2 to 1.0×10−3 to
test the influence of the number of considered species on the calculation
results. Additional chemical species are considered, which are H, O, NH,
NH2, N2O, and N2H2, and the effect of the threshold on the prediction
accuracy is investigated. Figs. 2.4(a) and 2.4(b) show the comparisons
of predicted reaction rates obtained using NODE with ground truth
reaction rates obtained using VODE for NH3 under the same sampling
condition as the training data. The sampled data are 40,000 in total.
From these figures, it can be observed that the reaction rates obtained
using NODE have a good correlation with those obtained using VODE
in both of the thresholds, and they are almost identical, indicating that
the threshold difference between 1.0 × 10−2 to 1.0 × 10−3 has very little
influence on the prediction accuracy.

Next, Fig. 2.5 shows the NODE perturbation test for variations of
initial conditions with the species selection threshold of 1.0 × 10−2.
The thermochemical initial conditions for the calculations of auto-
ignition are randomly sampled from temperatures of 1900 K to 2300
K, and equivalence ratios of 0.6 to 1.4 for 20 cases. Then, auto-ignition
calculations are conducted using those initial conditions by VODE, and
for 40,000 thermochemical states in the auto-ignition calculations, the
reaction rate predictions obtained by NODE are compared with those
obtained by VODE. It can be seen that NODE is capable of reproducing
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Fig. 2.5. NODE perturbation test.

the reaction rates under perturbated inputs with good accuracy. NODE
is trained for each chemical species with hidden layers consisting of
four layers and each comprised of 32 perceptrons for major species
(NH3, O2, H2O), and 64 perceptrons for minor species (H2, OH, NO).
All the different NODEs for each species are trained separately, and
while training NODE for one species, the ground truth mass fraction of
the other species and temperatures are used as inputs.

For the activation function, sigmoid-weighted linear unit (SiLU)
[18] is used in each layer. Also, Fig. 2.6 is the result of the hyperparam-
eter test conducted for NODE of NH3 and 𝑇init from 1900 K to 2300 K as
an example. The correlation coefficient indicates the linear correlation
of the reaction rates obtained from NODE and the conventional VODE
with detailed chemical kinetics, and Fig. 2.6(a) shows its values with
the increase in the number of perceptrons when the number of hidden
layers is four. From this figure, the prediction accuracy of NODE satu-
rates when the number of perceptrons is 16 and above. Also, Fig. 2.6(b)
shows the correlation coefficient with the increase in the number of
hidden layers when the number of perceptrons is 32. From this figure,
the prediction accuracy saturates when the number of hidden layers
is four and above. Therefore, the number of perceptrons and hidden
layers in NODE for NH3 and 𝑇init from 1900 K to 2300 K is enough for
the saturation of prediction accuracy. This is the same for other major
species (O2 and H2O), but not for minor species (H2, OH, and NO),
and 64 perceptrons are required to reach the saturation in prediction
accuracy. NODEs for minor species have 64 perceptrons for each hidden
layer, and this treatment for minor species indicates that a larger model
size is required for better prediction accuracy. It also indicates that the
reaction rate predictions for minor species are more difficult for NODE
than those for major species.

In this study, NODE for each chemical species is branched into three
models based on the initial temperature of the training data, predom-
inantly to increase the computational efficiency while maintaining the
prediction accuracy. The highest initial temperature model is trained
using initial temperatures of 1900 K, 2100 K, and 2300 K. The medium
initial temperature model is trained using initial temperatures of 1500
K, 1700 K, and 1900 K. The lowest initial temperature model is trained
using initial temperatures of 900 K, 1100 K, 1300 K, and 1500 K. As
for the lowest initial temperature model, training data for the initial
temperatures of 900 K and 1100 K contains the beginning 5 s of the
auto-ignition calculation. This is due to the insanely long ignition delay
time that if 𝑑𝑡 described in Eq. (7) is used, it would result in too large
time steps compared with the time step used in the later explained one-
and two-dimensional freely propagating flame and temporary evolving
planar jet flame. This also means that the training data for the initial
temperatures of 900 K and 1100 K does not include the intense reaction
rate increase.
5

