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A B S T R A C T 

By tracking trajectories of dark matter (DM) particles accreting on to haloes in cosmological N -body simulations, we investigate 
the radial phase-space distribution of cold dark matter (CDM) haloes, paying attention to their inner regions deep inside the halo 

boundary called the splashback radius, where the particles undergo multistream flows. Improving the analysis by Sugiura et al., 
we classify DM particles by the number of apocentre passages, p , and count it up to p = 40 for each halo o v er a wide mass 
range. Quantifying the radial density profile for particles having the same value of p , we find that it generally exhibits a double 
power-law feature, whose indices of inner and outer slopes are well described by −1 and −8, respectively. Its characteristic 
scale and density are given as a simple fitting function of p , with a weak halo mass dependence. Interestingly, summing up these 
double power-law profiles beyond p = 40 reproduces well the total density profile of simulated haloes. The double power-law 

nature is persistent and generic not only in mass-selected haloes but also in haloes selected in different criteria. Our results 
are compared with self-similar solutions that describe the stationary and spherical accretion of DM. We find that even when 

introducing a non-zero angular momentum, none of them explain the radial multistream structure. The analysis with particle 
trajectories tracing back to higher redshifts suggests that the double power-law nature has been established during an early 

accretion phase and remains stable. 
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 I N T RO D U C T I O N  

t is widely accepted that dark matter (DM) is an important con-
tituent that dominates 80 per cent of the matter components of the
niverse. DM thus plays a very crucial role in cosmic structure for-
ation driven by the gravitational instability. In particular, the DM is

upposed to be non-relativistic and to have a negligibly small velocity 
ispersion, which accounts for the early growth of cosmic density 
elds just after the recombination epoch, referred to as the cold dark
atter (CDM). In the process of cosmic structure formation, the 

ravitational collapse of CDM is followed by the formation of DM 

aloes, i.e. self-gravitating bound systems composed of DM, and a 
ufficient amount of baryon has been accumulated by their potential 
ell. This explains why the DM haloes are considered as an ideal

ite of galaxy and star formation (Rees & Ostriker 1977 ; White &
ees 1978 ), and are important building blocks to explain the observed

arge-scale structure. Since the structural properties of DM haloes are 
nown to be very sensitive to their formation and merging histories,
he DM halo offers unique testing ground for structure formation 
cenarios, and there have been so far numerous discussions based on 
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he observed small-scale structures (see Bullock & Boylan-Kolchin 
017 , for comprehensive reviews). 
Theoretically, CDM haloes are regarded as a collisionless bound 

ystem, and their evolved structure in general depends on the initial
onditions. Ho we ver, early numerical simulations have shown that 
he radial density profile of each halo, ρ( r ), has a similar shape, and
s described in a universal fashion by the so-called Navarro–Frenk–

hite (NFW) profile (Navarro, Frenk & White 1997 ; Ludlow et al.
014 ). One striking feature of this profile is that haloes commonly
ave a shallow cusp with the density slope of −1, i.e. ρ( r ) ∝ r −1 .
lthough it has been later suggested that the density profile proposed
y Einasto ( 1965 ) provides a more accurate description (Navarro
t al. 2004 ; Gao et al. 2008 ; Dutton & Macci ̀o 2014 ; Wang et al.
020 ), a cuspy structure of CDM haloes still persists in cosmological
 -body simulations, and its physical origin remains unresolved. 
For more physical insight supported by various observations, 

DM is considered to have initially a negligible velocity dispersion. 
his implies that in six-dimensional phase space (i.e. velocity and 
osition in three-dimensional space), the initial distribution of DM is 
escribed by the three-dimensional sheet. Due to the collisionless 
ature, the topology of such a structure is preserved during the
ormation and evolution process of haloes. One thus anticipates that 
he phase-space distribution of haloes is still described by the three-
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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Table 1. The parameters of N -body simulations. N 

3 denotes the number 
of simulation particles, m p denotes the mass of simulation paticles, ε
denotes the softening length, and N snaps denotes the number of snapshots. 

Name N m p ε N snaps 

( h −1 M �) ( h −1 kpc) 

LR 500 3 4.72716 × 10 7 4 .10 1001 
HR 2000 3 7.38619 × 10 5 1 .025 1 ( z = 0) 
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imensional sheet, but it exhibits a complex folded sheet structure
aving a multi v alued velocity flo w for a gi ven position (Vogelsberger
t al. 2009 ; White & V ogelsberger 2009 ; V ogelsberger & White
011 ; Colombi 2021 ). This multistream structure would be a unique
nd distinctive feature of CDM, and provide a clue to discriminate
rom other DM candidates. A natural expectation may be that the
niversal density profiles seen in the configuration space are a direct
onsequence of the phase-space structures having some universal
eatures. In this respect, it would be very interesting and useful to
uantitativ ely inv estigate the phase-space structure of CDM haloes.
n fact, the multistream nature of haloes has attracted recent attention,
ighlighted with a renewed interest as the outer boundary of the
ultistream region, referred to as the splashback radius (Adhikari,
alal & Chamberlain 2014 ; Diemer & Kravtsov 2014 ). There have
een numerous works to investigate the splashback radius (More
t al. 2016 ; Baxter et al. 2017 ; Contigiani, Hoekstra & Bah ́e 2019 ;
hakaj et al. 2020 ; Shin et al. 2021 ). 
Moti v ated by these, Sugiura et al. ( 2020 , hereafter S20 ) developed

 method to reveal the multistream nature of haloes in radial phase
pace. Extending the SPARTA algorithm in Diemer ( 2017 ) and using
he cosmological N -body simulations, they succeeded to clarify
uter part of the multistream flows of CDM haloes. Further, in
omparison with the self-similar solution by Fillmore & Goldreich
 1984 ), their radial phase-space structures are quantified, finding
hat ∼30 per cent of the simulated haloes are well described by
he self-similar solutions with a wide range of mass accretion rate.
s will be discussed in more detail, their method relies on many

imulation snapshots at different redshifts in order to track back the
rajectory of each DM particle in haloes identified at the present
ime. They then count, the number of apocentre passages for each
M particle orbiting around the halo centre. Denoting it by p , a

amily of particles having the same value of p characterizes a specific
tream of multistream DM flow in radial phase space. In this way,
20 investigated the multistream properties using the DM particles
p to p = 5. 
Note that the radial streams of p ≤ 5 are still away from the halo

entre, and hence one expects that their structures are sensitive to
he outer environment, which often exhibits irregular and extended
tructures in the presence of the merging haloes/subhaloes. This may
artly explain why only the ∼30 per cent of haloes is described by the
elf-similar solutions. In other words, if one succeeds in revealing
nner multistream structures, each stream may exhibit a universal
eature, giving a clue to clarify the origin of cuspy structure in radial
ensity profiles. In this respect, characterizing the inner multistream
tructure would provide a more fundamental characteristic useful to
escribe the physical properties of CDM haloes. 
Along the line of this, the goal of this paper is therefore to

haracterize the inner multistream structure based on the method
eveloped by S20 with a substantial improvement in both the
imulation data set and numerical analysis. This paper is regarded as
 follow-up paper of Enomoto, Nishimichi & Taruya ( 2023 , hereafter
23 ), which highlights our major finding that the radial density
rofile of each stream characterized by the number of apocentre
assages p is commonly described by a simple double power-law
unction irrespective of p . On top of this, the paper further includes
 xtensiv e discussions on the robustness of these findings together
ith a comprehensive study of the radial phase-space distributions

n comparison with self-similar solutions. We also carefully describe
he method of counting the number of apocentre passages of N -body
articles. 
This paper is organized as follows. In Section 2 , we introduce our

imulations and the halo catalogue. Then, we introduce the methods
NRAS 527, 7523–7546 (2024) 
ounting p of simulation particles in Sections 3.1 and 3.2 , and
tacking and fitting procedures in Section 3.3 . We show the results for
ndividual haloes in Section 4.1 and stacked profiles in Section 4.2
ith introducing the double power-law density profile found in E23 .

n Section 4.2.1 , we show the optimized χ2 of fitting for stacked
rofiles and investigate the best-fitting values of the inner and outer
lope of the double power law. Then we investigate the dependence
f the two free parameters on p and the halo mass in Section 4.2.2 .
e explore the dependence on the concentration and on the recent

ccretion rate in Section 5.1 , discuss the physical meaning of the
alue of inner slopes in Section 5.2 , and the evolution of ρ( r ; p ) to
xplore why the universal feature appears in Section 5.3 . Finally,
ection 6 provides conclusions and prospects for future study. 

 DATA  

.1 N -body simulations 

ur analysis is based on two cosmological N -body simulations (LR
nd HR) performed in a periodic comoving box with a side length
f 41 h 

−1 Mpc , loaded with different numbers of particles as listed
n Table 1 . We assume a flat-geometry � CDM universe consistent
ith the recent result from the Planck satellite: �m 

= 0 . 3089 , �� 

=
 . 6911 , h = 0 . 6774 , n s = 0 . 9667 , and σ8 = 0 . 8259 (Planck Col-
aboration XIII 2016 ). The initial conditions are generated by adding
isplacements to particles arranged in a regular lattice based on
econd-order Lagrangian perturbation theory (Scoccimarro 1998 ;
rocce, Pueblas & Scoccimarro 2006 ), sourced by a Gaussian

andom field drawn from the linear matter power spectrum computed
sing the CLASS Boltzmann solver (Blas, Lesgourgues & Tram 2011 ).
he LR and HR simulations share the same random realization to
llow for straightforward comparison. We then evolve the positions
nd velocities of the particles using a TREEPM code GINKAKU

Nishimichi, Tanaka & Yoshikawa, in preparation). This code is
eveloped based on a public library, the Framework for Developing
 article Simulators ( FDPS ; Iwasa wa et al. 2016 ; Namekata et al.
018 ), which is aimed at efficient particle simulations in modern
upercomputers. Working in a hybrid MPI-openmp parallel mode,
he library allows an efficient domain decomposition as well as
ommunication between processors. The short-range tree force is
ccelerated by the use of SIMD instructions implemented in the
HANTOM-GRAPE library (Nitadori, Makino & Hut 2006 ; Tanikawa
t al. 2012 , 2013 ), while the details of the long-range PM force
an be found in Yoshikawa & Fukushige ( 2005 ; see also Ishiyama,
ukushige & Makino 2009 ; Ishiyama, Nitadori & Makino 2012 ). 
To track the trajectories of particles, we utilized 1001 snapshots

f LR, which were uniformly sampled in redshift from z = 5 to
 = 0. Since LR comprises approximately five times the number of
napshots used in S20 , we anticipate that we can analyse particle
rbits in greater detail, particularly those that undergo apocentre
assages more than five times. In order to assess the convergence
f the density profile considering the limited softening length, we
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Figure 1. Distribution of the offset parameter X off and spin parameter λ for 
1010 haloes (dots). The dashed lines represent the criteria from equation ( 1 ). 
The numbers near the four corners indicate the number of haloes contained 
in each of the areas demarcated by the dashed lines. 
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Figure 2. Distribution of M vir,all / M vir ,R OCK for the 1010 haloes in the original 
ROCKSTAR catalogue. The darker dots denote 783 haloes after removing those 
experiencing major mergers (equation 1 ), while the lighter boxes denote those 
remo v ed. The subhalo condition (equation 2 ) is shown by the horizontal 
dashed line. We consider only those below this line. The four numbers in the 
figure legend represent the number of haloes: for the criterion equation ( 1 ) 
(left: retained, right: remo v ed), and for equation ( 2 ) (upper: remo v ed, lower: 
retained). 
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ely on the z = 0 snapshot of HR. Note that we have not retained
article snapshots at higher redshifts for the HR simulation due to 
onstraints in disc storage capacity. Therefore, we investigate the 
volution of the phase-space structure based on LR data, and then 
erify the accuracy of the density profile at z = 0 through HR data. 

