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Paper

Modified State Predictive Control Aiming
at Improving Robust Stability*

Tomomichi Hagiwara†, Shotaro Yanase†, Yoichiro Masui‡ and Kentaro Hirata§

Finite spectrum assignment, also known as state predictive control, is an effective control method
for systems with time delay in the input. This paper considers introducing some modification on the
control law of state predictive control, where the modification can be interpreted, roughly speaking,
as suitably taking account of the (intentionally introduced) deviation of the past input from what is
desired in the sense of the conventional state predictive control. The motivation for introducing such
modification lies in an attempt to modify the dynamics of the controller while maintaining a feature
of the conventional state predictive control to a certain extent. In particular, we aim at improving
robust stability for non-parametric uncertainties of the plant. We first derive the characteristic
equation of the modified state predictive control systems, and give a necessary and sufficient condition
for stability. We then derive an explicit representation of the complementary sensitivity function
associated with the robust stability analysis problem for multiplicative uncertainties. Finally, we
demonstrate through a numerical example that modified state predictive control can indeed be
useful for improving robust stability if the modification is introduced suitably.

1. Introduction

The Smith method [1] and finite spectrum assign-
ment, also known as state predictive control [2–4], are
well known as an effective control method for systems
with input delay. The latter method is applicable to
unstable systems, and its key idea is to virtually re-
move the effect of input delay from the closed-loop
system by predicting the future state x(t+h), where
t is the current time and h denotes the input delay.
This paper considers modified state predictive con-
trol, whose main idea, roughly speaking, is to take
account of the (intentionally introduced) deviation of
the past input from what is desired in the sense of
the conventional state predictive control. We further
study its effectiveness in improving robust stability
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against non-parametric uncertainties.
This paper is organized as follows. As a prelimi-

nary, we first review the conventional state predictive
control as well as an early conference paper on mod-
ified state predictive control by the present authors
[5] so that the motivation for the present study can
be manifested. We then generalize the control law in
this earlier study and derive the characteristic equa-
tion of the resulting closed-loop system, which imme-
diately leads to the necessary and sufficient condition
for stability. We are ultimately interested in the effect
that our modified treatment can possibly offer on ro-
bust stability against the multiplicative uncertainties
of the plant. Hence, we derive an explicit representa-
tion of the complementary sensitivity function of the
modified state predictive control system. Finally, we
demonstrate through a numerical example that state
predictive control with appropriate multiple modifica-
tion terms can indeed improve robust stability com-
pared with the conventional state predictive control.

An earlier version of this paper extending the treat-
ment in [5] was presented in the conference paper [6],
but the derivations of the characteristic equation and
the complementary sensitivity function of the closed-
loop system, together with the comparison of the sim-
ulation results, were not given. The present paper
also considers a different improved numerical example
as well as non-parametric uncertainties in the simu-
lations so that the effectiveness of modified state pre-
dictive control in enhancing robust stability against
such uncertainties can be demonstrated also in the
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time domain.
In this paper, R and N denote the set of real

numbers and that of positive integers, respectively.
The symbol | · | denotes the determinant of a matrix.

2. Conventional State Predictive
Control and a Basic Idea of Mod-
ified State Predictive Control

This section first reviews the conventional state
predictive control method [2–4]. To motivate the
present study, an attempt of modified state predic-
tive control in the earlier study [5] is then reviewed.
The latter corresponds to a special case of the more
general treatment in this paper, but starting with this
simple case would make it easier to intuitively under-
stand the idea behind modifying the control law in
the conventional state predictive control.

2.1 State Predictive Control
Consider the continuous-time plant

ẋ(t)=Ax(t)+Bv(t), v(t)=u(t−h), (1)

where x(t)∈Rn, v(t)∈Rm, A∈Rn×n and B∈Rn×m,
and h denotes the input delay and u(t) denotes the
plant input at time t. We assume that x(0) and v(τ)=
u(τ−h) (0≤ τ <h) are given as the initial condition
at the initial time t=0. Let F be a stabilizing state
feedback gain for the stabilizable pair (A,B). A basic
idea of the conventional state predictive control is to
virtually apply this gain as

u(t)=Fx(t+h) (2)

so that the input delay can be canceled and the closed-
loop system would behave virtually as

