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ABSTRACT: We define a new complex-valued measure of information called the timelike
entanglement entropy (EE) which in the boundary theory can be viewed as a Wick rota-
tion that changes a spacelike boundary subregion to a timelike one. An explicit definition
of the timelike EE in 2d field theories is provided followed by numerical computations
which agree with the analytic continuation of the replica method for CFTs. We argue that
timelike EE should be correctly interpreted as another measure previously considered, the
pseudo entropy, which is the von Neumann entropy of a reduced transition matrix. Our
results strongly imply that the imaginary part of the pseudo entropy describes an emer-
gent time which generalizes the notion of an emergent space from quantum entanglement.
For holographic systems we define the timelike EE as the total complex valued area of a
particular stationary combination of both space and timelike extremal surfaces which are
homologous to the boundary region. For the examples considered we find explicit matching
of our optimization procedure and the careful implementation of the Wick rotation in the
boundary CFT. We also make progress on higher dimensional generalizations and relations
to holographic pseudo entropy in de Sitter space.
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1 Introduction

The AdS/CFT correspondence [1] tells us that a space coordinate in an anti-de Sitter (AdS)
spacetime can emerge from a conformal field theory (CFT). The mechanism of this emer-
gent space can be described quantitatively by considering the holographic entanglement
entropy (HEE) [2-4]. Specifically the entanglement entropy (EE) in a CFT is computed
from the area of an extremal surface in AdS. The entanglement entropy S4 for a subsystem
A is defined by

Sa=—Tralpalogpal. (1.1)

pa is the reduced density matrix obtained by tracing out the complement B of A:

pa = Trepiot, (1.2)

where piot is the density matrix for the total system and the total Hilbert space is assumed
to factorize as Hiot = Ha ® Hp. The holographic entanglement entropy computes Sy from
the area of an extremeal surface by

_ Area(I'4)

S
A 4G N

. (1.3)
This relation leads to the remarkable idea that the space coordinate in an AdS emerges
from quantum entanglement [5, 6]. This raises a natural question: can the time coordinate
also emerge from some quantum information theoretic property? To make progress in this
problem, we first need to find a quantity which is directly related to the emergence of the
time coordinate. Motivated by this, the main purpose of this paper is to introduce a new
quantity called timelike entanglement entropy (timelike EE) and to study its properties.!
The timelike EE SgT) is defined by analytically continuing the standard EE to the case
where the subsystem A is a timelike region. Indeed, in the AdS/CFT correspondence,
the imaginary part of this quantity is related to the area of a timelike extremal surface,
providing a generalization of (1.3), as depicted in left panel of figure 1. A part of these
new results was briefly reported in the letter article [16], focusing on a few simple setups of
AdS3/CFTy. Refer to [17-19] for independent works on timelike EE and see also [20-23].
In this full paper, we will present more general results of timelike EE in various setups
of AdS/CFT.

Moreover, in the context of dS/CFT [24], we can also see that the holographic entan-
glement entropy has contributions from timelike extremal surfaces in addition to a spacelike
surface as depicted in the right panel of figure 1. Holography in de Sitter space (dS), so
called the dS/CFT correspondence [24] argues that gravity on a de Sitter space is dual to
a Euclidean CFT on its future infinity. In this holography, as opposed to AdS/CFT, the
time coordinate emerges from the Euclidean CFT. Such a Euclidean CFT is expected to
be exotic and non-unitary. A limited number of examples of CFTs dual to de Sitter spaces
have been found in four dimensional higher spin gravity [25], in three dimensional Einstein

1Refer to [7—15], for other ideas on how to study quantum entanglement in timelike setups.
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Figure 1. Holographic Timelike Entanglement Entropy in AdSs;/CFTs (left) and Holographic
Pseudo entropy in dS3/CFTy (right). The green curves and red curves describe the spacelike and
timelike geodesic, whose lengths give the real and imaginary part of the entropy. Each of blue
intervals is the subsystem A.

gravity [26, 27] and in two dimensions [28, 29]. Since there is no spacelike geodesic between
two distinct points on the dS boundary at future infinity, the holographic entropy becomes
complex-valued [27, 30-34].

We point out that both the timelike entanglement entropy and the complex-valued
holographic entropy in dS/CFT, can properly be interpreted as pseudo entropy, introduced
in [35]. Pseudo entropy is defined as follows. Decomposing the total Hilbert space into
those of subsystems A and B, we introduce the reduced transition matrix for two pure
states [¢) and |p), by

|¢><80|]
74 = Trp { . 1.4
=) -
Finally, pseudo entropy SI(4P) is defined by

SI(LXP) = —Tr[r4 logT4]. (1.5)

Remarkably, in Euclidean time-dependent asymptotically AdS spaces, the pseudo entropy
is related to the minimal surface area in the same formula as (1.3). See [20-22, 36-52] for
further related developments. Indeed, in both the timelike EE and the EE in dS/CFT,
the reduced density matrices are not Hermitian and thus are not standard von Neumann
entropies, but rather pseudo entropies instead.