.2 Halo catalogue 

e identified haloes at z = 0 using a 6D phase-space temporal
riends-of-friends halo finder ROCKSTAR (Behroozi, Wechsler & Wu 
013 ). As explained in more detail in Section 3.1 , we tracked both
he centre and the surrounding particles of the haloes identified at z =
 backward in time to establish the most massive main progenitor 
ranch. 
While ROCKSTAR can identify haloes undergoing major mergers, 

he positions, velocities, and particle memberships of such haloes 
re often highly uncertain. Additionally, as we will discuss in detail 
n Section 3.1 , it is typically challenging to rigorously track the
ain progenitor branch of merger trees for these haloes, especially 
hen they are in close proximity to other massive haloes. To 

ircumvent these challenges, we concentrate on relaxed haloes that 
re less influenced by recent mergers, using two parameters: the 
pin parameter λ and the offset parameter X off , both calculated 
y the ROCKSTAR halo finder. Here, the parameter X off represents 
he distance between the density peak location and the centre of

ass of particles, normalized by the virial radius R vir . On the other
and, λ denotes the amplitude of angular momentum divided by 
 

2 R vir V vir M vir , and is referred to as the Bullock spin parameter in
ehroozi, Wechsler & Wu ( 2013 ). Following Klypin et al. ( 2016 ),
e consider haloes that meet either of the following conditions as
ndergoing major mergers and remo v e them from our halo catalogue: 

> 0 . 07 , X off > 0 . 07 . (1) 

Fig. 1 illustrates the distribution of X off and λ, and the outcomes
f applying the criteria in equation ( 1 ). The distribution closely
esembles that shown in fig. 4 of Klypin et al. ( 2016 ). 
In addition to the haloes undergoing major mergers, we also 
xclude subhaloes. Subhaloes are typically surrounded by particles 
hat belong to a distinct nearby host halo. This complicates the
erification of whether the DM particles are bound by subhaloes or
ot, and it makes it challenging to accurately determine their density
rofiles. Thus, we exclude subhaloes from our halo catalogue through 
he following procedure. First, we calculate the mass, denoted as 
 vir,all , that represents the total mass of particles within the virial

adius R vir as calculated by the ROCKSTAR halo finder ( R vir ,R OCK ).
he ROCKSTAR halo finder computes R vir ,R OCK and the virial mass 
 vir ,R OCK after removing unbound particles, ensuring that M vir,all is 

l w ays greater than M vir ,R OCK . For host haloes, most of the particles
ithin R vir ,R OCK are bound to the host halo, so M vir ,R OCK ≈ M vir,all .

n contrast, for subhaloes, many particles around them are bound 
o the host haloes and not to the subhaloes themselves, resulting in
 vir,all � M vir ,R OCK . Here, there is no theoretical value that strictly

istinguishes between host haloes and subhaloes. To address this, we 
dentify haloes that satisfies the condition: 

 vir, all > 1 . 3 M vir, ROCK (2) 

s subhaloes, and remo v e them from our halo catalogue. Fig. 2
isplays the distribution of M vir,all / M vir ,R OCK and the outcomes of
pplying equation ( 2 ). We retain those plotted by the black dots below
he horizontal dashed line after the two conditions (685 haloes). We
an see that the two conditions are almost independent: the ratio of
he haloes remo v ed by the second condition does not depend on the
rst condition. 
In addition to the criteria discussed abo v e, we introduce two

dditional criteria to exclude two more haloes that are considered 
o be undergoing major mergers, as discussed in Section 3.1 . Table 2
rovides a summary of the resulting halo catalogue. We also present
MNRAS 527, 7523–7546 (2024) 
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M

Table 2. The number of haloes meeting selection criteria in each mass range. The upper three rows describe the characteristics 
of our halo samples divided into four mass bins.The first and second ro ws, respecti vely, sho w the ranges of halo mass and 
radius, which are calculated by the ROCKSTAR halo finder. On the other hand, the third row shows the splashback radius of the 
stacked density profiles, defined by the radius at which the density slope takes a minimum value. The estimated values shown 
here are those normalized by the mean virial radius for each mass range. The rest of the lower rows summarize the number of 
total haloes in each mass range, denoted by N all , as well as the number of samples after setting the criteria shown in the left 
column. The number of haloes shown at each row is the result when further adding the criterion to the upper rows. 

Mass range S M L XL Total 

M vir [10 11 h −1 M �] [3.16,5.71] [5.71,24.2] [24.2,134] [134,1530] [3.16,1530] 
R vir [ h −1 Mpc] [0.14,0.17] [0.17,0.27] [0.27,0.48] [0.48,1.08] [0.14,1.08] 
R sp [ R vir ] 0.64 0.70 0.65 0.96 
N all 445 433 113 19 1010 
+ equation ( 1 ) 350 342 77 14 783 
+ equation ( 2 ) 301 301 70 13 685 
+ equation ( 4 ) 300 301 70 13 684 
+ equation ( 6 ) 300 300 70 13 683 
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he mass ranges from S to XL that we will use for stacking analysis
fter Section 4 . 

In summary, even after excluding subhaloes and the haloes that are
ndergoing major mergers, nearly 70 per cent of all haloes remain
n our catalogue, with equations ( 1 ) and ( 2 ) serving as the primary
riteria for constructing our halo catalogue. 

 T R AC K I N G  H A L O E S  A N D  PA RTICLES  

o analyse each stream within the multistream region, we place
ur focus on the number of apocentre passages, denoted as p , for
articles and categorize them according to their respective p values. In
rinciple, the apocentre of a particle orbiting around the halo centre is
efined as the point at which its radial velocity changes from positive
o ne gativ e along its trajectory. Therefore, once we have established
he position and bulk motion of the halo, represented as x h and v h , at
ach redshift, and determine the starting time for counting p , denoted
s t s , the process of counting p for particles within the halo becomes
traightforward: (1) calculate the radial velocity v r of each particle
elative to the centre of the halo at every snapshot after t s , and (2)
um up the instances where the radial velocity changes from positive
o ne gativ e until z = 0. 

In the following, we introduce the method for calculating x h , v h ,
nd t s of haloes in Section 3.1 . The procedure outlined in steps (1)
nd (2) abo v e is presented in Section 3.2 . 

.1 Halo centre and merger trees 

or a particle with position r and peculiar velocity v , the radial
elocity v r is defined as 

 r = 

( x − x h ) · ( v − v h ) 

| x − x h | . (3) 

e monitor the sign of this quantity o v er different snapshots to
etermine p . Therefore, to calculate p , we must determine the values
f x h and v h for each halo in our catalogue at each snapshot.
hile these values can be found by applying the halo finder to the

napshots at higher redshifts, they change discontinuously o v er time
ecause different simulation particles are used to determine them in
ach snapshot. This leads to discontinuous variations in v r between
napshots, making it challenging to accurately count p . 

To o v ercome this challenge, we calculate x h and v h as the average
osition and velocity of a fixed list of particles o v er time containing
000 particles that can be considered the oldest progenitors. These
NRAS 527, 7523–7546 (2024) 
rogenitors are identified by tracking the massive branch of merger
rees for each halo. By averaging the positions and velocities of
hese 1000 particles, we can calculate continuously varying x h and
 h between snapshots while reducing the impact of individual particle
oise. 
The particles in the oldest progenitor are gravitationally well bound

ithin the halo at z = 0 and mo v e in tandem with it. Thus, these
articles are suitable for representing the position and bulk motion
f the halo centre. Here, the specific number 1000 is chosen to
nsure numerical noise is minimized and can be adjusted as long
s it provides a sufficient particle count. In Appendix A , we vary
his number and confirm that the results for p ≤ 40 remain consistent
uantitatively. Therefore, for the subsequent analysis, we focus solely
n the particles with p ≤ 40. 
To construct merger trees, we initiate the process by determining

he particles that compose each halo at z = 0. This is achieved
hrough a series of steps. First, we identify the centre of the halo
sing the shrinking sphere method. We then expand this sphere
round the fixed centre until the o v erdensity within it decreases to the
irial o v erdensity 
 vir , as defined in Bryan & Norman ( 1998 ). The
articles found within this last sphere are designated as members
f the halo. In the shrinking-sphere method, we initially set the
entre of the halo, as calculated by the ROCKSTAR finder, as the
tarting point for the sphere. We then systematically reduce the
adius of the sphere in a logarithmically equally manner through 120
ins, ranging from R vir ,R OCK down to the radius closest to the first
entre (typically corresponds to O(10 −3 ) × R vir, ROCK ). The shrinking
rocess concludes when the number of particles contained within
he sphere falls below 100. We denote the centre-of-mass position of
hese 100 particles as x h , ss . Note that the shrinking sphere method
onverges towards the primary peak of the halo. Consequently, this
pproach may not be suitable for haloes classified as subhaloes or
ndergoing major mergers, which exhibit another peak within R vir .
his is another reason why we focus on relaxed and host haloes. 
The results are shown in Fig. 3 . Most of the haloes that passed

he criteria of equations ( 1 ) and ( 2 ) exhibit close agreement between
x h , ss and x h , ROCK to within 5 per cent of R vir ,R OCK . Ho we ver, there
s one halo, despite satisfying the two previous criteria, with a

ass of ∼5 × 10 11 M � and a relatively large positional difference
 ∼ 20 per cent of R vir ). In Appendix C , we carefully investigate this
alo and find that it possesses a secondary peak, with both the peaks
eeting the previously defined criteria. In general, haloes exhibiting

ignificant deviations in | x h , ss − x h , ROCK | can be considered as sub-
aloes or haloes undergoing major mergers. Therefore, we introduce
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Figure 3. Difference between the centres of haloes at z = 0, as calculated by 
ROCKSTAR ( x h , ROCK ) and using the shrinking-sphere method ( x h , ss ). In this 
figure, R vir in the denominator of the vertical axis and M vir in the horizontal 
axis are determined by ROCKSTAR ( R vir ,R OCK and M vir ,R OCK , respectively). 
Lighter boxes represent haloes excluded by the criteria in equations ( 1 ) or 
( 2 ), while darker dots denote the haloes that are retained. We can observe 
that the haloes show a bimodal distribution in this plane: those appearing in 
the upper part of the figure are mostly discarded already by the previous two 
criteria. We decide to exclude one more halo with a large mismatch in the 
two definitions of the centre appearing in the upper part (see text for detail). 
The horizontal dashed line shows a mismatch of 0 . 05 R vir, ROCK (equation 4 ) 
introduced to remo v e this halo. 
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halo. Lighter and darker symbols represent the same haloes as in Fig. 3 . 
The horizontal red solid line shows z = 5. Out of 684 haloes depicted as 
black dots, 665 have t s values below 4 Gyr. There are 97 darker dots on the 
horizontal solid line, indicating that they are tracked until z = 5. Given that 
massive haloes tend to have correspondingly massive progenitors, most of 
their progenitors still have virial masses larger than the sum of 1000 particles 
( ∼ 4.7 × 10 10 M �) even at z = 5. 
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n additional criterion based on Fig. 3 to exclude haloes that meet
he following condition: 

 x h , ss − x h , ROCK | /R vir, ROCK > 0 . 05 . (4) 