ẋ(t)= (A+BF )x(t). (3)

Obviously, however, (2) cannot be implemented di-
rectly as a control law because x(t+h) is a future
state. Yet, the state equation (1) admits the solution
for x(t+ θ) (θ ∈ [0,h]) with the (present) state x(t)
and v(τ), τ ∈ [t,t+h) given by

x(t+θ)= eAθx(t)+

∫ t+θ

t

eA(t+θ−τ)Bv(τ)dτ, (4)

so that the above issue is readily circumvented by
considering

u(t) = F
{
eAhx(t)

+

∫ t+h

t

eA(t+h−τ)Bu(τ−h)dτ

}
. (5)

This is a control law involving the prediction of x(t+
h) in terms of the past plant input u(τ), τ ∈ [t−h,t)
and is implementable as long as the state is accessible.
This control method is called state predictive control,
and the characteristic equation of the resulting closed-
loop system [4,7] is given by

|sI−A−BF |=0. (6)

2.2 Output Feedback Case
When the state x(t) is not accessible, we can intro-

duce an observer in a mostly usual fashion. Suppose
that y(t) =Cx(t) is available, where C ∈Rl×n, and
(C,A) is detectable. Then, a full-order observer in
the context of state predictive control is given by

˙̂x(t)=Ax̂(t)+Bu(t−h)+L(Cx̂(t)−y(t)), (7)

where x̂(t)∈Rn is the estimate of x(t), and L∈Rn×l

is an observer gain such that A+LC is Hurwitz (i.e.,
stable in the continuous-time sense). If x(t) is re-
placed by x̂(t) in (5), then the characteristic equation
of the closed-loop system [4] is given by

|sI−A−BF | · |sI−A−LC|=0. (8)

This obviously leads to the necessary and sufficient
condition for closed-loop stability and implies that
the so-called separation principle holds also in state
predictive control.

2.3 Modified State Predictive Control
with a Single Modification Term

This section reviews the modified state predictive
control method studied in [5] under the state-feedback
setting. The idea of this method corresponds to vir-
tually applying a modified form of (2) given by

u(t)=Fx(t+h)+M0(u(t−h)−Fx(t)), (9)

where the coefficient matrix M0∈Rm×m for the mod-
ification term is Schur (i.e., stable in the discrete-time
sense) for the reason stated shortly. The actual con-
trol law is readily given by

u(t) =F

(
eAhx(t)+

∫ t+h

t

eA(t+h−τ)Bv(τ)dτ

)

+M0(u(t−h)−Fx(t)) (10)

where the first term is nothing but the control law of
the conventional state predictive control. The second
term could be interpreted as reflecting (through the
matrix M0) the deviation of the past input u(t−h)
from what is considered to be desirable in the sense
of (2).
(Remark 1) Such a deviation arises actually by the
use of the modification term itself; the standpoint of
introducing such a term intentionally is that it would
be useful if the coefficient matrix M0 is chosen appro-
priately. After introducing more general treatment on
the modification of the control law, the present paper
aims at confirming such usefulness from a perspective
different from the one taken in [5]; unlike the paramet-
ric uncertainties in the delay h and the steady-state
gain of the plant, the present paper is interested in
analyzing robustness against non-parametric multi-
plicative uncertainties.

The characteristic equation of the closed-loop sys-
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tem given by (1) and (10) is

|sI−A−BF | · |I−M0e
−hs|=0. (11)

Now, the set of the roots of
∣∣I−M0e

−sh
∣∣=0 is given

by

{(1/h)logν : |νI−M0|=0, ν �=0} (12)

where log is the (infinitely-multivalued) complex log-
arithm function. Hence, we see that the closed-loop
system is stable if and only if A+BF is Hurwitz and
M0 is Schur.