This paper is organized as follows. In section 2, we define the timelike entanglement
entropy and analyize it in quantum field theories. In section 3, we will show how to calcu-
late the timelike entanglement entropy in AdS/CFT and evaluate it in various examples. In
section 4, we study the holographic calculation of timelike entanglement entropy in higher
dimensional AdS/CFT. In section 5, we discuss holographic pseudo entropy in dS/CFT. Fi-
nally in section 6, we summarize our conclusions and discuss future problems. Appendix A
contains a derivation of the thermofield mutual information for 2d holographic CFTs.
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Figure 2. Definition of standard entanglement entropy (left) and timelike entanglement entropy
(right) in two dimensional field theories.

2 Timelike entanglement entropy in QFT

In this section we explain the definition of timelike entanglement entropy and present
calculations of this quantity in conformal field theories.

2.1 Definition via the replica method

Consider a two dimensional quantum field theory in a flat spacetime whose time and space
coordinate are denoted by (t,z). We first define the timelike entanglement entropy in
this two dimensional case and will later generalize to higher dimensions. In the standard
definition of entanglement entropy S4 we choose the subsystem A to be a spacelike region
in order to specify the Hilbert space H4 as in the left panel of figure 2. The timelike
entanglement entropy is defined by analytically continuing the entanglement entropy to a
timelike subsystem A as in the right panel of figure 2, which we write as SI(LXT) .

To see this procedure explicitly, consider the replica method computation of entangle-
ment entropy [53]. We assume subsystem A is given by a spacelike interval A = Ipg, where

the two end points are situated at P = (tp,zp) and Q = (tg,zq). The Renyi entanglement

entropy Sﬁln) = ﬁ log Tr(pa)™ is computed from the two point function of twist operators
on, and o,
2A,
1 1 €
Si) = = og{on(P)on(Q) = 1 los - 20
L-n L-n V(@e —20) - (tp — tg)?
In this equation, A, = {5 (n — % , where c is the central charge of the two dimensional

CF'T, is the conformal dimension of the twist operator and € is the UV cutoff. By taking
the limit n — 1 of the von Neumann entropy, the entanglement entropy is evaluated to be

B V(@p —2q)? = (tp — to)?
3 €

(2.2)

(T)

Now the timelike entanglement entropy S AT is defined by continuing the expres-

sion (2.2) to the case where the interval A is timelike i.e. (xp —2g)? — (tp —tg)? < 0. This



is evaluated as follows:

tp—t 2—1']3—1' 2
i = 5 log Ve ~ o 6( ? + 2. (2.3)

In particular, when the subsystem A is purely timelike i.e. xg —xp = 0 and tg — tp = Ty,
we find

Ty cm
S = Tlog =2+ T 2.4
3 log =+ — (2.4)
It is straightforward to generalize this to SI(4T) in a finite size CFT and S;T) in a finite
temperature CFT. For a CFT on a circle with a circumference R (at zero temperature),
the entanglement entropy for a boosted subsystem A is given by

2

Sa=Clog [ Rﬁ sin (2(A¢ + At)) sin (;<A¢ - At))] | (2.5)

In a similar fashion, the timelike entanglement entropy is defined by continuing A to be
timelike A¢ — At < 0, then

2

S;T) 8 log [WRG sin (;(At + A¢)) sin (;(At - Aqb)) % (2.6)
In particular, when A is purely timelike A¢ = 0, At = Ty, we have
() _ R ”TO} ime
Sy 3log Lre sin 7 + 5 (2.7)

On the other hand, for a CFT at temperature 1/4 (on an infinite line), the entanglement
entropy is given by

c B . T . s
Sa= 6 log [W262 sinh <B(Aac + At)> sinh (

F(a- At))] . (2.8)

Therefore the timelike entanglement entropy is

) .
s = glog [7562 sinh ( ﬁ(At + Aw)) sinh <2(At - Aw))] + % (2.9)
and particularly
T 8 Ty ime
Sf4 ) = 3 log [ sinh 5 ] + o (2.10)

when A is purely timelike. Note that these basically take the form of the standard entan-
glement entropy plus ﬂ.

We can also deﬁne timelike EE in higher dimensions in a similar way: we start from
the EE for a spacelike subsystem and boosting the subsystem with an analytic continuation

until it becomes timelike.