2.2.5. Model selection
In a combustion simulation using NODE for chemical reaction calcu-

lations, both NODE and the conventional VODE with detailed chemical
kinetics are employed. Since NODE is trained based on the auto-
ignition calculation results, it is less reliable to predict the reaction rates
where the local temperature is below the lowest temperature which
is not considered in the zero-dimensional auto-ignition calculation.
Therefore, in this method, chemical reaction calculations using NODE
are performed at higher temperature regions, and chemical reaction
calculations using VODE with detailed chemical kinetics are performed
at lower temperature regions. In this study, the threshold used in one-
and two-dimensional calculations to select the calculation method ei-
ther NODE or the conventional VODE with detailed chemical kinetics is
determined to be 1400 K, which is higher than the lowest temperature
that is contained in the training data. This is because, in the auto-
ignition training data whose initial temperature is below 1400 K, the
time step interval is significantly large. For instance, static 𝑑𝑡 in the
auto-ignition training data whose initial temperature of 1100 K is in the
order of 100 μs. This is significantly larger than the time step interval
that is used in one- and two-dimensional calculation, which is in the
order of 0.1 μs.

Fig. 2.7 shows an overview of the chemical reaction calculations
which utilize NODE at higher temperatures (1400 K and above in this
study). When calculating the reaction rate of each chemical species,
NODE is branched into three models based on the initial temperature
of the training data. This feature not only increases the prediction
accuracy due to less generality but the computational costs since the
model size can be smaller. In practice, this raises the issues as to
which model to use during the chemical reaction calculation. Therefore,
it is necessary to decide which model to use in each grid point in
advance. Therefore, in this study, in every 100th step during the chem-
ical reaction calculation, the reaction rate of each chemical species
is calculated using all three NODEs and the conventional VODE with
detailed chemical kinetics. Next, the outputs of NODEs and the reaction
rate from VODE are compared, one of the three models of NODEs with
the smallest error is selected, and the selected NODE is used for the
next 99 steps. This determines the most suitable model to be applied in
the chemical reaction calculation among the three models of NODEs.
Temperature is calculated iteratively from enthalpy, and the pressure
is calculated from the equation of state for ideal gas.

2.2.6. Numerical procedure
All the simulations are performed by using the thermal flow analysis

in-house code FK3 [19] with the finite difference formulation in a
non-uniform staggered Cartesian coordinate system. This code is based
on a pressure-based semi-implicit solver for compressible flows, which
employs a fractional-step method [20,21]. The spatial derivative of
the convective term in the conservation equation of momentum is
approximated using Kawamura–Kuwahara scheme [22], and the fifth-
order WENO (Weighted Essentially Non-Oscillatory) scheme [23] is
used to evaluate the convective terms in the conservation equations
of the scalar quantities. Time integration of the convective terms is
performed by a third-order explicit TVD Runge–Kutta scheme [24].

2.3. Validations

2.3.1. Zero-dimensional calculation
NODE is applied to zero-dimensional auto-ignition calculation to

evaluate the evolution of temperature and mass fractions and the
ignition delays. The initial conditions are set as 1100 K to 2300 K with
200 K intervals for the temperature and 0.6 to 1.4 with 0.2 intervals for
the equivalence ratios. The results are compared with the calculation
results obtained by using detailed chemical kinetics with VODE.
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Fig. 2.6. Hyperparameter test for NODE.
Fig. 2.7. Schematic diagram of chemical reaction calculation procedure in NODE-based
calculation.