Obviously, introducing a modification term gen-
erally leads to the presence of new closed-loop poles
that were absent in the conventional state predictive
control (unless M0 �=0 is nilpotent). Roughly speak-
ing, this could be interpreted as some of the invis-
ible closed-loop poles at −∞ (corresponding to the
zero eigenvalues of M0 =0 for the conventional case;
consider the limit ν→ 0 in (12)) being shifted to the
right, and one might thus argue that the use of the
modification term is pointless. Yet, the basic idea
of introducing the modification term actually lies ex-
actly in exploiting its ability in giving some freedom
in the locations of the closed-loop poles and thus in
the frequency-domain characteristics of the closed-
loop system. The idea could be restated as follows:
with the difference in the closed-loop poles in mind,
the conventional state predictive control might cor-
respond to high-gain feedback whereas the modifica-
tion term could possibly lead to reducing the con-
troller gain and thus improving some performance of
the closed-loop system while maintaining a feature
of state predictive control to a certain extent. This
standpoint for the use of the modification term mo-
tivates us to consider exploiting more freedom, i.e.,
introducing more general modification terms to dis-
cuss further possible improvement of the closed-loop
performance.

3. Modified State Predictive Con-
trol

This paper considers more general modification of
the control law of the conventional state predictive
control under the output-feedback setting. More pre-
cisely, we introduce multiple modification terms into
the control law (5) of the conventional state predictive
control and replace x(t) with the state estimate x̂(t).
As mentioned above, the single modification term in
the earlier study [5] was based on the deviation of
the past control input u(t−h) from that given by (2)
with t shifted to the past by h. The key idea in the
present paper is to generalize the modification term
by considering similar deviations for other values of
the shift in the interval (0,h].

3.1 Modified State Predictive Control
and Stability

First, suppose for the moment that the state is
accessible. Now, we take N (∈N) values of shift by
which we consider shifting t in (2) to the past. These
values are denoted by μih with 0< μ0 < μ1 < ... <
μN−1 ≤ 1. This implies that we consider u(t−μih)−
Fx(t−μih+h) in modifying the control law (5) so
that we can virtually apply the control input given
by

u(t) = Fx(t+h)

+

N−1∑
i=0

Mi{u(t−μih)−Fx(t−μih+h)}

(13)

where Mi ∈Rm×m (i=0,...,N−1) are the coefficient
matrices satisfying the condition given later. How-
ever, not only the first term but also the second term
is not implementable directly because x(t−μih+h)
at the present time t is a future state for each i=
0,...,N−2 as well as i=N−1 (unless μN−1=1). This
issue can also be circumvented by the use of the pre-
diction formula (4), with v(τ) replaced by u(τ −h),
for x(t−μih+h). This readily leads to a general-
ized version of the control law (10) corresponding to
an implementable form of (13), which is precisely the
control law of modified state predictive control.
(Remark 2) By suitably splitting the interval for the
finite-interval integral in (10), the introduction of dif-
ferent finite-interval integrals in (4) with θ=μih (i=
0,...,N−1) leads to virtually no additional computa-
tions in terms of the controller implementation.

As shown in the appendix, the characteristic equa-
tion of the closed-loop system is given by

|sI−A−BF | · |I−
N−1∑
i=0

Mie
−sμih|=0. (14)

This implies that the modified state predictive control
system is stable if and only if the roots of this char-
acteristic equation all lie in the open left half plane.

3.2 Roots of the Characteristic Equa-
tion

When μi=(i+1)/N (i=0,...,N−1), the only non-
trivial part in solving the characteristic equation is∣∣∣∣∣∣I−

N−1∑
i=0

Mie
−s(

i+1

N
)h

∣∣∣∣∣∣=0, (15)

for which we have the following theorem (the proof is
easy and thus is omitted).
[Theorem 1] The set of the roots of (15) is given
by

{(N/h)logν : |νI−M |=0, ν �=0}, (16)

where
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M =

⎡
⎢⎢⎢⎣

0 Im 0
...

. . .

0 0 Im
MN−1 MN−2 ··· M0

⎤
⎥⎥⎥⎦. (17)

It readily follows for the above special case that
the modified state predictive control system is stable
if and only if A+BF is Hurwitz and M is Schur. The
closed-loop poles for the case when μi (i=0,...,N−1)
have mutually rational ratios can readily be obtained
through the results for this special case (see [6] for
details).