2.2 Another equivalent definition via Wick rotation of coordinates

We can define the timelike entanglement entropy in another way, which is useful for nu-
merical calculations. For simplicity, consider a free scalar field theory with mass m on a
cylinder, where the space and time coordinate are again denoted by = and t. The spacelike
direction is compactified as x ~  + R. The action of the scalar field reads

S = %/dtday [(8t¢)2 — (0.0)* — m2¢2] . (2.11)

The total partition function on the Lorentzian spacetime looks like

Zy = /Dqseis. (2.12)

However, let us regard ¢ as the “space” direction and = as the Euclidean time, such that
iz(= —T) is the real time, by rotating the spacetime by ninety degree, as depicted in
figure 3. The “Hamiltonian” H reads

H= —% /dt (72 + (0)* — m??| (2.13)
where
T =—0,0, (2.14)
is the canonical momentum such that the commutation relation is
[6(t), m(t')] = id(t — t'). (2.15)

To see this, by introducing the real time T related to the Euclidean time x via x = iT', we
can rewrite the action (2.11) as follows

S = ;/det [(8T¢)2 + (0r)? — m2¢>2] . (2.16)

Then the momentum conjugate to ¢, defined by © = %, is found to be (2.14). The

Hamiltonian is also canonically defined as H = %(ﬁﬂb) — L, where L = £ [ dt[(0r¢)? +
(04¢)? — m?¢?] is the Lagrangian of S. This leads to (2.16).

In this formulation, regarding ¢t as a spatial coordinate and z as the Euclidean time
with a periodicity R, the partition function

Zy = Tx[e™ ], (2.17)
where H is the timelike Hamiltonian (2.13), can be rewritten as
Zy=Tr [eiRﬁ’ } , (2.18)

using the rescaled Hamiltonian H = iH, which takes the conventional form with a minus
sign for the mass term:

7 % / dt [ + (910" — m??] (2.19)
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Figure 3. Timelike entanglement entropy via a Wick rotation of coordinates.

By tracing out the region B, the reduced density matrix p4 is now given by
pa = TrplefH]. (2.20)

Therefore, we can obtain the timelike EE from the ordinary EE of a spacelike subsystem
at finite temperature 1/8g by the transformation:

Bs — —iR, m — —im. (2.21)

In the massless limit m = 0, the transformation above acts purely on g and thus we
expect this is universal for any two dimensional CFTs.

The entanglement entropy for the thermal state at temperature 1/8g is known to be
given by [53]:

Bs
Sa =3 log [ sinh ﬁs] (2.22)

where X is the length of the spacelike interval A. Note that the energy cutoff € is defined
for H, so it is related as € = —ie to € defined for the Hamiltonian H we are interested in.
Thus by applying (2.21) and setting X = Tp, we obtain the timelike EE:

imc

R
IOg |:7'['€ sin R:| + ? (223)

sy =3
This indeed reproduces our previous result for a CFT on a circle from the replica
method (2.7). By taking the limit R — oo we can also derive the decompactified result (2.4).

We can also consider a compactification in ¢ direction to compute the timelike EE at a
finite temperature, where we do not compactify = coordinate. For the temperature 1/ we
compactify t as t ~ t — i so that the periodicity of the Euclidean time it is 5. Remember
that the ordinary EE for a spacelike interval A on a circle with the circumference Rg reads

Rs . /X
Sa 1 2.24
-5t e ()] 224
To obtain the timelike EE at finite temperature, we identify Rg = —i and é = —ie as we

explained. This perfectly reproduce our previous result (2.10) based on the replica method.



It is important to note that the reduced density matrix (2.20) for our timelike EE is
not hermitian as opposed to the case of standard EE defined for a spacelike subsystem
A. This shows that the timelike entanglement entropy can properly be regarded as a
special example of pseudo entropy [35]. More explicitly, we can see this by a purification
procedure as follows. Consider a thermofield double-like description by doubling the total
Hilbert space and by introducing the following two states

1 7 7
¥) = s 2R
1 ) )
W) = 3 e MR 2 ) |n),, (2.25)

VZ(9)

where § is an infinitesimally small regularization parameter; F,, and |n) are the eigenvalues
and eigenstates of H. They satisfy

Tra|U) (T*| = H(BHDH (2.26)

By tracing out B further, this is identical to the reduced density matrix p4 in (2.20). In this
way, we can rewrite the timelike EE in terms of a transition matrix which shows that the
timelike EE is an example of pseudo entropy. It is curious to note that such a thermofield
double state at an imaginary temperature was introduced in [54] to find a holographic
interpretation of de Sitter space in terms of the CF'T on the future infinity and the other
one on the past one.