Next, we select the member particles of haloes in a snapshot
ne step before z = 0 from those retained at z = 0, employing
he same method. This involves determining the centre of the halo 
sing the shrinking-sphere method and expanding the sphere until 
he o v erdensity within it decreases to 
 vir . These steps are repeated,
racking back to z = 5, until the number of particles constituting
he halo is below 1000. When the number goes below 1000, we
lightly expand the sphere to ensure that it encompasses exactly 
000 particles, and we define the starting time of the counting of p ,
 s , by the cosmic time of this snapshot. Note that when we mo v e to
he next snapshot (i.e. the one preceding it in cosmic time) in this
rocedure, we e xclusiv ely take into account the particles that are
etained in the previous snapshot for the shrinking-sphere process. 
his guarantees that the list of member particles can only diminish
s we mo v e towards higher redshifts. Consequently, we define the
articles within the oldest progenitor as consistently located near the 
alo centre from t s until the present. 
As a result of this procedure, we can define the virial mass M vir ( z)

nd the virial radius R vir ( z) at each redshift as the mass contained
ithin the sphere with an o v erdensity of 
 vir and its corresponding

adius. These values are utilized in the calculation of the accretion 
ate in Section 5.1 . For clarity, we distinguish these values from those
omputed by ROCKSTAR at z = 0 by denoting the latter simply as R vir 

nd M vir (i.e. without the argument z) in what follows. 
Fig. 4 illustrates the distribution of t s , representing the cosmic time
hen the particle count in the progenitor of each halo falls below
000. The majority of haloes exhibit t s v alues belo w 4 Gyr, allo wing
s to trace the particles for o v er ∼10 Gyr. Ho we ver, note that in the
ase of 97 out of the 684 haloes in our catalogue, the tracking process
xtends all the way back to z = 5, which is our first snapshot, without
ropping below 1000 particles. While we can still define the centres
f these 97 haloes using all the particles from their progenitor at z =
, the varying number of particles used to determine their centres
ay introduce systematic effects. 
To address this issue, we choose to select 1000 particles from the

rogenitors at z = 5, with a particular focus on their phase space.
nitially, we calculate the position and velocity dispersions, denoted 
s σ x and σ v , respectively, for the particles in the progenitor at z =
. Subsequently, we define the phase-space distance, d ps , for each
article with respect to the average position x ave and velocity v ave for 
ach particle using the following equation: 

 ps ( x , v ) = 

( | x − x ave | 2 
σ 2 

x 

+ 

| v − v ave | 2 
σ 2 

v 

) 1 
2 

, (5) 

here x and v represent the positions and velocities of the particles, 
espectively . Finally , we select 1000 particles with the smallest values 
f d ps . This selection process ensures that we are focusing on particles
hat are well bound within the halo progenitor. 

Fig. 5 illustrates the difference between the positions of halo 
entres at z = 0, calculated by averaging over the positions of 1000
rogenitor particles ( x h , pro ), and those determined by the ROCKSTAR 

alo finder ( x h , ROCK ). Apart from one halo with a mass of ∼10 12 

 �, which exhibits a substantial difference ( ∼R vir ), we observe that
ll 683 x h , pro align with x h , ROCK within an accuracy of less than 
0 per cent of R vir , with 564 x h , pro falling below 1 per cent . This
MNRAS 527, 7523–7546 (2024) 
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Figure 5. Difference between the centre of the halo at z = 0 calculated 
by ROCKSTAR ( x h , ROCK ) and the average position o v er 1000 particles in the 
oldest progenitor ( x h , pro ). The lighter boxes and darker dots are for the same 
haloes as in Fig. 4 . The crosses represent 97 haloes located on the horizontal 
solid line in Fig. 4 . Their x h , pro is calculated by av eraging o v er 1000 particles 
with the smallest phase-space distance, d ps (defined in equation 5 ) at z = 5. 
The vertical dashed line indicates the criterion from equation ( 6 ). 
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emonstrates that we can faithfully track the motion of the progenitor
entres from t s to the present using the fixed list of 1000 particles.
hese particles are the oldest population that occupies the central

egion of a halo throughout its evolution. We utilize these particles to
efine the position and bulk motion of the centres, denoted as x h , pro 

nd v h , pro , respectively, at intermediate redshifts. 
In Appendix D , we show that the exceptional halo we mentioned

bo v e possesses a significant secondery density peak that hinders us
rom accurately tracing the primary peak. This halo can be considered
o be currently undergoing a major merger. Therefore, we introduce
 final criterion below and remo v e haloes that satisfy it: 

 x h , pro − x h , ROCK | /R vir, ROCK > 0 . 1 . (6) 

In summary, we constructed merger trees for each halo and selected
000 particles in their progenitor; then we defined x h and v h as the
verage position and velocity of these 1000 particles at each snapshot.
s demonstrated in Fig. 5 , x h matches those calculated by ROCKSTAR

t z = 0. 

.2 Counting particles’ apocentre passages 

e can now calculate the radial velocity, v r , of each particle at
ach of the 1001 snapshots using x h , v h defined abo v e, and count
he number of apocentre passages from the change in sign of v r .
o we ver, before proceeding with the actual counting of p , we need

o account for particles residing in subhaloes. Our treatment of this
ssue is based on the method used in S20 . 

Generally, particles consisting a subhalo follow orbits relative to
ts centre, and the sign of their radial velocities relative to the host
alo can sometimes transition from ne gativ e to positiv e (and vice
ersa) due to this orbital motion within the subhalo. While we define
 as the number of apocentre passages relative to the host halo, this
ffect inadvertently increases the count of p . To mitigate this effect,
NRAS 527, 7523–7546 (2024) 
e take into consideration the direction of each particle, denoted as
ˆ r ( t ) , from the centre of the host halo as follows. 

Suppose that a particle undergoes an apocentre passage at time
 1 and experiences a change in the sign of its radial velocity from
ositiv e to ne gativ e. Later, at time t 2 , the positiv e-to-ne gativ e sign
ransition occurs for the first time after t 1 . If ˆ r ( t 1 ) · ˆ r ( t ) > 0 al w ays
olds for t 1 < t ≤ t 2 , it implies that the particle remains on the same
ide of the halo, not completing a full orbit before the next apocentre
assage. In such cases, the sign change at t = t 2 is likely due to
rbital motion within the subhalo. We can show that a particle within
 static spherical potential undergoes an apocentre passage after
oving at least 180 ◦ around the centre of that potential since the

revious apocentre passage (see section 3.1 of Binney & Tremaine
008 ). Therefore, we count the number of apocentre passages only
hen ˆ r ( t 1 ) · ˆ r ( t ) < 0 holds at least once for t 1 < t ≤ t 2 . Note that

his condition ensures that the particle has orbited at least 90 ◦ from
he previous apocentre passage. Nevertheless, we confirmed that this
orks in practice to remo v e fake apocentre passages due to the

nternal motion within a subhalo. 
As an example, Fig. 6 shows the counting of p for an orbiting

article using the method described abo v e. In this figure, the colour of
he points changes as the particle passes through its orbital apocentre,
emonstraining the ef fecti veness of the method. Around t = 9 Gyr ,
e can see that the sign of v r changes from positive to negative.
o we ver, the v alue of p is not incremented because the particle
as not travelled much from the previous apocentre passage (i.e.

ˆ r ( t 1 ) · ˆ r ( t ) remains positive since t 1 ). Indeed, the time since the
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revious apocentre passage is short compared to the typical intervals 
etween other apocentre passages, suggesting that the sign change 
s due to internal motion with the subhalo. We can also see that
he interval between the data points in the figure is sufficiently 
ense to count the apocentre passages. If the number of snapshots
s insufficient, the algorithm cannot detect the apocentre passages, 
otentially leading to miscounts of p . To ensure accuracy, we conduct
 verification in Appendix A , confirming that the 1001 snapshots we
sed offer sufficient time resolution to a v oid miscounting p for p ≤
0. Furthermore, in Appendix B , we examine a convergence study
nd check if our simulation set-up has enough mass resolution to 
airly trace the multistream flow for a large number of apocentre 
assages, again confirming that the present mass resolution provides 
 reliable estimate of p for p ≤ 40. 

.3 Density profiles and fitting procedure 

efore presenting our main results, we provide a summary of some 
echnical aspects related to calculating density profiles, stacking 
rocedure, and fitting methodology. In Section 4.1 , we showcase 
ensity profiles in physical coordinates. To construct these density 
rofiles, we employ logarithmically spaced radial bins ranging from 

wo times the softening length to 2 . 5 R vir . Then, in Section 4.2 ,
e utilize stacked density profiles, which involves averaging over 

ndividual profiles within specific subgroups. We define subgroups 
ccording to, for example, the number of particles with a certain value 
f p and the mass. In our stacking procedure, we first normalize
he radial distances of particles within individual haloes by their 
especti ve v alues of R vir , and create indi vidual density profiles.
ubsequently, we construct stacked density profiles by averaging 
 v er these individual profiles in the subgroup. For the stacked profiles
or each mass bin, we define 80 logarithmically spaced radial bins
panning from 0 . 0025 to 2 . 5 R vir . Ho we v er, we e xclude bins that
all below 1.2 times the maximum value of the softening length, 
caled by R vir , for haloes within the subgroup to a v oid numerical
rtefact due to the limited force resolution. By comparing the LR
nd HR simulations, we confirm that the softening effect does not 
ignificantly impact the stacked profiles beyond this radius. These 
pecific radii will be explicitly referenced in Section 4.2.2 . 

In Section 4 , we will also present fitted curves for the density
rofiles. Our fitting procedure rely on the standard minimization 
ethod for χ2 , which is defined as follows: 

2 ≡
∑ 

i 

(
ln ρi , fit − ln ρi , data 

σi /ρi , data 

)2 

. (7) 

ere, ρ i,fit represents the fitted density in the i -th radial bin, while
i,data denotes the individual or stacked density profile. σ i is the 
ncertainty of ρ i,data , determined by the Poisson scatter for individual 
rofiles and the root mean square deviation of the profiles stacked 
ithin subgroups. For our analysis, we consider all radial bins abo v e

he aforementioned lowest radial bins for each case. 