3.3 Characteristic Equation for the Out-
put Feedback Case

It is not hard to show that when the state is not ac-
cessible, the observer (7) may be introduced without
essentially affecting the above arguments; for x(t+θ)
in (13) with θ=h and θ=−μih+h, it is replaced by
ˆ̂x(t+θ|t), which is defined as the right hand side of
(4) with x(t) replaced by x̂(t). Then, we can readily
show that the characteristic equation of the closed-
loop system (leading to an obvious stability condi-
tion) is given by

|sI−A−BF | ·
∣∣∣∣∣I−

N−1∑
i=0

Mie
−sμih

∣∣∣∣∣ · |sI−A−LC|=0.

(18)

4. Complementary Sensitivity Func-
tion and Robust Stability of Mod-
ified State Predictive Control Sys-
tems

By introducing modified state predictive control,
we are ultimately interested in its possible ability in
improving robust stability against non-parametric mul-
tiplicative uncertainties, compared with the conven-
tional state predictive control.

The associated complementary sensitivity function
is well known to be quite important in the theoretical
treatment of the robust stability problem. This sec-
tion is mainly interested in explicitly describing the
complementary sensitivity function of the modified
state predictive control systems, so that robustness
analysis can be carried out for numerical examples.

We consider the output feedback case with the
full-order observer (7), and derive an explicit formula
for the associated complementary sensitivity function
T (s)=(I+G(s)K(s))

−1
G(s)K(s), whereG(s)=C(sI−

A)−1Be−sh denotes the transfer matrix of the plant
and K(s) denotes that of the modified state predic-
tive controller consisting of the state feedback gain,
the full-order observer and the state prediction mech-
anisms relevant to (13). First, an explicit representa-
tion of K(s) can be obtained by applying the Laplace
transformation to (7), as well as (13) modified for the
output feedback case as stated in Subsection 3.3, and

computing the transfer matrix from −Y (s) to U(s),
where Y (s) and U(s) denote the Laplace transforms
of y and u, respectively. This procedure is rather te-
dious but straightforward, in principle, which leads
to

K(s)=−Kd(s)
−1Kn(s) (19)

where

Kd(s) = I−
N−1∑
i=0

Mie
−sμih

−
(
F (I−eAhe−sh)−

N−1∑
i=0

e−sμihMiF (I−eA(1−μi)he−s(1−μi)h)

)

×(sI−A)−1B

−e−sh

(
FeAh−

N−1∑
i=0

MiFeA(1−μi)h

)

×(sI−A−LC)−1B (20)

Kn(s) =−
(
F −

N−1∑
i=0

MiFe−Aμih

)
eAh

×(sI−A−LC)−1L (21)

Eq. (19) together with the matrix inversion lemma
leads to the following representation of the comple-
mentary sensitivity function:

T (s)=−G(s){Kd(s)−Kn(s)G(s)}−1
Kn(s). (22)

The details of the derivation of these transfer matrices
are given in the appendix.

5. Robustness Comparison with a
Numerical Example

This section studies the effectiveness of modified
state predictive control through a numerical example
by observing how the modified treatment can indeed
contribute to adjusting the frequency response of the
complementary sensitivity function and thus the ro-
bust stability radius.

5.1 Adjusting Complementary Sensi-
tivity Function of Modified State
Predictive Control Systems

This subsection gives a numerical example show-
ing that the modified treatment can contribute to re-
ducing, over some (high) frequency ranges, the gains
of the complementary sensitivity function.

Consider the system given by

A=

⎡
⎣ 0 1 0

0 0 1
−4 −6 −4

⎤
⎦, B=

⎡
⎣ 0
0
1

⎤
⎦, C =

[
2 4 3

]
(23)

and the delay h= 1. Let the state feedback gain F
be such that A+BF has the eigenvalues −4, −2 and
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−1. Suppose that the state is not accessible and take
the full-order observer gain L such that A+LC has
the same eigenvalues as the above. In the following,
we fix F and L, and consider different modification
terms to examine the effect of adding the modification
terms.
(Remark 3) We aim at confirming that adding the
modification terms to the conventional state predic-
tive control law could be useful. More importantly,
our main focus lies on the choice of the associated
tuning parameters N , μi (i=0,...,N−1) and Mi (i=
0,...,N −1) for the modification terms, rather than
the underlying F and L. In this sense, we intend to
make the example as simple as possible with respect
to F and L, and thus the observer poles are taken
identical with the regulator poles. One might argue
that it is a practical guideline to choose the observer
poles faster than the regulator poles, but it is the
standpoint of the authors that such a guideline need
not be taken care of in this example.