As we have seen in this subsection, we have two prescriptions to calculate the timelike
EE: the Wick rotations of (i) the interval A and of (ii) the coordinates (¢,z). In the
remainder of this section, we will investigate the timelike entanglement entropy in the
various models by adopting a suitable prescription. It is also useful to note that the higher
dimensional generalization is straightforward just by adding extra coordinates 3’ to the
arguments above.

2.3 Timelike entanglement entropy of Dirac fermion on a torus

As our next example, we would like to analyze a finite temperature state of a two dimen-
sional CFT on a circle. In this case we cannot use the conformal mapping method to
obtain a universal result for the entanglement entropy. Thus, we focus on the ¢ = 1 Dirac
fermion CFT, whose entanglement entropy was first computed in [55]. We consider this
CFT on a torus and choose the subsystem A to be an interval A = PQ, where P = (0,0)
and @ = (z, z). The periodicity of the Euclidean time Imz and the spatial coordinate Rez
are set to be fg and Rg = 1, respectively. We assume the NS-sector spin structure. The
two point function of twist operator reads

] o ame? \* s (Relr) 65 (Ral)
(ok(2,2)0_1(0,0)) = (91(47)91(5@) : B (7)? ;

where 03(v|7),01(v|T) and n(7) are standard theta and eta functions. We take z = L+ T
and z = L —T. In the spacelike limit 7' =0, i.e. (2, 2) = (L, L), the entanglement entropy

(2.27)



in the high temperature expansion reads [55]

2nL _opRg I —2rL _orRg ™
(1—e? Bs\(1—e P B
1= Lo [ (22)] 4 zlog[ R S>]

TE 1— 672WRS@)2

00 Ll oth (2 ) — 1

(—1) T coth ()

+2Z l ) TRgl )
=1

where Rg = 1 is the periodicity of the Re z direction. In the low temperature expansion,

2.28
sinh ( )

this is equivalently written as follows [55]

1 6277”46*27755”1)(1 o 6727riL€727r55m>

1
Sq = 3 log Lre sin (7 L) } Z log l (1— e—27rﬁsm)2 ]

> (—1)! wLIBg cot (ﬂ'Ll) —
2 . . 2.2
+ Z l sinh wlf8g (2.29)

In the timelike limit, i.e. (z,2) = (T, —T'), we find

M _Le[5 <7TT)] Ly
Sy —310g Lesmh E +6z

PN VO [l [t | IS o I ()1
2 0g o m ) : )
3zt (1—e™? ﬁ)Q — smh%l
(2.30)
where we set Sg = .
Thus the only difference from the standard EE is again just the imaginary part %7 in

this torus calculation. To see this note that 6;(z|7) and 03(z|7) are odd and even functlon
w.r.t. z, respectively. Note also that this timelike EE is oscillating with the periodicity 27
under the T' evolution.

The other definition of timelike EE, which Wick rotates the whole spacetime, is argued
to give the identical result (2.30). We can confirm this as follows. As we learned in
section 2.2, the timelike EE is related to the standard spacelike EE via the double Wick
rotation:

SY(RB.T) = Sa(Rs, Bs, L) + =i, (2.31)
with the identification
(R57IBS’L) = (_Zﬁ7_ZR’ T)a (232)

where § and R(= 1) are the inverse temperature and the periodicity in z for the timelike EE,
respectively. By applying this relation (2.31) to (2.28) we obtain the following expression
of timelike EE:

2miT ,—27Sm _ ,—2miT ,—27wBm
(r) _ 1 1 —e e )(1—e e )
Sy =3 log LF sin (7T) } Z log [ (1 — e—2mBm)2
X (=1)! wTIBcot (7rTl) - e
2 . —1. 2.
* l; l sinh 73 -+ 6" (2.33)



As the low temperature expansion of (2.28) is given by (2.29), we can show that the result
above (2.33) indeed agrees with the timelike EE from the Wick rotation of the interval
itself (2.30).

2.4 Numerical method

Free scalar theory. In this part we adapt the correlator method [56, 57] to the Hamil-
tonian we have introduced in equation (2.13) in order to compute timelike EE numerically.
To do so we need to be more precise about how we have defined equation (2.13). In the
ordinary free scalar theory (the vertical cylinder in figure 3), the mode expansion of the
field is given by

dk 1

o(x,t) = /Wm (ak et 4 aT_k ei“kt) eikx (2.34)

where w? = |k|2> + m?. In our conventions we denote the original spatial coordinate z to
play the role of Euclidean time and the rest (d — 1) spatial coordinates with y. Using
this expansion one can find the correlation functions which lead to the expected results
for timelike entanglement, but we will not proceed in this way to use the field expansion
corresponding to the vertical cylinder. We rather considered the viewpoint of the right
horizontal cylinder in figure 3, where T' = —ix plays the role of Lorentzian time. Within
this point of view, we may define the scalar theory defined via (2.16) or equivalently in the
Hamiltonian formalism. The Hamiltonian in (d + 1) dimensions is given by