2.3.2. One-dimensional calculation
NODE is also applied to one-dimensional freely propagating pre-

mixed flame for equivalence ratios of 0.8 to 1.2 with 0.1 intervals.
The unburnt gas temperature is 300 K, and the ambient pressure is
0.1 MPa. The computational domain measures 20 mm with additional
buffer regions on both sides. The minimum grid spacing used is 20
μm. The inlet velocity from the unburnt gas side is determined by the
laminar burning velocity to maintain the flame front in the center of
the computational domain. The reaction rate calculation using NODE
is only used where the local temperature is 1400 K and above, and
the conventional VODE with detailed chemical kinetics is used for the
remaining region.

2.3.3. Two-dimensional calculation
Fig. 2.8 shows the schematic of the computational domain and con-

ditions for simulating temporary evolving planar jet flame of premixed
NH3. Unburnt gas of the premixed NH3 and air with an equivalence
ratio of 1.0 is set in the center of the domain in 𝑦-direction, and burnt
gas of the combustion product of the premixed NH3 and air with an
equivalence ratio of 1.0 is set around the unburnt gas. The initial
bulk velocities for unburnt and burnt gas are 36 m/s and -84 m/s
in 𝑥-direction, and both 0 m/s in 𝑦-direction. To promote instability
and mixing in the boundary between burnt and unburnt gas, artificial
velocity fluctuations in 𝑥- and 𝑦-directions are imposed on the unburnt
6

Fig. 2.8. Calculation domain and conditions (L = 1.0 mm).

gas using Klein’s digital filter [25], which is 14.2% of the relative
velocity of unburnt and burnt gas, 17 m/s. The initial temperatures for
unburnt and burnt gas are 900 K and 2400 K. The streamwise boundary
condition is periodic, and the other boundaries are outlet conditions.
The ambient pressure is 0.1 MPa. The computational domain measures
16 and 24 mm in 𝑥- and 𝑦-directions respectively and consists of
800 × 480 grid points. The minimum grid spacing used in the DNS
grid is 20 μm in each direction, and the grid is stretched at both ends
in 𝑦-direction.

The CPU time required to simulate temporary evolving planar jet
flame of premixed NH3 using the proposed method is approximately
3000 node hours (about 20 h of real-time) by parallel computing using
7680 cores on the supercomputer Fugaku at RIKEN center, Japan.

3. Results and discussion

3.1. Zero-dimensional calculation

Fig. 3.1 shows the comparison of the temporal profiles of the
mass fraction of each species in the zero-dimensional auto-ignition
calculation of NH3/air premixed gas calculated using VODE-based and
NODE-based calculation under the initial temperature of 1500 K and
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Fig. 3.1. Comparisons of species mass fractions and temperature distribution between VODE-based and NODE-based calculation (𝜙 = 1.0, 𝑇init = 1500 K).
f
c

quivalence ratio of 1.0. This figure shows that the mass fraction of
ach species can be calculated fairly accurately at 1500 K. Also, the
emporal evolution of temperature shows fairly good accuracy, but
t the time when the reaction is intense and the mass fraction of
he chemical species and temperature changes drastically, NODE-based
alculation slightly struggles to follow VODE-based calculation results.

In addition, Figs. 3.2, 3.3, and 3.4 show the comparison of the
emporal profiles of the mass fraction of each species for other con-
itions (𝑇init = 1900 K, 𝜙 = 0.8, 1.0, 1.2). These show that the mass
raction of each species can also be calculated generally acceptable for
ide ranges of conditions, but some discrepancy is noticeable especially

or the mass fractions of minor species (NO and OH) as shown in
igs. 3.2(b), 3.3(b), and 3.4(b). It can be seen that for NO and OH, the

mass fraction changes even after the ignition. Therefore, even after the
major species and temperature has reached an equilibrium state, NODE
has to continue predicting the right reaction rates for the intermediate
species and these would be consumed to form the final products when
achieving complete combustion which requires a longer time. This can
be difficult for NODE-based calculation because NODE is required to
be sensitive to the small changes in mass fractions and temperature to
accurately predict the final stage of the auto-ignition.