We first consider the conventional state predic-
tive control (i.e., without any modification terms), for
which the complementary sensitivity function T (s)
is denoted by T0(s). We next consider the case of
a single modification term (i.e., N = 1) with μ0 = 1
and M0 =0.5, taking account of the stability condi-
tion |M0|< 1. The corresponding T (s) is denoted by
T1(s). We then consider the use of multiple modi-
fication terms with N =2 and N =3. The following
two cases are considered:

� μ0 =1/5, μ1 =1, M0 =0.56, M1 =0.1.
� μ0=1/8, μ1=1/4, μ2=1, M0=0.17, M1=0.7,
M2 =−0.07.

These parameters are determined in a trial and er-
ror fashion, but both cases satisfy the stability con-
dition. The corresponding complementary sensitiv-
ity functions are denoted by T2(s) and T3(s), respec-
tively. For reference, the responses of y and u corre-
sponding to the parameters of T0(s) and T3(s) (with
x(0) = [0 0 1]T , u(t) = 0 (t ∈ [−h,0)) and x̂(0) = 0)
are shown in Fig. 1. The comparison of the responses
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3 state predictive control
modified state predictive control

0 2 4 6 8 10

-0.4

-0.2

0

0.2 state predictive control
modified state predictive control

Fig. 1 Comparison of the simulation results (N =0 and
N =3)

in this figure suggests that the state predictive con-
troller (without any modification terms) corresponds
to high-gain feedback, while the modification terms
introduced in this example (for the case of N = 3)
successfully reduce the controller gain, as we have de-
scribed in Section 2.3 (for the case of N =1) as the
underlying aim that is hopefully attained by modi-
fied state predictive control. Indeed, the gain plots
of the controllers (denoted by KN ) corresponding to
TN (N = 0,···,3) are given in Fig. 2, by which we
can confirm that the reduction of the controller gains
have successfully been achieved in this example by the
modification term(s), particularly in a high-frequency
range.

To see how this gain reduction is reflected on the
closed-loop performance, the gain plots of the fre-
quency responses of TN (s) (N =0,...,3) are shown in
Fig. 3. We could observe from these figures that ap-
propriately introduced modification terms would in-
deed contribute to achieving some sort of mild control
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Fig. 2 Frequency responses of the controllers
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Fig. 3 Frequency responses of the complementary sensi-
tivity functions

– 44 –



Hagiwara, Yanase, Masui and Hirata: Modified State Predictive Control Aiming at Improving Robust Stability 225

0 2 4 6 8 10
-1

0

1

2

3 state predictive control
modified state predictive control

0 2 4 6 8 10

-0.4

-0.2

0

0.2 state predictive control
modified state predictive control

(a) Gain is multiplied by 8

0 2 4 6 8 10
-1

0

1

2

3 state predictive control
modified state predictive control

0 2 4 6 8 10

-0.4

-0.2

0

0.2 state predictive control
modified state predictive control

(b) Gain is multiplied by 25

Fig. 4 Comparison of the responses under the gain per-
turbations

with improved control performance, which we further
confirm in the following.

In particular, we see from Fig. 3 that the gains of
T2(s) and T3(s) are always much smaller than the gain
of T0(s), and this tendency is (mostly) more promi-
nent in a high frequency range. Since the comple-
mentary sensitivity function is relevant to the robust
stability condition with respect to multiplicative un-
certainties, which typically increase as the angular fre-
quency increases, this feature is generally considered
to contribute to improving robust stability. Further-
more, the H∞ norm of T3(s) is nearly 1/10 times
smaller than that of T0(s). Thus, we can expect that,
e.g., the gain margin is much larger for the case of
N =3 than N =0 (the conventional state-predictive
control). Thus, it is suggested that modified state
predictive control can be useful in improving robust
stability if the modification terms are determined ap-
propriately. For reference, Fig. 4 shows that the con-
ventional state-predictive control system becomes un-
stable if the plant gain increases by the factor of 8 but
that the modified state-predictive control system re-
mains stable even if it increases by the factor of 25.
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Fig. 5 Frequency responses of the weighted complemen-
tary sensitivity functions