 RESULTS  

n this section, we present the results of the halo density profiles
or particles having different numbers of apocentre passages, p . 

e first pick up representative haloes and show their individual 
rofiles in Section 4.1 . We then consider the stacked halo profiles
nd characterize them in detail with a double power-law profile in 
ection 4.2 . To elucidate their statistical properties, we in particular 
iscuss their dependence on the halo mass. 
.1 Individual halo profiles 

pplying the method and algorithm in Section 3 to 683 haloes
n our simulations, summarized in Table 2 , we are now able to
haracterize the radial phase-space structure by looking at the particle 
istributions classified with different numbers of apocentre passages. 
o do so, we first pick up three representative haloes whose masses
re 1.49 × 10 14 , 1.36 × 10 13 , and 1.45 × 10 12 h −1 M �, and plot their
adial phase-space and density profiles in Figs 7 –9 . In these figures,
e show density profiles (top row) and phase-space distributions 

bottom row) for particles with p = 1–40 (top left panel) and for p =
, 2, 3, 5, 10, 20, 30, and 40 (other panels). 
Despite a wide range of mass scales, o v erall trends in the density

rofiles and phase-space structures are mostly similar for the three 
ases. Looking in particular at the outer part of the radial phase-
pace distribution, we see a substantial number of clumps with 
arious spatial and v elocity e xtents at p = 1 and 2. Although
nrelaxed haloes are removed in our samples, this implies that the
uter parts of haloes are generally not truly relaxed, having a large
uctuation in phase-space density due to the remnant of subhaloes 

hat have recently accreted or undergone mergers. Note that this 
catter has been reported in Diemer ( 2022 ) as the halo-to-halo scatter
n characterizing the infalling profiles. 

On the other hand, focusing on the inner structures (i.e. large values
f p ), the phase-space distribution becomes rather smooth, and we
ee fewer substructures. Furthermore, the density profile for a large 
alue of p generically exhibits double power-law features consisting 
f a shallow inner slope and a steep outer slope. At the transition
cale where the slope suddenly changes, we see that particles in
hase space are accumulated near zero velocity, associated with an 
pocentre passage for particles having the same p . In other words,
his transition scale roughly corresponds to the radial caustic of each
ultistream flow. S20 reported that about ∼30 per cent of haloes

av e structures quantitativ ely similar to those predicted by the self-
imilar solution of Fillmore & Goldreich ( 1984 ). Although their
elf-similar solutions generally predict a spiky density structure at 
he caustics, such a spike is smeared in reality in the presence of
on-zero tangential velocities and non-sphericity, leading to what is 
een in Figs 7 –9 , i.e. a smooth transition in slope. 

Here, we investigate in detail the structure of the density profile
or each p , and try to describe it with the following functional form: 

( r; p ) = 

A ( p ) {
r/S( p ) 

}−α( p) 
[ 
1 + 

{
r/S( p) 

}α( p ) −β( p ) 
] , (8) 

hich behaves like ρ ∝ r α( p ) at r � S ( p ) and ρ ∝ r β( p ) at r �
 ( p ), under the assumption of α( p ) < 0 and β( p ) < 0. Here, the
our parameters, A ( p ), S ( p ), α( p ), and β( p ), are determined by fitting
quation ( 8 ) to the measured density profile for each p following the
ethod introduced in Section 3.3 . 
The results are shown by black dashed lines in the upper panels of

igs 7 –9 . Here, the fitting to equation ( 8 ) was performed for profiles
ith p ≥ 3, since the profiles for p = 1 and 2 clearly show non-double
ower-law features due partly to the contributions of substructure, 
s seen in the radial phase-space distribution. Figs 7 –9 show that
he fitting form of equation ( 8 ) describes the measured profile fairly
ell, especially around the transition scales. In particular, a better 
tting result is obtained as increasing p . For a smaller value of p , a
eviation from the double power-law function is found at the inner
art of massive haloes (see Figs 7 and 8 ), and they tend to have a
at core. Ho we ver, statistical v ariations seem large due to the lack of
articles, and we cannot judge whether this deviation is significant or
ot on the basis of individual haloes. We will thus consider stacked
MNRAS 527, 7523–7546 (2024) 
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Figure 7. Radial density profiles and radial phase-space distributions of particles for p = 1, 2, 3, 5, 10, 20, 30, and 40. N is the number of particles plotted in 
each phase space. Solid (dashed) lines show the fits to the density profiles with equation ( 9 ) (equation 8 ), and the inner and outer slopes α, β for the dashed lines 
are also shown. In the left top panel, the density profiles and the phase-space distribution for total and 1 ≤ p ≤ 40 (as the same colour coding of other panels), 
p = 0 (light grey). As we mentioned in Section 3.3 , here we set the minimum radial bin to two times the softening length for the density profiles. 
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alo profiles, and quantify statistically the goodness of fit to the
ouble power-law function. 

.2 Stacked profiles for mass selected samples 

n this subsection, using the selected 683 haloes, we analyse stacked
ensity profiles for four halo mass bins S–XL summarized in Table 2 .
itting them to the double power-law function, statistical properties
f the radial profile for different p are elucidated, particularly
ocusing on their mass dependence. 

In Section 4.2.1 , fitting to the double power-law profile is examined
or stacked profiles of each p , and we show that the fitting function
ith α = −1 and β = −8 reproduces well the measured profiles for
NRAS 527, 7523–7546 (2024) 
ll mass bins. With these fixed slopes, we quantitatively investigate
he dependence of the fitting parameters, i.e. characteristic density
 ( p ) and radius S ( p ), on the number of apocentre passages p and halo
ass in Section 4.2.2 . 

.2.1 Fitting to a general form of double power-law profile 

irst, we show the stacked density profiles and their fitting results
o the double power-law form in equation ( 8 ). In Fig. 10 , we scale
he radius and density by factors of p and 10 p /4 , respectively. We
lot various stream profiles ranging from p = 4 to 40 for each mass
in. Dashed lines represent the best-fitting curves, which extend
own to half the resolution limit of the LR run. Overall, the results
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Figure 8. Same as Fig. 7 but halo mass is 1.36 × 10 13 [ h −1 M �]. 
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ccurately reproduce the measured profiles. In Fig. 11 , the best-
tting values of the parameters characterizing the double power-law 

rofiles, i.e. the characteristic density A (upper left), scale S (lower 
eft), and inner and outer slopes, α (upper right) and β (lower right),
re plotted as a function of p , with errorbars estimated from the
urvature of the χ2 function in equation ( 7 ), where σ i is set to the
oot mean square deviation (RMSD) of the stacked profile o v er each
ass bin. There are clear trends for the dependence on p . While the

haracteristic density and scale, respectively, increase and decrease 
n a monotonic manner, the outer slope β is almost constant except 
maller p and fluctuates around β ∼ −8 ∼ −10. Also, the inner slope 

remains almost constant o v er p for massive halo samples, L and
L, but a notable steepening with p is found for lighter samples,

ncreasing also errorbars. Looking at Fig. 10 , the measured profiles
or a large value of p tend to have less sampling points at inner radii.
n particular, for light mass bins (S and M), it seems insufficient
o resolve the converged inner slope. This explains why the fitted
alues of α for S and M systematically decreases with p . In order
o quantitatively access the impact of the lack of sampling points on
he determination of α, in Fig. 12 , we focus on the stacked haloes
or p = 5 in halo sample M. We then reduce the number of inner
ampling points by hand, and examine the same fitting procedure as
e adopted in Fig. 10 . As we see clearly, removing the inner sampling
oints systematically changes the best-fitting values indicated in the 
gure legend, apparently steepening the inner slope α. 
In order to ameliorate the biased estimation for slopes, instead of

reating α and β as free parameters, we set both (or either) of them
o some fixed values and quantify the goodness of fit for parameter
stimations. Fig. 13 shows the reduced χ2 for various fitting results. 
rom top to bottom panels, results for the halo samples from S to
L are, respecti vely, sho wn for even numbers of p , ranging from
 = 4 to 40. The left panel examines the cases fixing α, taking only
MNRAS 527, 7523–7546 (2024) 



7532 Y. Enomoto, T. Nishimichiet and A. Taruya 

M

Figure 9. Same as Fig. 7 but halo mass is 1.45 × 10 12 [ h −1 M �]. 
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to be free, and the goodness of fit is shown as a function of the
xed value of α. For profiles with a small value of p � 10–15, we
ee some trends that the reduced χ2 takes a minimum value around
∼ 1. On the other hand, for profiles with a larger value of p , the

educed χ2 has no minimum, but it slightly increases with α, thus
referring a smaller α. The latter trends are indeed explained by a
ack of enough support for fitting range at inner radius, and consistent
ith what we saw in Fig. 12 . Apart from this point, we may set α

o 1 as an optimal value to describe the inner region of multistream
rofiles. Then, we ne xt e xamine the cases if both α and β are fixed
n the fitting analysis, and the goodness of fit is similarly e v aluated
or various value of β, fixing α to 1. The results are shown in right
anel of Fig. 13 , plotted as function of β. We see the trend that the
educed χ2 becomes minimum around β ∼ 8 for profiles with most
f p , irrespective of halo mass bins. 
NRAS 527, 7523–7546 (2024) 

d  
.2.2 Universal nature of multistream flows 

ased on the results in Fig. 13 , we propose to use the following
unction to characterize the universal behaviour of the radial density
rofile of each stream: 

( r; p ) = 

A ( p ) {
r/S( p ) 

} [ 
1 + 

{
r/S( p) 

}7 
] . (9) 

Adopting equation ( 9 ), fitting results for the individual and stacked
rofiles are, respecti vely, sho wn in Figs 7 –10 , depicted in all cases as
olid curv es. Ov erall, equation ( 9 ) reproduces mostly the measured
rofiles in N -body simulations for a large value of p . In particular, the
tacked profiles in Fig. 10 show good agreements with the model with
= −1 and β = −8 as expected. On the other hand, we see a small

iscrepancy in the outer slope, β, for individual haloes, which show
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Figure 10. Stacked density profiles for p = 4–40 for every two (markers). 
The error bars indicate the root mean square deviation of profiles divided by 
the square root of the number of stacked haloes. Dashed lines show the best- 
fitting models when all the four parameters varied in equation ( 8 ), while solid 
lines are for fixed slope parameters (i.e. α = −1 and β = −8; equation 9 ). 
Note that the vertical axis denotes r × ρ and both axes are rescaled according 
to p for clarity. The best-fitting parameters for the two cases are shown in 
Figs 11 and 14 , respectively. 

Figure 11. Best-fitting parameters for the model ( 8 ) shown in Fig. 10 
(markers). The errorbars denote the square root of the diagonal part of the 
covariance matrix of the optimized parameters. 

Figure 12. Dependence of the fit on the lower limit used in the fitting. Vertical 
dotted lines indicate the lower limit. The best-fitting curves are indicated by 
the same colour as the lower limits. The best-fitting inner slope is shown in 
the legend. 
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Figure 13. Dependence of χ2 on the slope parameters for each density profile (every two between p = 4 and 40 as the colour bar indicates). In the left column, 
we fix the inner slope α to the value indicated by the horizontal axis and optimize the other three parameters in equation ( 8 ). In the middle column, we fix the 
inner slope α to −1 and see the dependence of χ2 on the outer slope β, optimizing the two remaining parameters. In the right column, we show the minimum 

χ2 when all the four parameters are varied. 

s  

t  

d  

s  

s  

t
 

i  

b  

a  

e  

1  

i  

s  

p
 

a  

p  

t

l

l

H  

b  

w  

c  

i  

fi

 

s  

f  

r  

b  

p  

r  

e  

t  

t  

t  

l  

a  

e  

o  

c  

w  

N

ρ

a

ρ

w  

r  

m  

f  

i  

g  

c  

b  

w  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/527/3/7523/7452881 by Kyoto D
aigaku Johogakukenkyuka Tosho user on 21 M

arch 2024
teeper profiles with β � −10. Although we scale the radius before
he stacking analysis, the slope after stacking tends to be shallower
ue to the remaining individuality of haloes, such as the characteristic
cale, S ( p ). Ho we ver, as we will see shortly, the total profile recon-
tructed by adding the profiles with individual p values is insensitive
o the precise value of β, as long as its absolute value is large. 