Lastly, Figs. 3.5(a) and 3.5(b) show the comparisons of the temporal
profiles of the mass fraction of each species for other conditions (𝑇init =
1100 K, 𝜙 = 0.8). From these figures, mass fractions and temperature
before the ignition in the lower initial temperature auto-ignition are
also acceptably well reproduced, indicating a reliable prediction of the
NODE models for low reaction rates at low temperatures.

The overall discrepancy in the auto-ignition calculation whose ini-
tial temperature is 1900 K is more obvious than that of the lower initial
temperature case (Fig. 3.1), and it denotes that it is relatively more
difficult for NODE-based calculation to predict the reaction rates for
higher initial temperature since the reaction is more intense and the
reaction rate is increased in higher initial temperatures. However, in
terms of the equivalence ratios, the prediction accuracy is almost the
same between NODE-based and VODE-based calculations, indicating
that the difference in equivalence ratio has little effect on the prediction
accuracy of NODE.

Fig. 3.6 shows the comparison of the ignition delay time of NH3/air
premixed flame calculated using VODE-based and NODE-based calcu-
lation. The error in the ignition delay time of the initial temperature
of 1500 K and above is within 7.5% difference at most. The error
slightly increases when the initial temperature is 1300 K and lower
since a small error in the low reaction rate region causes a relatively
larger discrepancy in ignition delay time compared to the higher ini-
tial temperature cases. However, this accuracy is acceptable but not
perfect with room to be improved, especially when compared with
the deviations between the reduced mechanism predictions and de-
tailed mechanism predictions and experimental data, and the overall
prediction of the ignition delay time demonstrates that NODE-based
calculation can calculate the ignition delay time for a wide range of
7

initial temperatures and equivalence ratios with reasonable accuracy
while reducing the computational costs to 1/24.

The equivalence ratio that is used to train NODE is 0.6 to 1.4 with an
interval of 0.2. Therefore, NODE should be able to predict auto-ignition
for all the equivalence ratios in Fig. 3.6. The reason NODE slightly
over-predicts the ignition delay time for lower equivalence ratios is
that when there are thermochemical perturbations at lower equivalence
ratios, the thermochemical inputs of NODE can easily step out of
the thermochemical states in the training data, hence extrapolation
prediction for NODE.

The elementary mass conservation is also investigated in NODE-
based calculations. Fig. 3.7 shows the elementary mass conservation of
N, H, and O when calculating auto-ignition for the equivalence ratio of
1.0 and initial temperature of 1900 K. This shows that all the elemental
mass is well conserved in the entire calculation. However, a slight
increase or decrease in mass can be noticed for N and O, which is
caused by the unconsidered species in the 52 species in the reaction
mechanism. Still, this effect is negligibly small in this case since NODE-
based calculations can reproduce the mass fractions of the considered
seven species that represent the major component.

The reduction of the computational costs is achieved in aspects of
numerical methods and the number of species to consider. Firstly, while
VODE employs an implicit time integration method, NODE uses an
explicit Euler’s method. Since NODE is trained using the auto-ignition
calculation results that are calculated by VODE, it is expected to repro-
duce VODE calculation results with a faster time integration method.
Secondly, in VODE calculations, consideration of all the species in
the reaction mechanism is required, which invokes a time-consuming
iterative loop in the convergence calculation. However, in NODE cal-
culations, the number of species to be considered is reduced, which is
an additional advantage in terms of computational costs. An increase
in the number of species to be considered will definitely increase the
computational costs, which are mainly affected by the threshold value
used to identify interested species.

3.2. One-dimensional calculation

Fig. 3.8 shows the instantaneous distribution of the mass fraction
of each chemical species and temperature, indicating that most of
the mass fractions of chemical species are calculated fairly accurately.
However, there are differences between VODE-based and NODE-based
calculation in the mass fraction distribution of H2 and OH as evident
rom Fig. 3.8(b). This can be attributed to the fact that NODE-based
alculation is not capable of predicting the consumption of H2 and OH

in the burnt side with high precision. This error is considered to be
caused by that the training data for NODE only consisting of the auto-
ignition reaction, and this H2 and OH consumption in the burnt side
does not occur in the auto-ignition.