Table 1 The comparison of the robust stability radii

T0(s) T1(s) T2(s) T3(s)
robust stability radius 1.60 3.55 7.50 22.1

5.2 Improvement of the Robust Sta-
bility Radius

We next consider confirming the effectiveness of
appropriately introduced modification terms in a more
quantitative manner. More specifically, the quali-
tative effectiveness suggested in the preceding sub-
section is reinforced by further computing numeri-
cally the robust stability radius, which is defined as
the supremum of δ > 0 satisfying the following condi-
tion: the control system with the plant G replaced by
(I+ΔW )G remains stable for whatever stable trans-
fer function Δ(s) whose H∞ norm is bounded by δ.
In this example, we assume that W (s) determining
the frequency-dependent bound on the multiplicative
uncertainties on the output side is given by

W (s)=
50(s+1)

s+50
. (24)

The gain plots for the frequency responses of
WTN (s) (N =0,...,3) are shown in Fig. 5, by which
the associated robust stability radii are as shown in
Table 1 (which are given as the reciprocals of the H∞
norms of the above transfer functions; see [8,9]; or
[10] for similar arguments). Even though the modifi-
cation terms corresponding to T2 and T3 were chosen
only in a trial and error fashion (without so much dif-
ficulties), they succeed in drastically improving the
robust stability radius by a factor of nearly 5 and 14,
respectively, compared with that for the conventional
state predictive control.

With the above analysis taken into account, we
finally consider the case where the plant is subject to
non-parametric uncertainties as well as the paramet-
ric uncertainties in the delay h and the gain. Let us
denote by G0 the system given by (23). Then, all the
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Fig. 6 Responses under non-parametric uncertainties

preceding simulations correspond to the case where
both the nominal plant and the actual plant with
the input delay removed are given by this G0 (un-
less the gain perturbations are considered). Instead,
we consider the situation where the actual plant with
the input delay removed is given by 3G0G1/2, where
G1 denotes a subsystem placed at the input side of
G0. In particular, we suppose that the transfer func-
tion of G1 is given by 10(s+1)/(s+10) (whose gain
increases as the angular frequency increases). Not-
ing that the steady-state gain of G1 is 1, considering
G0 as the nominal plant (as in the preceding treat-
ment) corresponds to the situation where this subsys-
tem G1 was ignored in the modeling process, e.g., for
simplifying the nominal plant or the poor knowledge
on G1. On the other hand, the factor of 3/2 intro-
duced in the above corresponds to the existence of
50% increase in the gain compared with the nominal
plant. Furthermore, we suppose that the input de-
lay of the actual plant is 50% times larger than that
of the nominal plant (which is h=1), i.e., the actual
input delay is 1.5 (although the controller obviously
works assuming the nominal plant delay h= 1 and
with only the associated memory of the plant input).
We note that we can confirm the Δ corresponding to
this actual plant (and W (s) given in (24)) has the
H∞ norm slightly less than 1, where this value is
smaller than the value for N = 0 in Table 1 and is
much smaller than that for N =3. Hence, the closed-
loop system is ensured to remain stable for N =0 and
N = 3. The simulation results for this situation are
given in Fig. 6, where the initial state for G1 is as-
sumed to be 0, and all the other situation remain the
same as that for Fig. 1 so that the comparison of the
responses in these two figures could be meaningful; in
particular, the initial state of G0 are taken the same,
and u(t)=0 (t∈ [−1.5h,−h)) is further assumed. The
simulation results in Fig. 6 obviously demonstrate the
improvement of robustness achieved by the introduc-
tion of adequate modification terms.

All the above observations imply that introducing
appropriate modification terms actually contributes

to enhancing robust stability of the closed-loop sys-
tem.

6. Conclusions

This paper first considered modifying the control
law of state predictive control. Next, the character-
istic equation of the closed-loop systems was derived
and a necessary and sufficient condition was given for
its stability. The complementary sensitivity function
of the closed-loop system was further derived so that
robust stability for multiplicative uncertainties can be
analyzed. Finally, a numerical example was provided
demonstrating that introducing appropriate modifi-
cation terms can contribute to improving robust sta-
bility and the robust stability radius compared with
those for the conventional state predictive control.