Returning to the stacked profile, another point to be noted is flatter
nner profiles found at p � 10 in the halo sample XL. This could
e explained by the sensitivity of these low- p orbits to recent mass
ccretion or merger history ( S20 ). Indeed, the trend tends to be
rased after several orbits, reaching a universal slope of −1 for p �
0. There is thus no clear evidence for the flaw in the fitting form
n equation ( 9 ), and we conclude that the measured profile for each
tream is quantitatively described in a universal manner by the double
ower-law form in equation ( 9 ). 
In equation ( 9 ), the free parameters, the characteristic density A

nd scale S , are determined by the fitting analysis for the stacked halo
rofiles. We find the following fitting formulas accurately describe
he best-fitting values of A and S for mass selected haloes ( E23 ): 

og 10 

{ 

A fit ( p) / ρm 

} 

= 4 . 89 − 0 . 119 log 10 

(
M vir, 10 

)

+ 

{ 

−3 . 89 + 0 . 243 log 10 

(
M vir, 10 

)} 

p 

−9 / 40 , (10) 

og 10 

{ 

S fit ( p) /R vir 

} 

= 2 . 46 − 0 . 0474 log 10 

(
M vir, 10 

)

+ 

{ 

−2 . 29 − 0 . 0639 log 10 

(
M vir, 10 

)} 

p 

1 / 8 . (11) 

ere, we define M vir, 10 = M vir / { 10 10 h 

−1 M �} . Fig. 14 shows the
est-fitting values of characteristic density and scale (symbols),
hich are compared with the abo v e fitting formulas (solid

urves). With an explicit but weak halo mass dependence given
n equations ( 10 ) and ( 11 ), the formulas agree quite well with the
tting results. 
NRAS 527, 7523–7546 (2024) 
To quantitatively assess the double power-law nature of each
tream by equation ( 9 ), we measure the total density profile obtained
rom the HR run for haloes that have been matched with the LR
un. We then compare their stacked profiles o v er haloes in each mass
in with the predictions obtained by summing the double power-law
rofiles (equation 9 ) o v er p ≥ 1 described by equations ( 9 )–( 11 ). The
esults are shown in Fig. 15 , where the upper and lower panels for
ach mass bin, respectively, represent the fractional difference of the
otal density profile with respect to the HR run, ( ρ − ρHR )/ ρHR , and
he logarithmic slope of the total profile, dlog ρ/dlog r . In each panel,
he solid curve shows the prediction based on the double power-
aw profiles, with the shaded region indicating the uncertainties
rising from those in determining the numerical coefficients of
quations ( 10 ) and ( 11 ). Note that the summation o v er the number
f apocentre passages is conserv ati vely taken up to p = 3000. The
hange in density is less than 0.2 per cent o v er the plotted range
hen we instead stop at p = 300. For reference, we also plot the
FW profile (Navarro, Frenk & White 1997 ) 

NFW 

( r ) = 

ρs 

r /R s ( 1 + r/R s ) 
2 , (12) 

nd the Einasto profile (Einasto 1965 ) 

Einasto ( r) = ρs exp 

[
− 2 

α

{(
r 

R s 

)α

− 1 

}]
, (13) 

hich are obtained by fitting the profiles in the HR run o v er the
ange 2 Max ( εHR /R vir ) ≤ r/R vir ≤ 0 . 9, with Max( εHR / R vir ) being the
aximum value of the ratio of softening length εHR to R vir estimated

or individual haloes in each mass bin. Note that we fixed α = 0.16
n the Einasto profile following Wang et al. ( 2020 ). Our model is in
ood agreement with the HR run for all four mass bins. Notably, we
an reco v er the profile below the scale of 1.2Max( εLR / R vir ) indicated
y vertical arrows, corresponding to the convergence radius abo v e
hich the measured profiles from the two runs agree well with each
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Figure 14. Best-fitting values of the characteristic density A and scale radius 
S of the double power-law model with the fixed slopes, given at equation ( 9 ). 
The solid lines are the fitting formulas summarized in equations ( 10 ) and 
( 11 ), with the halo mass M vir estimated from the averaged mass in each halo 
sample. For ease of viewing, the error bars are omitted, but they are generally 
similar to those in Fig. 11 . 
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ther at ∼ 3 per cent precision. This suggests that the inner slope of
= −1 is a reasonable choice, applicable below the softening scale 

f the LR run. 
In Fig. 15 , we also consider three variants: (i) summation of

quation ( 8 ) fixing α and β, respectively, to −1 and −30, using the
haracteristic density and scale given by equations ( 10 ) and ( 11 )
dotted), (ii) the same as our main model depicted by the solid
ines, but truncated the summation at p = 40 (triangles), and (iii)
ummation of equation ( 8 ) with the four parameters determined to fit
he individual profiles in Fig. 11 (crosses). Note that we also truncate
he summation at p = 40 for case (iii), where the best-fitting values
f the model parameters are not available beyond p = 40. 
The upper panels of Fig. 15 show that the total profiles of the case

i) are hardly distinguishable with the solid curves except for the 
uter radii of r / R vir � 0.2 despite the rather small value of β = −30.
his implies that the inner part of the total profile is insensitive to

he precise value of β as long as the profile decays quickly towards
arge radii, and hence the inner slope of −1 in equation ( 9 ) is the
ain clue to clarify the cuspy structure of the central halo profiles.
n the other hand, due to the summation o v er a restricted number of
 , the total profile predicted by the case (ii) starts to fall off as the
adius decreases, although the outer profiles abo v e the v ertical solid
ines mostly match the predictions based on equations ( 9 )–( 11 ). This
uggests that the extrapolation beyond p = 40 by the fitting forms
 10 ) and ( 11 ) play a significant role to fill the gap on small radii
nd reproduce the results of the HR run. Finally, the case (iii) with
he four free parameters agrees well with case (ii) reinforcing our
laim that fixing inner and outer slopes to −1 and −8 is an optimal
hoice, as examined in Fig. 13 . Thus, with the fitting formulas given
y equations ( 10 ) and ( 11 ), the double power-law form of the stream
rofiles at equation ( 9 ) describes accurately spherically averaged 
alo structures, and provides the most optimal description among 
ther variants of the model. 
As a result, the logarithmic slope plotted in the lower panels for

he HR run (dot–dot–dashed) is accurately reproduced by our model 
solid). It is interesting to observe that the Einasto profile (dot–
ashed) is equally in good agreement with the simulation results. We
xpect that the two models should depart asymptotically at the small
cale limit (i.e. −1 versus 0), which cannot be examined from the
urrent simulation due to the limited dynamical range. We postpone 
o address the slope on even smaller scales as a future work. 

 DI SCUSSI ON  

.1 Dependence on halo samples 

o far, we have studied individual stream profiles for the mass-
elected halo samples and characterized their properties based on 
he double power-law profile. Here, to assess the robustness of 
ur findings, we analyse a subset of 460 haloes within a specific
ass range [4 . 10 × 10 11 , 2 . 39 × 10 12 ] h 

−1 M �, which are divided
nto two subsamples based on two different criteria. One is the
oncentration parameter c vir , defined by the ratio R vir / R s . Here, the
adius R s is the scale radius of the NFW profile (equation 12 ), and we
stimate it from ROCKSTAR based on the maximum circular velocity 
Klypin, Trujillo-Gomez & Primack 2011 ). Another quantity used 
or sample selection is the mass accretion rate defined by 

 dyn ( t ) ≡
log 

[ 
M vir ( t ) − M vir 

{
t − t dyn ( z) 

}] 

log 
[ 
a( t ) − a 

{
t − t dyn ( z) 

}] , (14) 

here the quantity t dyn represents the dynamical time estimated from 

alo masses (Diemer 2017 ) 1 : 

 dyn ( z) ≡ 2 R vir 

V vir 
= H ( z) −1 

{ 8 


 vir ( z) �m 

( z) 

} 

1 
2 
, (15) 

hich gives 4.04 Gyr at z = 0 in our case. 
In both cases, we divide the haloes into two halves, one with high

alues of these indicators and the other with low values. Fig. 16 shows
he distribution of the parameters, c vir and 
 dyn , and M vir . Darker
oints are the haloes used in the present analysis, and the boundary of
he samples is shown in red lines in the upper and lower left panels.
learly, the distribution in the measured parameters c vir and 
 dyn 

xhibits a tight correlation, and these parameters are anticorrelated. 
hat is, haloes with a higher concentration parameter tend to have a
maller 
 dyn . Therefore, we expect these two cuts to affect the results
n a similar manner. 
MNRAS 527, 7523–7546 (2024) 
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Figure 15. Comparison between the sum of fitting functions based on the LR run and the total profile in the HR run. In the upper panels, fractional differences 
between the two are shown. Solid lines depict the results when we use the models ( 10 ) and ( 11 ) for the p dependence of the model parameters A ( p ) and S ( p ) 
with fixed slopes ( α = −1 and β = −8). Dotted lines correspond to the same model but with β = −30. Triangles show the same model as the solid lines but 
the summation is truncated at p = 40. The double power-law model with four free parameters fitted to the measured profiles is shown by cross symbols. Note 
that we also truncate the summation at p = 40 in this case, as we cannot rigorously fit the data at higher p values. Also shown are the NFW profile (dashed) and 
the Einasto profile (dot–dashed). The lower panel shows the logarithmic slope of the total profile (dot–dot dashed lines for the HR run). The solid, dashed, and 
dot–dashed lines are the same as in the upper panels. 

Figure 16. Distribution of concentration c vir , halo mass M vir , and mass 
accretion rate 
 dyn at z = 0. Thick markers indicate 460 haloes in the 
mass range [4 . 10 11 , 2 . 30 × 10 12 ] h −1 M �, which are the haloes analysed in 
Section 5.1 . The thin markers indicate the other haloes in our halo catalogue. 
The horizontal lines indicate the median 
 dyn and c vir of the thick markers, 
which are used as boundaries of 460 samples. Here, c vir is calculated from 

R s that is estimated by ROCKSTAR . 
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subgroups Low c vir (dotted in upper panel), High c vir (solid in upper panel), 
Low 
 dyn (dotted in lower panel), and High 
 dyn (solid in lower panel). Same 
as Fig. 10 , the vertical axis denotes r × ρ and both axes are rescaled according 
to p for clarity. 
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Fig. 17 shows the results of density profiles for the subsamples
efined by c vir (upper) and 
 dyn (lower). In each panel, results for low
nd high values of c vir or 
 dyn are depicted as red and black colours,
espectively. The stacked profiles for each p are fitted to the double
ower-law form in equation ( 9 ), and the best-fitting results are plotted
n dotted and solid curves for the two subsamples, respectively. We
gain see a good agreement between the double power-law function
nd measured profiles o v er a wide range of p and radius. 