"= —% / dtdy [7* + (96)? — (Vy0) — m*¢?] . (2.35)

Using the Hamiltonian equations of motion

o0H o0H
= —_— — = 2'
oro 5 orm 7 (2.36)
we find that 7 = —0,¢ and
(0f =02 —Vi+m*)p=0 (2.37)

Now considering a decomposed notation for the momenta as k = (k,k,) where k
corresponds to the momenta of (t,y) and we consider

d" 1k, dk —ikt+iky-
ot z,y) —/W¢(l€a$7ky)e vy (2.38)
which leads to
(82 + O} ) ok, 2,k,) = 0, (2.39)

where Q) = \/ k? — |k,|? — m2. Following the standard procedure in Klein-Gordon theory
based on the similarity between this equation and harmonic oscillator equation of motion,

~10 -



we consider the following Fourier expansions

Ak, dk 1 PN kv
— —1 iky -y
¢(t7 y) - / (27T)d/2 \/m (a’k + a/fk) € Y b

[ dT ey dk | b\ —ikttik,
) ot St

With these expressions one can check that assuming the standard commutation relations

(2.40)

between the creation and annihilation operators, the canonical commutation relations are
preserved and the Hamiltonian is diagonalized up to a constant as

H=—i / A%k, dk Oy a) ax (2.41)

where the structure of the dispersion relation is as expected from the form of equa-
tion (2.35), namely the sign of the y-direction derivatives and the mass term are opposite
to the Hamiltonian in standard Lorentzian theory.

Now we are equipped with what we need to calculate timelike entanglement entropy.
We consider the d = 1 case in this paper. In order to find the correct prescription of
the correlator method to compute timelike EE, it is enough to focus on a single mode
contribution to the correlations functions. Tracing over the x direction is the nontrivial
part where we have to introduce a cut-off to sum the geometric series of the form

ZeiRQk nf<n> N Z ei(R+i5) Qp nf(n) _ Ze—(R-i-ié) Qix nf<n>

In the case that the t-direction is an infinite line, namely 5 — oo, we consider a straight
line along t as the entangling region. All we need to find is the correlation matrix that
which its non-trivial elements are given by?

O = Tr {ei(R+i6)ﬁ¢(t)¢(t/):| _ / dk 1 coth <(R + ;(5) sz) eik(t—t’) ’

21 20
i , (2.43)
(P s 7] dk ; R+1i6)Q; et/
Iy = Tr [e’(RHé)HW(t)W(t')} = [ =22 coth <(H)k> ekt=t)
2m 2i 2

For CFT case in the continuum, one can simply verify that ;5 = iw,. While this is not
true on the lattice, we introduce the aforementioned expressions for the correlators as the
correct prescription to calculate timelike EE. To numerically work out the timelike EE we
consider the discrete version on this infinite lattice, i.e. we integrate over —m < k < 7

2Tt is worth reminding the reader the correlators relevant to calculate standard EE in finite temperature
case

_ dk 1 BswWr\ ik(z—a
D, =Tr [e BSHQS(x)qb(m')] = | 5rour coth (T) etkle=)
(2.42)
Nl _ —BgH N dk wy, BS Wk ik(z—a)
ez =T [e m(x)m(z )] = 3.5 coth 5 e .

- 11 -
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Figure 4. Timelike entanglement for free scalar theory for a connected region. The t-direction
is infinite and the x-direction is compactified as x ~ x + R and we also put the regulator 6. The
left panel where the data of different color lie on the top of each other corresponds to fixed R and
different 0. As expected modulo some numerical defects for large sugberions the timelike EE does
not depend on the ratio of R/d. The right panel is showing results for different R with fixed R/J.
The structure of the fit function perfectly matches with our analytic expectation. As R is increasing
larger subregions are considered and the difference of data sets is encoded in different UV cut-offs
which is reflected in the constant term in our fit functions.

where ¢ takes integer values and the dispersion relation is €2Q2 = 4sin?(%) — (me€)2. The

timelike EE is related to the spectrum of the operator v/® - II shown by {u} via

s = Z [(uz + ;) log <Hi + ;) - (m - ;) log <Hi - ;)] (2.44)

7

In figure 4 we show the numerical results corresponding to the case where § — oco. Our
results are capturing the expected periodic behavior for timelike EE. It is worth noting
that although the real part of the timelike EE is similar to the standard EE on a com-
pact space (2.7), the structure of the periodicity of the standard EE and timelike EE on
the compactified space direction are of completely different origin. In standard EE the
periodicity of entropy is inherited from the periodicity of the fields which is reflected in
the corresponding correlators as on a compact space we have to consider the replacement
eth@=2") 5 cog MR%) in (2.42). The periodicity in the case of timelike EE rather origi-
nates in the regulated summation leading to the hyperbolic cotangent in coth the integrands
of (2.43).