As opposed to such a promising side of introducing
the modification terms, it is quite important to fur-
ther study a systematic procedure for somehow opti-
mizing the modification terms, unlike the trial and er-
ror fashion employed in the example. Unfortunately,
however, this is beyond the scope of the present pa-
per, and further investigation on the issue remains
our very important future studies.

Before closing the paper, we remark that the argu-
ments in this paper up to the introduction of multiple
modification terms and the derivation of the charac-
teristic equation can be regarded as a sort of counter-
part of the relevant study for discrete-time systems
with input delay [11]. In this sense, optimization of
the modification terms is also an interesting topic for
discrete-time systems and it might be a simpler prob-
lem to start with. On the other hand, such arguments
in discrete-time might further have some relation with
the discretization treatment of the finite-interval in-
tegral in the control law of the (modified) state pre-
dictive control. It is known that the discretization
treatment in the state predictive control law could
destabilize the closed-loop system [12,7], and it would
also be an interesting topic to study how the intro-
duction of the modified terms in the control law could
affect this issue in the continuous-time case.
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Appendix

Appendix 1. Derivation of the Character-
istic Equation (14)

We assume the initial condition (stated below (1))
is zero, and note that the Laplace transform of the
second term in the right hand side of (4) rewritten as∫ t+θ

0

eA(t+θ−τ)Bv(τ)dτ−eAθ

∫ t

0

eA(t−τ)Bv(τ)dτ

(A1)

is given by

(esθI−eAθ)(sI−A)−1e−shBU(s)

= e−s(h−θ)Zθ(s)BU(s) (A2)

where Zθ(s) :=(I−e(A−sI)θ)(sI−A)−1=
∫ θ

0
e(A−sI)tdt.

The Laplace transforms of (1) and (13) with (4) taken
into account are given respectively by

sX(s) =AX(s)+e−shBU(s) (A3)

U(s) = F (eAhX(s)+Z(s)BU(s))

+
N−1∑
i=0

Mie
−sμih(I−FZi(s)B)U(s)

−
N−1∑
i=0

MiFeA(1−μi)hX(s), (A4)

where Z(s) :=Zh(s) and Zi(s) :=Z(1−μi)h(s). Hence,
by defining

Φ=

[
Φ11 Φ12

Φ21 Φ22

]
(A5)

so that (A3) and (A4) can be rearranged as Φ[XT UT ]T =
0, where

Φ11 = sI−A

Φ12 =−e−shB

Φ21 =−
(
FeAh−

N−1∑
i=0

MiFeA(1−μi)h

)

Φ22 = I−FZ(s)B−
N−1∑
i=0

Mie
−sμih(I−FZi(s)B),

(A6)

it readily follows that the characteristic equation of
the closed-loop system is given by

|Φ|=0. (A7)

Pre- and post-multiplying Φ by the nonsingular ma-
trices

T1 =

[
I 0

−eshFZ(s) I

]

T2 =

[
I 0

−eshFZ(s)+
∑N−1

i=0 MiFes(1−μi)hZi(s) I

]
(A8)

respectively yields

T1ΦT2 =

[
sI−A−BF −e−shB

0 I−
∑N−1

i=0 Mie
−sμih

]
.

(A9)

This completes the derivation of the characteristic
equation (14).

Appendix 2. Derivation of the Controller
Transfer Matrix (19) and the Complemen-
tary Sensitivity Function (22)

First, the Laplace transform of the full-order ob-
server (7) is given by

X̂(s) = (sI−A−LC)−1(e−shBU(s)−LY (s)).

(A10)

On the other hand, we have (A4) with X(s) replaced
by X̂(s) under the output feedback setting. Substi-
tuting (A10) to this modified equation on U(s) and re-
arranging the result, we haveKd(s)U(s)=Kn(s)Y (s),
where Kd(s) and Kn(s) are given by (20) and (21),
respectively. Hence, the transfer matrix of the mod-
ified state predictive controller treated in the nega-
tive feedback form is given by (19). Substituting this
transfer matrix to the expression of the complemen-
tary sensitivity function T (s), we have

T = (I+GK)−1GK

=−(I−GK−1
d Kn)

−1GK−1
d Kn

=−G(I−K−1
d KnG)−1K−1

d Kn

=−G(Kd−KnG)−1Kn. (A11)

This completes the derivation of (22).
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