To further investigate this discrepancy, Fig. 3.9 shows the compar-

isons of the instantaneous predictions of the H2 reaction rate obtained
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Fig. 3.2. Comparisons of species mass fractions and temperature distribution between VODE-based and NODE-based calculation (𝜙 = 0.8, 𝑇init = 1900 K).
Fig. 3.3. Comparisons of species mass fractions and temperature distribution between VODE-based and NODE-based calculation (𝜙 = 1.0, 𝑇init = 1900 K).
Fig. 3.4. Comparisons of species mass fractions and temperature distribution between VODE-based and NODE-based calculation (𝜙 = 1.2, 𝑇init = 1900 K).
Fig. 3.5. Comparisons of species mass fractions and temperature distribution between VODE-based and NODE-based calculation (𝜙 = 0.8, 𝑇init = 1100 K).
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Fig. 3.6. Comparisons of ignition delay time, 𝜏ign, between VODE-based and NODE-
based calculation for various initial temperatures, 𝑇init , and equivalence ratios,
𝜙.

Fig. 3.7. Elemental mass conservation of 𝑁 , 𝐻 , and 𝑂 in NODE-based calculation (𝜙
1.0, 𝑇init = 1900 K).

y VODE and three NODEs branched by the initial temperatures in the
raining data, which is scheduled at every 100th step in the calculation.
s described in Section 2.2.5, model selection is conducted to choose
hich one of the NODE models to use locally for the next 99 steps in

he calculation. Therefore, in this figure, one of the models whose H2
eaction rate prediction is the closest to that of VODE is chosen for the

reaction rate prediction in the next 99 steps. However, none of the
ODE models succeeds in predicting the H2 reaction rate accurately
round where 𝑥 = −1 mm and 𝑥 = 0 mm. At around 𝑥 = −1 mm,
one of the NODE models predicts a negative value of the H2 reaction
ate, and at around 𝑥 = 0 mm, all of the NODE models predict less H2
eaction rate compared with VODE. Therefore, NODE-based calculation
ails to reproduce such H2 production and consumption that is seen in
he one-dimensional calculation by VODE-based calculation.

Also, the temperature distribution shows a generally good match
etween VODE-based calculation and NODE-based calculation. This is
ue to little difference in the mass fraction distribution of major chem-
cal species, and predominant components of the gas agree sufficiently
ell with VODE-based calculation.

In addition, Fig. 3.10 shows the laminar burning velocity obtained
y using VODE-based and NODE-based calculations. This indicates
hat NODE-based calculation can calculate the freely-propagating flame
airly well, presumably because the earlier part of the reaction cal-
9

ulation in the unburnt gas is first performed by the conventional m
ODE-based calculation. Also, NODE-based calculation results in ap-
roximately four times faster calculation speed than VODE-based calcu-
ation. This improvement in calculation speed is smaller than that in the
ase of a zero-dimensional auto-ignition reaction, and this is due to the
imitation of the calculation time speedup in the region (below 1400 K)
here VODE is employed. Therefore, higher computational efficiency

an be expected when a wider area of the computational domain has a
igher temperature.

.3. Two-dimensional calculation

Figs. 3.11, 3.12, 3.13, 3.14 show comparisons of mass fraction
istribution of NH3, H2O, NO, and temperature distribution between
he results obtained using VODE-based calculation and those obtained
sing NODE-based calculation, for the time evolution of the mass
ractions of various chemical species in a two-dimensional temporary
volving planar jet flame of premixed NH3. It is observed that the mass
raction distributions obtained using NODE-based calculation show
elatively similar consumption of NH3 and production of H2O and NO to
hose using VODE-based calculation. However, slight over-consumption
f the fuel and oxidizer, and over-generation of the product species are
lso observed, which is further explained as follows.