A close look at each stream profile in Fig. 17 reveals that haloes
ith high concentration or low accretion rate tend to have a large
NRAS 527, 7523–7546 (2024) 
mplitude A ( p ) and a large characteristic scale S ( p ), in particular
or p � 14. The opposite trends in the samples divided with the
arameters c vir and 
 dyn simply come from their anticorrelation
ehaviour seen in the lower right panel of Fig. 16 . On the other
and, the result that high-concentration haloes have large S ( p ) seems
ome what counterintuiti ve in the sense that a large v alue of c vir 

mplies, by definition, a small scale radius R s . Nevertheless, the mass
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3 To derive the asymptotic slope of each stream profile, we first note that 
Fillmore & Goldreich ( 1984 ) and Nusser ( 2001 ) analytically derived the 
asymptotic inner slope of total density profiles ρtot for self-similar solutions, 
summarized as 

ρtot ( r) ∝ 

{
r −9 ε/ (1 + 3 ε) ( 2 3 ≤ ε ≤ 1) 
r −2 (0 ≤ ε ≤ 2 

3 ) 

for L = 0, and 

ρtot ( r) ∝ r −9 ε/ (1 + 3 ε) (0 ≤ ε ≤ 1) 

for L �= 0. Then, consider the interior mass of particles/shells having the 
number of apocentre passages p inside the radius r , which we denote 
by M p ( r ). For a stationary halo composed of equal mass particles/shells, 
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nside the radii r ≤ R s actually increases as increasing c vir . Since the
nner mass of the halo is mainly determined by the sum of stream
rofiles for large values of p , and the mass of each stream profile is
roportional to A ( p ) S ( p ) 3 , a high mass concentration leads to a large
alue of A ( p ) S ( p ) 3 , consistent with what is seen in Fig. 17. 2 

The results shown in Fig. 17 suggest that the double power-law 

eature in the radial stream profiles generically appears, irrespective 
f the halo sample selection. Although the characteristic density 
nd scale, A ( p ) and S ( p ), depend generally on the selection criteria,
heir p dependence can be translated from one to another once the
elationship between different samples is established. In this respect, 
t might be useful to re-derive the fitting formulas of A ( p ) and S ( p )
xpressed in terms of c vir rather than M vir , since the concentration
arameter is tightly correlated with the inner structure of haloes. 
To do this, we further divide the haloes according to the value of

 vir . We consider four subgroups: from 10 to 30, 30 to 50, 50 to 70,
nd 70 to 90 percentiles of c vir , each containing the same number of
aloes. We then look for a fitting function for A ( p ) and S ( p ), now with
ependence on c vir . We find the following functions give reasonable 
t to the data: 

log 10 

{ 

A fit ( p) / ρm 

} 

= 4 . 09 + 0 . 133 c vir 

−
{ 

1 . 99 + 0 . 202 c vir 

} 

p 

−4 / 25 , (16) 

log 10 

{ 

S fit ( p) /R vir 

} 

= 1 . 69 + 0 . 0132 c vir − 1 . 74 p 

4 / 25 . (17) 

The performance of the new fitting formulas given above is 
xamined in Fig. 18 , where the total density profile and their
ogarithmic slope are again plotted for the four subgroups. Similarly 
o the case of mass-selected samples in Fig. 15 , the sum of the profiles
ith the parameters given by the formulas in equations ( 16 ) and ( 17 )

eproduces the total profile measured from the HR run well beyond 
he resolution limit of the LR run, which we actually use to calibrate
he fitting functions. 

.2 Comparison with self-similar solutions 

he results in Sections 4 and 5.1 show that the inner structure
f haloes exhibits common features, and each stream profile is 
haracterized by a simple double power-law function in a rather 
niversal manner, suggesting that haloes evolve in a self-similar 
ashion. Here, we compare the radial phase-space structure and 
ensity profile for each stream with those predicted by self-similar 
olutions. To be strict, self-similar solutions are valid only in the 
instein–de Sitter universe, and hence a f ace-to-f ace comparison with 
imulations in the � CDM model makes little mathematical sense. 
evertheless, the secondary infall model of Bertschinger ( 1985 ), 

qui v alent to the self-similar solution by Fillmore & Goldreich 
 1984 ) with a specific parameter choice (see below), has been shown
o reproduce the power-law slope of the pseudo-phase-space density, 
 ( r ) ∝ r −1.875 , found in simulations in the � CDM model. 
 Assuming the double power-law form of equation ( 9 ), the mass of each 
tream profile, M ( p ), is analytically expressed as follows: 

M( p) = 

∫ r=+∞ 

r= 0 
4 πr 2 A ( p) {

r/S( p) 
} [ 

1 + 

{
r/S( p) 

}7 
] dr 

 

4 π

49 

(
2 sin 

π

7 
− cos 

π

14 
+ 3 cos 

3 π

14 

)
A ( p ) S( p ) 3 , 

hich gives M ( p ) ≈ 0.574 A ( p ) S ( p ) 3 . 
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t
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Along the lines of this, we focus on the qualitative trends in
imulations discussed so far and compare them with predictions 
y self-similar solutions. Among various models considered in the 
iterature, we adopt spherically symmetric solutions by Fillmore & 

oldreich ( 1984 ) and Siki vie, Tkache v & Wang ( 1997 ; see also
usser 2001 ) as representative models of halo evolution under 

tationary matter accretion. Note that the latter model allows us 
o incorporate the non-zero angular momentum into the matter flow. 
he number of parameters characterizing the halo structure is two. 
ne is the slope of the initial linear o v erdensity, parametrized as

lin ( r ) ∝ r −3 ε in the range 0 ≤ ε ≤ 1, which is related to the accretion
ate through M ta ( t ) ∝ { a ( t ) } 1/ ε with M ta being the mass inside the
urn-around radius. Another parameter is the dimensionless angular 
omentum L , defined by L ≡ L/ ( GM ∗r ∗) 1 / 2 , with r ∗ and M ∗ being,

espectively, the turn-around radius and the total mass inside the 
urn-around radius for each spherical shell accreting on to the halo. 

The bottom panels of Fig. 19 plot the radial density profile
upper) and phase-space distribution (lower) predicted by the self- 
imilar solution for specific parameter choices, ( ε, L ) = (1 , 0) (left),
1 / 6 , 0) (middle), and (1 / 6 , 1 / 10) (right). Note that the second
olution corresponds to the secondary infall model of Bertschinger 
 1985 ) as we mentioned abo v e. These are obtained numerically
ased on the method described by Zukin & Bertschinger ( 2010 ).
or reference, we also show in the upper panel the results of a
epresentative halo taken from Fig. 8 . 

Because of the spherical symmetry, the radial phase-space struc- 
ure of the self-similar solution exhibits distinctive streams, and all of
he plotted results show a qualitatively similar trend at the outer part.
hat is, for each stream, a spiky structure appears in density around

he caustics, and this is shortly followed by a sharp drop. On the other
and, the inner structure of self-similar solutions generically shows a 
ower -law beha viour, and in the cases with zero angular momentum,
he slope of the total density profile as well as each stream profile
s predicted to be nearly −2. To be strict, the asymptotic slope of
he solution with ( ε, L ) = (1 , 0) is slightly different from −2: the
otal and each stream approach ρ ∝ r −9/4 and r −15/8 , respectively. 3 

etting aside a subtle difference, the predicted steep slopes for the
MNRAS 527, 7523–7546 (2024) 

his is proportional to the time δt ( r ) that a particle/shell with p spends 
nside r (Fillmore & Goldreich 1984 ; Dalal, Lithwick & Kuhlen 2010 ; 
ithwick & Dalal 2011 ). Except for the radii near the apoapsis, the time δt ( r ) 

s proportional to r / v r with v r being the radial velocity. Since v r ∝ 

√ 

� , we 
ave M p ( r) ∝ r/ 

√ 

� ( r) . For the total profile that has a slope less than or equal 
o −2, corresponding to the solutions with ε ≤ 2/3, the potential becomes 
onstant near the centre, and we obtain M p ( r ) ∝ r , which gives the stream 

rofile of r −2 . On the other hand, if the inner slope of the total profile is steeper 
han −2, corresponding to the solutions with ε > 2/3, the potential diverges 
t the centre and we have � ∝ r (2 − 3 ε)/(1 + 3 ε) . Taking this dependence into 
ccount, the interior mass with p becomes M p ( r ) ∝ r 9 ε/2(1 + 3 ε) , which yields 
he stream profile of ∝ r −3(2 + 3 ε)/2(1 + 3 ε) . Hence, for ( ε, L ) = (1 , 0), we 
btain the slope of the stream profile, −15/8. 

arch 2024
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Figure 18. Same as in Fig. 15 , but we use equations ( 16 ) and ( 17 ) for A ( p ) and S ( p ). In the upper panels, fractional differences between the total profiles in 
HR simulation and the sum of equation ( 9 ) using equations ( 16 ) and ( 17 ) for A ( p ) and S ( p ) (solid line), and the best-fitting NFW (dashed line) and Einasto 
(dot–dashed line) profiles for the HR total profile are shown. The vertical arrows indicate the resolution limit of the LR simulation. The shaded regions indicate 
the estimated uncertainties of the solid line, which are propagated from the statistical error in the stacked profile through the uncertainties in ( 16 ) and ( 17 ). 
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otal and stream profiles are rather contrasted with those found in the
imulations. In the case of ( ε, L ) = (1 / 6 , 1), the non-zero angular
omentum yields a potential barrier near the centre in each mass

hell, making the pericentre radius finite. As a result, a sharp cut-off
ppears at the inner radii for each stream profile, and this results in
he total profile being shallower than the slope of −2. Thus, apart
rom small bumpy structures, the resultant total profile resembles the
ne obtained from simulations. Ho we ver, the density profile of each
tream still possesses a steep slope close to −2 abo v e the pericentre
adius, which contradicts the asymptotic inner slope seen in our
imulation results. 

These results indicate that the self-similar solutions considered
ere miss something essential or some complexities inherent in the
osmological N -body simulations. Therefore, a more comprehensive
tudy is necessary taking into account properly the missing ingre-
ients in the self-similar solutions. This may involve relaxing the
ymmetry assumptions (Ryden 1993 ; Lithwick & Dalal 2011 ) or
xploring non-zero tidal torques (Zukin & Bertschinger 2010 ). Also,
he angular momentum distribution may be the key. Although we
ave considered the self-similar solution with angular momentum,
his allows for the angular momentum to be provided in a very specific
anner. Introducing a broad angular momentum distribution yields
 new radial dependence of the particle trajectories that potentially
eads to a shallower stream profile consistent with simulations. This
ould be achieved perhaps by further breaking the self-similarity, as
tudied by Lu et al. ( 2006 ). We leave these investigations to future
ork. 