The other case which we are interested in is the finite temperature case, namely when
we consider Euclidean time to be compactified as ¢t ~ ¢t — ¢8. In this case one should be
careful about the generalization of the (2.43) to the finite temperature case due to imaginary
time periodicity. To do so we consider the standard method in thermal field theory, i.e.
rather than working with imaginary time in real space, we sum over all mirror images in
the Fourier space (considering the momentum £ to be held as a continuous variable)

0 T dk i (R+140) U\ in(t—t/—in
Dy = n;w /_ R coth ( 5 ) etk A (2.45)

and similarly for II;. When n and & have the same sign, this integral diverges and we need
to regularize it. Here we regularize these correlators by simply excluding the aforementioned
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To
Figure 5. Timelike EE for free scalar theory for a connected region. We consider ¢ to be compact-
ified as t ~ t —if and R = co. The data points correspond to different values for 5 and the solid
curves are fitting functions up to an irrelevant constant of the form alog (% sinh ’TTT“) which lead
to a = 0.324, a = 0.367, and a = 0.376 decreasing the temperature.

cases that cause the divergence, namely those cases where n and k have the same sign.

Doing so one arrives at

g [T dk i (R +i0) Qi 1 o
o, =* - h L ik(t=t") 2.46
w= | 9790, ( 2 ) 1— e IhIB © ’ (246)

with a similar expression for conjugate momenta correlations. In figure 5 we have presented
the result of using this regularization for the case that R > 5. The real part perfectly agrees
with our expectation from analytical results.? One can see the expected behavior of (2.10)
with reasonable values for the prefactor reported in the caption. In the R > 3 regime
one can even do better after approximating the coth part in the integrand by unity and
analytically performing the integrals which again need a regularization prescription. We
avoid to present these results since they are not more illuminating than what is presented
in figure 5.

As figure 4 and figure 5 are showing the real part of timelike EE, a reasonable question
is whether our numerical method can also confirm the constant imaginary part as well.
Numerically finding the imaginary part is much more challenging than the real part. This
is technically due to the difference of the origin of the imaginary part and the real part. The
real part, similar to the case of standard EE, gets its dominant contribution from a small
number of eigenvalues in (2.44). In other words, the corresponding spectrum contains a
huge gap where a very few large eigenvalues contribute dominantly and the rest contribute
very slightly. The case is very different for the imaginary part which almost all eigenvalues
contribute to this part democratically. So relatively a very high-precision is needed to
find the small eigenvalues as precise as possible. Since the integrand of the correlators
are rapidly oscillating, this means that we need to increase the cut-off § to improve the
convergence. But physically we need to take §/R — 0, as we confirmed this in our results
for the real part. So there is a trade-off between getting reasonable physical results and
considering larger values of § to improve the convergence and finding a reliable value for

n

30ther Dirichlet regularization schemes, such as acting with e~ : damping function leads to similar

results with lower numerical precision.
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Figure 6. Here we show the challenge to find the numerical value of the imaginary part of timelike
EE. Focusing on the region that the numerical results are stable, namely on smaller subregions in
this figure, the data presented in the right panel is strongly suggesting that the imaginary part takes
a constant value. As we increase the value of §, this constant approaches to the expected value
7/6 while in this direction the results become less stable for larger subregions. The stability of the
results can be seen from the left panel where we show how the real part depart from the (2.23)
behavior. Numerics confirm our analytical expectation value for the imaginary part in the small
subregion regime.

the imaginary part. In figure 6 we have shown how this works. From the numerical data
one can verify that even in the § < R regime, which the real part is reliable on the whole
R-cycle, the imaginary part takes a constant value. We have shown that by increasing ¢,
we can numerically approach a regime where although § < R, the real part is still reliable
for small enough T and the imaginary part in this regime approaches the expected value
of 7/6 for the ¢ = 1 scalar theory.