From Fig. 3.11, the over-consumption of the fuel is apparent with
he increase in time. At 𝑡 = 0.33 ms, even though the mass fraction
f NH3 is high in the VODE-based calculation result around the region
ircled by the white dotted line, smaller amount of NH3 is remaining
n the NODE-based calculation result. Also, the over-production of the
pecies is noticeable in Fig. 3.12. From this figure, at 𝑡 = 0.33 ms,
ome regions where the mass fraction of H2O is small are observed
n the VODE-based calculation result as indicated by the white dotted
ircle. However, in most of the region, the mass fraction of H2O is
igh in the NODE-based calculation result. This over-prediction of
he consumption and the production is the accumulation of the error
hat the predicted reaction rate using NODE has resulted in, which
ncreases the perturbation intensity of the thermochemical states as the
nputs to NODEs. In addition, the temperature increase is slightly more
ntense in the results using NODE-based calculation. This has resulted
rom the over-prediction of the consumption and production of the
ass fraction of species, and the reaction occurs faster in NODE-based

alculations than in VODE-based calculations. To amend the problem
f the increased perturbation intensity, NODEs are required to be more
obust against perturbation of the thermochemical states. Therefore, a
ore advanced sampling method, such as using 1D flamelet solutions,

s required to train NODEs.
Fig. 3.15 shows the comparisons of mass fraction distributions of

H3 and NO at 𝑡 = 0.15 ms, each as an example of major and minor
pecies, between the results obtained using VODE-based calculation
nd those obtained using NODE-based calculation, and white lines
ndicate where the temperature is 1400 K. The white lines, there-
ore, denote where the chemical reaction calculation switches to ei-
her VODE-based calculation or NODE-based calculation. These figures
emonstrate that although the consumption of NH3 is relatively well re-
roduced in NODE-based calculations, the production of minor species
s globally smaller and locally larger. This represents the same difficulty
n calculating the reaction rates for minor species as in one-dimensional
alculations.

To further compare the temporal behavior between VODE-based
alculation and NODE-based calculation, Fig. 3.16 shows the volume-
veraged mass of NH3 and O2, and temperature. The volume average
s implemented in the region where −0.5 mm ≤ 𝑦 ≤ 0.5 mm. From
his figure, it can be seen that for the first part of the simulation until
= 0.15 ms, the temporal evolution of each quantity shows similar

rends between NODE-based calculation and VODE-based calculation.
or the latter part of the calculation from 𝑡 = 0.15 ms, the discrepancy
etween NODE-based calculation and VODE-based calculation becomes

ore noticeable. Judging from the distributions in Figs. 3.11 to 3.14,
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b

Fig. 3.8. Comparisons of species mass fractions and temperature distribution between VODE-based and NODE-based calculation (𝜙 = 1.0).
Fig. 3.9. Comparisons of instantaneous predictions of H2 reaction rate obtained by
VODE and three NODEs branched by initial temperatures, 𝑇init , in the training data.