.3 On the emergence of double power-law nature 

s a final discussion towards a better understanding of the origin of
he universal double power-law nature, we focus on the halo sample
 in Table 2 , and select the particles with p = 2, 4, 6, 8, 10, 20, 30,

nd 40 at z = 0. Then we trace their trajectories to higher redshifts
nd measure the density profiles for each value of p stacked o v er
ifferent haloes. Here, the values of p al w ays refer to those counted
ntil z = 0 instead of the redshift at which the profiles are plotted.
amely, we investigate the time evolution of the profile for the same

et of particles o v er time. Fig. 20 o v erplots the results at z = 0.3
green) and 1.6 (red), on top of those at z = 0 already shown in
ig. 10 (blue). We observe that the amplitude of the curve increases
s the redshift decreases. Interestingly, ho we ver, the e volution of
NRAS 527, 7523–7546 (2024) 
he inner profiles becomes significantly weaker as the value of p
ncreases, and at p = 40, the profiles almost converge even at the
utermost part. This suggests that the double power-law nature was
stablished at an early stage of halo formation and remains stable
gainst matter accretion, which can only affect the outer part of the
ensity profile represented by particles with p smaller than or equal
o 6. Apart from the origin of the universal profile, this picture is
onsistent with previous studies that show that the accreting matter
ainly accumulates in the outer region (e.g. Fukushige & Makino

001 ; Zhao et al. 2003 ; Wang et al. 2011 ), and partly explains why
he characteristic scale S ( p ) in equation ( 11 ) is a decreasing function
f p ; particles with larger p have accreted earlier and their distribution
ends to be relaxed in the inner part of haloes. In this respect, the
ynamics at the early stage of halo formation would clarify the origin
f the double power-law nature. 

 C O N C L U S I O N S  

ue to its cold nature, CDM haloes inherently possess multistream
egions, where the velocity of DM at a given position becomes
ulti v alued at a macroscopic level in the phase-space distribution.
ecently, the outer boundary of the multistream regions called

he splashback radius has attracted much attention, and there are
umerous theoretical and observational studies to clarify its nature
s well as to test the CDM paradigm. Beyond the splashback radius,
here is a limited number of works to characterize the phase-space
tructure even in N -body simulations. 

In this paper, focusing mainly on the inner structure of CDM
aloes in cosmological N -body simulations, we have quantified the
hase-space distribution of DM particles in the multistream regions.
ased on the methodology developed by S20 , which is considered
n extension of the SPARTA algorithm by Diemer ( 2017 ), we have
lassified DM particles inside haloes at z = 0 by the number of
pocentre passages, which we denote by p . Making use of 1001
napshots, the analysis with the impro v ed identification for halo
entres allows us to keep a precise track of the DM trajectories,
nd we successfully count the number of their apocentre passages
p to p = 40 in a robust manner o v er the halo mass range of
 × 10 11 ≤ M vir / ( h 

−1 M �) ≤ 1 × 10 14 . Provided the particle distri-
ution classified by p , the multistream structure of haloes inside the
plashback radius becomes clearly visible (see Figs 7 , 8 , and 9 ), and
e are able to analyse the individual density profile for each stream.
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Figure 19. Density profiles and phase-space distributions of particles separated by p (colour-coded as the colour bar indicates), and total density profile (top 
solid line in each figure). As a representative of N -body halo, we show the distributions of the same halo shown in Fig. 8 in the top row. Note that the virial 
o v erdensity 
 vir is 18 π2 in EdS universe (background metric of the self-similar solutions), and it is different from those in � CDM universe, 313 at z = 0. Here, 
we set 
 vir = 313 and normalize the coordinates in the self-similar solution. This does not change the shape of density profiles. 
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n addition, by stacking a number of haloes o v er each mass bin, we
ave quantified the statistical nature of each stream profile in a more
uantitative manner. 
Our important findings are summarized as follows: 

(i) The density profiles for particles having the same value of p 
enerally exhibit a double power-law nature, consisting of a shallow 

usp with an asymptotic slope around −1 in the inner part and a steep
ensity drop with the slope � −7 in the outer part. These features
ommonly appear o v er a wide range of halo mass. 

(ii) The analysis with stacked halo profiles reveals that the profiles 
f each stream can be accurately characterized by the fitting function 
n equation ( 9 ), which has fixed inner and outer slopes, −1 and −8,
espectively. The characteristic density A and the scale S of this fitting
unction are given as a simple function of the number of apocentre
assages p , with a weak halo mass dependence (see equations 10
nd 11 ). Interestingly, summing up the function in equation ( 9 ) o v er
 , we can reconstruct the total density profiles consistent with the
otal profiles measured from the HR run, ev en be yond the resolution
imit of the LR run used to calibrate the density A and scale S . As a
esult, our prediction of the total density profile based on equation
 9 ) closely matches the best-fitting Einasto profile with an inner cusp
f the slope −2 ∼ −1, which is slightly steeper than that of the NFW
rofile. 
(iii) The double power-law nature of each stream profile appears 

ersistent not only in mass-selected haloes but also in haloes selected
ased on different criteria. While the functional form of the profile
s described by equation ( 9 ) in a universal manner, the characteristic
ensity A and scale S of the double power-law function, which are
oth given as a function of p , exhibit an explicit dependence on
he selection criterion. As an illustrative example, we re-calibrated 
hese parameters in the halo samples divided by the concentration 
arameter c vir , and summarize their fitting formulas in equations ( 16 )
nd ( 17 ). 

(iv) A class of self-similar solutions that describe the stationary 
ccretion of DM under a spherical symmetry is compared to our simu- 
ation results, but fails to reproduce their radial multistream structure. 
n particular, the asymptotic slope of the stream profiles is predicted
MNRAS 527, 7523–7546 (2024) 



7540 Y. Enomoto, T. Nishimichiet and A. Taruya 

M

Figure 20. Stacked density profiles for the halo sample M measured at z = 0 (circles), 0.3 (crosses), and 1.6 (triangles). In the same panel, each profile consists 
of identical particles divided by p at z = 0. We also show the best-fitting curve of equation ( 9 ) for the measured profiles at z = 0 as thin lines. At every redshift, 
we use physical distance as units of radial coordinates and normalize them to R vir at z = 0. 
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o be steeper than what we measured in the simulations and hence
ontradicts the model described by equation ( 9 ). This remains true
ven when we introduce a non-zero angular momentum, suggesting
hat taking into account the dynamical complexities associated with
alo accretion/merger history or relaxing the symmetry assumptions
ould be important. Nevertheless, tracing the DM particles having

he same number of apocentre passages p determined at z = 0 to
igher redshifts, we find that their density profiles have already
onverged well at an earlier time especially for larger values of p .
his is consistent with previous numerical studies and indicates that

he double power-law nature appears to have been established during
n early accretion phase and remains stable. 

The universal features of haloes found in this paper are a direct
onsequence of the cold nature of DM and serve as valuable
nsights into the physical properties of CDM haloes. While this
tudy has utilized N -body simulations and investigated the inner
ultistream structure up to p = 40, recent developments in simu-

ating collisionless self-gravitating systems through Vlasov–Poisson
quations offer a promising way to further probe the phase-space
tructure (Y oshikawa, Y oshida & Umemura 2013 ; Hahn & Angulo
016 ; Sousbie & Colombi 2016 ). This would provide a deeper
nderstanding of the physics behind the universal features. Of
articular interest would be to clarify the phase-space nature of the
o-called prompt cusp, the central cusp of proto-haloes having the
ensity slope of −1.5 that has formed quasi-instantaneously, which is
rst found by Ishiyama, Makino & Ebisuzaki ( 2010 ) and is recently
nalysed in detail by Delos & White ( 2023b ; see also Anderhalden &
iemand 2013 ; Ishiyama 2014 ; Ogiya, Nagai & Ishiyama 2016 ;
ngulo et al. 2017 ; Ishiyama & Ando 2020 ; Colombi 2021 ; Ondaro-
allea et al. 2023 ). Since the cusp can survive until the present time

nd can be a dominant site for DM annihilation radiation (Delos &
hite 2023a ), a more quantitative theoretical study of the prompt

usp would give a huge impact on the indirect DM search through
he observations of annihilation radiation such as gamma-ray excess
Delos et al. 2023c ). 

In order to search for observational evidence of this universality,
he impact of baryonic feedback would be crucial, especially for
alactic haloes. The active galactic nucleus or supernova feedback
re known to change the inner density structure, and hence they
ould alter the multistream structure in phase space. To investigate
NRAS 527, 7523–7546 (2024) 
heir quantitative impact, an analysis using simulations involving
alaxy formation processes would be useful (e.g. Sawala et al. 2016 ;
pringel et al. 2018 ) and beneficial to understand the stability of the
niversal properties found in the DM only simulations. In this respect,
t is notable that recent cosmological hydrodynamical simulation
hows the phase-space structure of dark haloes can be inferred from
hose of stellar haloes (Genina, Deason & Frenk 2023 ). Further
esearch on the correlation between stellar and dark components will
e the basis for observational verification of the universal features
e have discovered. 
Finally, it is worth stressing that the present method to reveal
ultistream structures is generally applied to other particle-based

imulation data, meaning that one can also scrutinize the radial phase-
pace structures for alternative DM models, including warm DM and
elf-interacting DM (e.g. Banerjee et al. 2020 ; St ̈ucker et al. 2020 ,
022 ; Correa et al. 2022 , as recent progress). Since the nature of
M alters small-scale structure formation (e.g. Bullock & Boylan-
olchin 2017 , for a re vie w), there would certainly be differences

n the inner multistream structures of DM haloes, which can be
 aluable observ ational probes to clarify the nature of DM. Thus,
 further investigation based on the present method would be very
mportant, and this is left to our future work. 
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he data on which this study is based will be provided on request as
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PPENDI X  A :  C O N V E R G E N C E  TESTS  I :  T H E  

UMBER  O F  PA RTI CLES  DETERMI NI NG  T H E  

E N T R E S  A N D  T H E  N U M B E R  O F  SNAPSHOTS  

n this appendix, we demonstrate that the number of particles used
o determine the centres of halo progenitors, x h and v h , as well as
he number of snapshots employed, do not affect our results. As
ntroduced in Section 3.1 , we define x h and v h as the average position
nd velocity of 1000 particles in the progenitor as a fiducial choice.
ere, the number of particles used to determine x h and v h (hereafter 
enoted as N det ) can be arbitrary. Therefore, we investigate the effects
f varying N det by employing values of 500 and 2000 in addition to
he fiducial value of 1000. 

In Fig. A1 , we present representative trajectories of x h for each N det 

nd, to the best of our visual assessment, observe that the trajectories
or different N det closely match each other. Ho we ver, its impact on the
umber of apocentre passages is not trivial, especially for particles 
ith large values of p given their small orbital size. Also, the different

hoice of N det can indirectly affect the value of p through its effects
n t s , the starting time of the counting. Remind that we define t s as
he point when the number of particles in the progenitors decreases
elow N det ; hence, with lower values of N det , t s decreases (i.e. we
an track the progenitor to higher redshifts), and we start counting p
arlier. The earlier initiation of p counting may potentially result in
igher p values for individual particles. 
The two massive haloes shown in the upper left and upper middle

anels in Fig. A1 have substantial progenitors, and we observe that
he starting position of the counting, x h at t = t s (indicated by star
ymbols), remains nearly the same for every N det . In contrast, some
f the less massive haloes, particularly the one in the lower right
anel, exhibit substantial variations in x h ( t s ). This indicates that we
an track the progenitors to different times depending on the value
f N det . 
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Figure A1. The representative trajectories of x h from t = t s to z = 0. The colours and the line types correspond to each N det shown in the legends. The stars 
denote x h at t = t s , and the crosses denote x h at z = 0. In the case of t s equals the cosmic time at z = 5, we select N det particles according to the method using 
the phase-space metric equation ( 5 ) introduced in Section 3.1 . 