Free Dirac fermion theory. Following a similar procedure to what we did for the scalar
theory, we show that the other tractable example with our numerical method Dirac fermion
theory also leads to similar results. Using conventions similar to our scalar theory analysis
we have

S = / dtdzdy (moat +in 0, +inY -V, — m) v, (2.47)
where 1) = 1Ty, With the same definition for z = iT we have
S=i / dtdTdy 1) (moat +40p +inY -V, — m) v, (2.48)

where the conjugate momentum is defined as 7 = i1)y! which leads to the following Hamil-
tonian

H=—i / dtdy (woat iV, — m) 0. (2.49)
Now similar to the scalar theory formulation, the partition function is given by

Zy ="Tr [e*BH} =Tr [emg}, (2.50)

— 14 —



where
= /dtdyzL (woat +iy Y, — m) b . (2.51)

Considering the 2d case, using the algebra of gamma matrices and the reduced density
matrix defined as pg = Tr A[eiﬁH |, one can verify that timelike EE is related to ordinary
EE via the same analytic continuations considered in equation (2.21)

g — —if, m— —im. (2.52)

In the rest we focus on the 2d case. We first consider the case where t is defined on an
infinite line to calculate timelike EE. In order to explicitly diagonalize the Hamiltonian we
chose 7* = o3 and 4! = ioy and we consider the ¢! = (uy dj) where v is the Fourier
transform of the Dirac field defined as

t e 2.53
vit) = [T (253)
Using the following Bogoliubov transformations
uy, = cos Oby, + isin Hka_k , dy, = sin O;by, — i cos Hka_k (2.54)
one can easily check that by choosing
2 ‘
cos20, = — , sin 26, = un , Qi = k% —m? (2.55)
Q 97
the Hamiltonian (2.49) in 2d is diagonalized as
H = i/dt o (bLbk + bﬂkb_k) . (2.56)

Again we adopt the correlator method to calculate timelike entanglement entropy in Dirac
theory. Applying the same prescription introduced for the scalar field, we need the following
correlation functions

Cur = (W (")) = Tr [y (1) (e)]

f/dkt ( R+Z§)Q ) 1 —cos26  sin 20y =tk (2.57)
sin20; 14 cos26; ‘

In order to calculate timelike EE we consider the regularized version of the Hamiltonian on
a lattice where the time coordinate takes integer values, except we should replace k — sin k
in (2.55) and the integration runs over —7 < k < w. With these in hand the timelike EE
can be read from the spectrum of C denoted by {v} as

SgT) =— Z [(1—v;)log (1 —v;)+vilogy] . (2.58)
The numerical results of the case of finite R and 8 — oo are presented in the middle and
right panels of figure 7. We have also considered the case of R — oo and finite 5. In this
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Figure 7. Timelike EE of a connected region for the free Dirac fermion theory. The left and the
middle panels correspond to the infinite lattice 5 = oo case. In this case, our numerical results are
matching the expected behavior except for the regime where the subregion size approaches R. The
numerics in this regime are less stable compared to the scalar case so we cannot probe the § < R
limit stronger than the presented results. The middle panel is showing that for a fixed R as we
decrease § we get closer to the expected result, namely the first term of (2.33). The right panel
corresponds to the imaginary time compactified case 8 and finite R. We show that the expected
behavior as like (2.10) is reproduced for the fermion case as well.

case we have applied the same procedure discussed in the scalar case for the imaginary
time compactified case. To produce the numerical results presented in the left panel of
figure 7, we have used a regularization similar to (2.46).

We have shown that with a careful adaptation of the correlator method to our second
definition of timelike EE via Wick rotation of the coordinates, one can numerically find
the same results which we have found via the analytic continuation of the replica method
in CFT.

3 Holographic timelike entanglement entropy in AdS;/CFT,

In the previous section, we introduced the timelike entanglement entropy as a generaliza-
tion of entanglement entropy. In this section, we will present a holographic calculation
of the timelike EE in the framework of the AdS/CFT correspondence. This leads to a
generalization of the holographic entanglement entropy formula [2—4].

Below we will study holographic timelike EE in the pure AdSs, BTZ black holes and

shock wave geometries.

3.1 Pure AdS;

Consider a two dimensional CFT and choose the timelike subsystem to be an interval A
which connects two points: ¢ = —T and ¢t = T at = 0. From the result (2.4), we expect
that this timelike EE is given by

c c
Sp = -log — + —mi. 3.1
4= Slog =+ Eri (31)
In the dual AdSs, we can interpret this by generalizing the holographic entanglement

entropy (HEE) as follows. In Poincare AdSs coordinates,

B dz? — dt? + da?

2
ds 5 ,

(3.2)

z
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Figure 8. Sketches of calculation of HEE for a timelike subsystem A.

the geodesic which computes the timelike EE is identified with
t=Vz2+1T12, (3.3)

by Wick rotating the familiar semi-circle geodesic as depicted in the left panel of figure 8.
Indeed the length of this spacelike geodesic reads

1 o0 2T c 2T
S = 7/ d — Y = 71 I 3.4
ATaen ) VT 3% e (34
which explains the real part of (3.1). The imaginary part of (3.1) can be found by going
beyond the Poincare patch to the global coordinate

ds* = — cosh? pdt + dp? + sinh? pd#?, (3.5)

as sketched in the right panel of figure 8. Since Poincare coordinates only cover the gray
region, we need to connect the two endpoints at p = 0 and ¢t = =5 by a timelike geodesic.
Since the length is , this leads to a contribution to the HEE of gmi, which agrees with
the imaginary part.