Fig. 3.10. Comparisons of laminar burning velocities, 𝑆𝐿, with equivalence ratio, 𝜙,
etween VODE-based and NODE-based calculation.
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after 𝑡 = 0.15 ms, it can be seen that the mixing of the unburnt gas
and burnt gas becomes intense, indicating that the advection and the
diffusion of chemical species become drastic. This drastic mixing of the
chemical species induces the composition of the gas to be unexpectable
for the NODE-based calculation since NODE primarily accounts for
the auto-ignition calculation, which leads to the error increase from
the VODE-based calculation. As a result, the accumulated error is
significant in the temporal evolution of the temperature, since the dif-
ference in the composition of the gas increases as time elapses. Further
investigation is needed to handle this error accumulation, and one of
the solutions is to train NODE with training data not only consisting of
the zero-dimensional auto-ignition calculation but other calculations.
Since in the more realistic reactions, the chemical compositions can be
quite different from those in the auto-ignition calculation. Using one-
dimensional calculations such as counter-diffusion flames might be an
optimal choice for the additional training data. Also, the computational
costs are reduced to 1/38, which is an additional speedup to the one-
dimensional calculation. This is because, in NODE-based calculations,
the computational costs required to calculate the reaction are constant,
whereas in VODE-based calculations, iterative convergence is required
and the computational costs increase when the reaction is stiff. Also,
NODE-based calculation is faster when a large proportion of the compu-
tational domain has a higher local temperature as NODE can be applied
in a wider region in the reaction calculation instead of VODE. In the
two-dimensional calculation, the lowest temperature is 900 K and it is
higher than that in the one-dimensional calculation, which is 300 K.

4. Conclusions

In this study, NODE-based calculation was applied to conduct NH3
combustion simulations, and the accuracy and computational cost of
this method were verified by comparing them with VODE-based cal-
culation via ignition delay time, laminar combustion velocity, distribu-
tions of temperature and mass fraction of each chemical species, and
computational costs.

In the zero-dimensional auto-ignition calculations, it was observed
that this method was able to reproduce the temporal evolution of the
mass fraction of species and temperature, as well as the ignition delay
time for a wide range of initial temperatures and equivalence ratios
fairly accurately with the calculation cost reduced to 1/24 compared
with VODE-based calculation. On the other hand, for the distribution
of the mass fraction of each chemical species after ignition, slight
differences were observed compared with the results of VODE-based
calculation, and this was caused by the NODE prediction error in the
reaction rate calculation where the reaction was intense. This tendency
was more obvious when the initial temperature was high, which in-
duced more stiffness in the reaction calculation, but not relevant to the
change in the equivalence ratios.

In the one-dimensional freely propagating flame calculations,

NODE-based calculation was able to reproduce the one-dimensional
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Fig. 3.11. Comparisons of mass fraction distribution of NH3 between VODE-based and NODE-based calculation.

Fig. 3.12. Comparisons of mass fraction distribution of H2O between VODE-based and NODE-based calculation.

Fig. 3.13. Comparisons of mass fraction distribution of NO between VODE-based and NODE-based calculation.
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Fig. 3.14. Comparisons of temperature distribution between VODE-based and NODE-based calculation.
Fig. 3.15. Comparisons of mass fraction distribution of NH3 and NO between VODE-based and NODE-based calculation (white lines indicate 𝑇 = 1400 K).
distribution of the mass fraction of each chemical species and tem-
perature fairly accurately while reducing the calculation cost to 1/4
compared with VODE-based calculation. However, the distribution of
the mass fraction of each chemical species and temperature obtained
using NODE-based calculation had some discrepancies in the burnt side
of the profile compared with that of VODE-based calculation. This is
due to the low prediction accuracy of the reaction rate of minor species,
especially OH and H2 since the behavior of production and consump-
tion as an intermediate product is different in the one-dimensional
calculations from that of the zero-dimensional calculations.

In the two-dimensional jet flame calculation, NODE-based calcu-
lation was able to reproduce the distribution of mass fractions of
chemical species and temperature relatively accurately with a calcula-
tion cost reduced to 1/38 compared with the VODE-based calculation.
On the other hand, overconsumption of the fuel and oxidizer and over-
production of species were observed. This was similar to the results
obtained in one-dimensional calculations that the behavior of produc-
tion and consumption of the species that was ought to be occurring in
the multi-dimensional calculations were not included in the training
data for NODE, but only zero-dimensional auto-ignition calculations
were taken into account.

Future work is to improve NODE-based calculations with additional
training data and investigate the versatility of this method to other
conditions such as different fuels and pressure.
12
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Fig. 3.16. Comparisons of volume-averaged mass and temperature between VODE-based and NODE-based calculation.
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