Figure A2. Distribution of particles for each p of the haloes shown in Fig. A1 . The circle, triangle, and cross markers correspond to each N det fiducial number 
1000. shown in the legends, and the colours correspond to Fig. A1 . The stars denotes the case we track trajectories using every other one of 1001 snapshots. 
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We then plot the distribution of p for particles around the same six
aloes in Fig. A2 . Despite the differences discussed in Fig. A1 , the
 v erall trend remains consistent. For low values of p , roughly below
0, different symbols show good agreement within ∼ 10 per cent . 
o we ver, the dependence on N det becomes more noticeable for larger
alues of p . Therefore, for particles with p � 50, both the value of
 s and the precise trajectories of progenitors do not affect much the
ounts of p . In the case of the halo shown in the upper left panel, we
an al w ays track the progenitor up to z = 5 for all the three values
f N det . Therefore, the dependence of particle counts on N det for p �
0 solely arises from the slighly different trajectories of the centre. 
ote that for less massive haloes, even for p � 50, the counts exhibit
uctuations due to Poisson noise, particularly when the number of 
articles for each p is less than ∼30. 
Finally, we investigate the impact of the number of snapshots 

sed in the analysis. If our snapshots lack sufficient time resolution 
or tracking particles, some particles may complete multiple orbits 
etween the snapshots, potentially leading to miscounts of their p 
alues. Therefore, it is crucial to ensure that our set of 1001 snapshots
qually sampled in redshift retains adequate time resolution to 
itigate this effect. To assess this, we track the trajectories using

very other one of the 1001 snapshots, and the results are depicted
s green star symbols in Fig. A2 . Note that N det here is set to 1000,
hich serves as our fiducial number. We observe that, for most of

he haloes, the number of particles with large p values is smaller than
n the cases where we employ 1001 snapshots (as indicated by the
igure B1. Mass distribution of the DM particles having the same number of apoce
dditional simulations, N125 (open triangles) and N250 (crosses). While the former
etter mass resolution, eight times higher than that of the LR simulation. The errorb
 bin. Note that we basically follow the methods to identify the halo centres and traj
nd 3.2 , but the number of particles used to determine the halo centre in N250 is ch

27/3
riangles). Ho we ver, we can confirm that the distribution for p � 50
ven when we use half of the snapshots. 

Based on the results presented in this appendix, we choose to
rimarily focus on particles with p ≤ 40 in the main text to ensure a
onserv ati ve approach. 

PPENDI X  B:  C O N V E R G E N C E  TESTS  I I :  MASS  

ESOLUTI ON  

n this appendix, we further examine a convergence study and 
heck if our simulation set-up has a sufficient mass resolution to
aithfully track particle trajectories without miscounting the number 
f apocentre passages. 
For this purpose, in addition to the LR and the HR simulations

n Table 1 , we ran two other simulations that have the same initial
ondition, but with different mass resolutions, halving the box size 
f simulations (i.e. setting the side length to 10 . 25 h 

−1 Mpc). One
s N125, which has the DM particles of N = 125 3 , giving the same

ass resolution as in the LR simulation. Another is N250, having
he DM particles of 250 3 . With the same box as in N125, the latter
rovides eight times higher resolution than N125 and LR. 
Repeating the same analysis as described in Section 3 , we pick up

ix representative haloes and compare their multistream properties 
etween N250 and N125. Fig. B1 shows the particle mass distribution
s a function of p for each halo. We see that the results almost coincide
ith each other at p ≤ 40. The exception may be the middle-lower
MNRAS 527, 7523–7546 (2024) 

ntre passages p , plotted against p . Here, we compare the results between two 
 has the same mass resolution as in LR simulation, the latter simulation has a 
ars indicate the Poisson noise estimated from the number of particles in each 
ectories as well as to count the number of apocentre passages in Sections 3.1 
anged from 1000 to 8000 in order to be consistent with its mass resolution. 
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M

Figure B2. Density profiles of DM particles classified by the number of apocentre passages, p . Similar to Fig. B1 , we compare the results from two additional 
simulation data between N125 (solid) and N250 (dashed) for six representative haloes. The upper panels show the profiles for p = 0, 1, 5, 10, 20, 30, and 40, 
but excluding bins containing below 10 particles for N125. The vertical lines indicate three times the softening length of N125. Lower panels plot the fractional 
differences of the results between N125 and N250. 

p  

p  

i  

l
 

v  

b  

m  

i  

m  

c  

m  

m  

i  

L  

c  

l

A

I  

d  

a  

c  

m  

b
 

h  

n  

l  

c  

m  

c  

o  

n  

n  

s  

s  

i  

s  

o  

 

o  

p  

t  

a

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/527/3/7523/7452881 by Kyoto D
aigaku Johogakukenkyuka Tosho user on 21 M

arch 2024
anel, where the rightmost bin of N125 shows a large scatter even at
 ≤ 40 and deviates significantly from the result of N250. Ho we ver,
t turns out that this bin contains only four particles, and hence the
arge discrepancy is attributed to the Poisson noise. 

Next look at Fig. B2 , in which the stream profiles for various
alues of p are plotted for six representative haloes, with p indicated
y colour scales. In each panel, fractional differences between
easured profiles from N125 and N250 are estimated and plotted

n the lower subpanel. The result shows no systematic trend, and
ost of the profiles converge well within 50 per cent. We have also

hecked other haloes in N125 and confirmed that for haloes of the
ass larger than 3 . 2 × 10 11 h 

−1 M vir , corresponding to the lowest
ass of the mass range S, the behaviours remain the same as shown

n Fig. B2 . We therefore conclude that the mass resolution in our
R simulation is sufficient to track particle trajectories and give a
onverged result for counting the number of apocentre passages at
east in a statistical sense. 

PPENDIX  C :  T H E  EXCEPTIONA L  H A L O  I  

n Fig. 3 , we observe an exceptional halo (represented by the black
ot near the top left corner) that remains in the catalogue even after
pplying the criteria defined by equations ( 1 ) and ( 2 ). Ho we ver, these
NRAS 527, 7523–7546 (2024) 
riteria are designated to filter out subhaloes and haloes undergoing
ajor mergers. This particular halo exhibits a significant discrepancy

etween the two estimates of its centre, x h , ss and x h , ROCK . 
To delve deeper into this halo, we investigate the corresponding

alo in the HR run. Here, we confirm the presence of another
earby halo identified by ROCKSTAR (the green square symbol in the
ower panel of Fig. C1 ), which has no counterpart in the ROCKSTAR

atalogue from the LR run. When we apply the shrinking-sphere
ethod to determine the density peak in this region in the HR run, the

entre converges to this nearby halo, despite its virial mass being one
rder of magnitude smaller than the halo of interest. This outcome is
ot surprising, as the peak density, determined by the 100 particles
ear the centre of the less massive nearby halo in the last step of the
hrinking-sphere method, is comparable to that around the more mas-
ive halo. Therefore, we consider that, even though the nearby halo
s not identified by the ROCKSTAR finder in the LR run, the shrinking-
phere method selects this nearby halo instead of the more massive
ne, leading to a significant discrepancy in the two estimated centres.
In this sense, although this halo is not excluded by equations ( 1 )

r ( 2 ), we consider it likely to undergo a major merger. To address
otential technical issues due to the uncertainty of the estimation of
he centre, we apply the third criterion, i.e. equation ( 4 ), to identify
nd exclude such cases from our catalogue. 
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Figure C1. Projected snapshots of the exceptional halo in found near the 
top left corner of Fig. 3 . The upper (lower) panel displays the halo in the 
LR (HR) run. In both panels, the star symbol denotes the density peak where 
the shrinking-sphere method converges. The simulation particles depicted 
by lighter dots correspond to the 100 particles inside the sphere in the final 
iteration of the shrinking-sphere method. The filled circle and filled square 
denote the haloes identified by the ROCKSTAR finder. The mass ( M vir ) and 
radius ( R vir ) of these haloes are shown in the figure legend in units of [ h −1 M �] 
and [ h −1 Mpc], respectively. Note that the lighter dots are completely hidden 
in the lower panel behind the filled square. In the LR run, ROCKSTAR fails to 
identify any halo corresponding to the density peak marked by the filled star, 
whereas it is successfully identified in the HR run. The o v erdensities relativ e 
to the background density ρ̄m 

for the nearest 100 particles from the filled 
circles and the filled stars are as follows: LR – 1.0 × 10 5 and 1.2 × 10 5 , and 
HR – 2.2 × 10 6 and 1.6 × 10 6 , respectively . Notablly , all the three haloes in 
the two runs identified by ROCKSTAR satisfy the criteria defined by equations 
( 1 ) and ( 2 ). Ho we ver, it is e vident that the distance | x h , ss − x h , ROCK | still 
reaches up to 8 per cent of R vir in HR. 

A

I
r
T
t

Figure D1. Projected snapshots of the simulation particles around an 
exceptional halo in Fig. 5 at z = 0 and 0.005, centred at x h , ROCK at z = 

0. The particles referred to as members of the halo at each redshift (i.e. 
those within the sphere of virial o v erdensity) are coloured in red. The blue 
dots in the lower panel are the members at z = 0 but non-members at z = 

0.005. The orange stars denote the centre of halo, x h , ss , determined by the 
shrinking-sphere method using red particles at each redshift. This halo has 
R vir, ROCK = 0 . 206 h −1 Mpc at z = 0, while the position of the star symbol 
mo v es by 0.239[ h −1 Mpc] between the two snapshots. In the top panel, λ
denotes the spin parameter, X off stands for the offset parameter, d indicates the 
distance | x h , ss − x h , ROCK | /R vir ; these parameters satisfy the criteria given by 
equations ( 1 ), ( 2 ), and ( 4 ). In both panels, M vir denotes the mass corresponding 
to the red coloured particles, not M vir ,R OCK . At z = 0.005, the secondary 
peak observed at z = 0 is regarded as the primary peak by the shrinking- 
sphere method, leading to a significant displacement of x h , ss between the 
two snapshots. The secondary peak is also found by ROCKSTAR , with a virial 
mass of 1.05 × 10 12 [ h −1 M �], but it has λ = 0.0879 and is excluded by the 
criterion in equation ( 1 ). 
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PPEN D IX  D :  T H E  EXCEPTIONA L  H A L O  I I  

n the main text, we have identified another problematic halo that 
emains in the catalogue even after applying the first three conditions. 
his halo exhibits an undesired property when it comes to accurately 

racking its trajectory to define the apocentre passages (the halo 
epicted by the black dot near the top left corner of Fig. 5 ). In this
ppendix, we conduct a detailed investigation of this particular halo. 

We present particle snapshots of this exceptional halo at two 
edshifts, z = 0 and z = 0.005, in Fig. D1 . These snapshots reveal the
erger of two prominent structures. At z = 0, these structures possess

omparable masses, with the primary one plotted near the origin 
MNRAS 527, 7523–7546 (2024) 
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aving a mass of 1 . 79 × 10 h M � and the secondary one located
elow with 1 . 05 × 10 12 h 

−1 M �. The primary structure is retained
fter the criterion given by equation ( 1 ), but the secondary structure
oes not. The bottom panel of Fig. D1 illustrates the inconsistent
racking of the centre of the secondary structure (indicated by the
tar symbol) at z = 0.005 through the shrinking-sphere method. In
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his case, a major merger event hinders us from consistently tracking
he centre o v er time. Therefore, we introduce the last criteria, i.e.
quation ( 6 ), to identify and exclude such haloes from our catalogue.
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