The same result can be found by the geodesic calculation directly in the global AdSs.
The geodesic distance between the two points (pso, T0/2, ¢0) and (poo, —T0/2, ¢o) is found
to be

D = cosh™! (cosh2 Poo cOsTy — sinh? poo)

Ti
~ log (—e2p°° sin? 20)

. sin? %
= mi + log 3 ,

€

where we have set € = e7#>~. Thus the entanglement entropy is calculated as

2sin 1o
S = Clog< S“: 2 ) n gm', (3.6)

which reproduces the correct timelike EE in the CFT side (2.7) at R = 2.
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Figure 9. The holographic timelike entanglement entropy in global AdSs (left) and that in a
“Hartle-Hawking” like geometry (right). The length of the red curve and that of the green curve
give the imaginal and real part of the holographic timelike entanglement entropy, respectively.

3.2 Comments on extreme surfaces in AdSj3

The surface which gives the holographic timelike entanglement entropy consists of the
union of spacelike and timelike geodesic and it does not look like an extremal surface at
first sight. To see this we consider the AdSs slice of global AdSs:

ds* = dn? + cosh? (— cosh? rdt? + d7‘2) , (3.7)
where the new coordinate (n,r) is related to (p,6) in (3.5) via
coshncoshr = cosh p, sinhn = sinh p cos ¢. (3.8)

As depicted in figure 9, the boundary at n = oo covers a half of the original boundary
cylinder of the global AdS3, where the timelike interval A is situated. n = —oo corresponds
the other boundary. Now, starting from 1 = oo, at n = 0 we continue to the ‘Wick-rotated’
geometry defined by n = i1, which is given by

ds® = —dij* 4 cos® 7} (— cosh? rdt? + d7"2> , (0<hp<m/2). (3.9)

This geometry has AdS, as its boundary at 7 = 0. We expect that the dual extremal
surface I'4 is situated on a hyperplane » = 0, whose metric reads

ds? = —(dif® + cos> fdt?), (0 <7 < 7/2). (3.10)

If we compactify t such that ¢ ~ ¢t + 2m, then this metric is identical to that of minus
times the sphere metric. The minus sign means that the length is given by ¢ times the
length in the semisphere as depicted in the right of figure 9. This glued geometry helps us
to find the correct geodesics which compute the holographic timelike EE. This is similar
to the Hartle-Hawking prescription which is employed to calculate the holographic pseudo
entropy in dS/CFT as we will see in section 5.1.

Let us check that the timelike entanglement entropy is indeed derived from an “ex-
tremization” condition analogous to the ordinary geodesic condition. Since the geodesic
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length we are considering is complex-valued, this condition amounts to imposing the ex-
tremality to both the real and imaginary parts, which come from spacelike and timelike
surfaces respectively. A geodesic emanating from the boundary at ¢ = Tj/2 will attach to
some point on the surface n = 0. We fix the t-coordinate of the end point of the geodesic
by t1, and that of the other geodesic emanating from ¢t = —T/2 by ts.

First we consider the imaginary part. The geodesic connecting t; and t2 in the Eu-
clidean region is determined by varying the following area functional

i/dﬁ\/l—i-cos?ﬁ (dil(;))z (3.11)

As described above, the overall factor ¢ comes from the minus sign in (3.9). From the

FEuler-Lagrange equation, we have

COS T«

() = (3.12)

cos 7y/cos? ] — cos? i,
where 7}, satisfies dij/dt = 0. The condition that the geodesic ends on the ) = 0 surface at
t =11,y leads to

H0)=to, 1) = " (3.13)

By integrating (3.12) with these boundary conditions, we obtain

tl — t2 = T. (3.14)

The fact that this condition does not depend on 7, means that the geodesic can exist only
when the endpoints t1, t5 satisfy this condition, i.e. the two points on S? should be at the
antipodal points to each other. The length of this geodesic is

cos 1

e
21 dn

= 4m. 3.15
0 K \/cos? i — cos? 7, (3.15)

Therefore the imaginary part always takes the value of 7w, which is identical to the length
of geodesics that lie along the boundary S2.

Next we consider the real part. We can straightforwardly evaluate the sum of the two
spacelike geodesics with end points 1, to as

T T
cosh™! {cosh oo COS <20 — tlﬂ + cosh™! [cosh Moo COS (20 + tg)]

Ti Ti
~ log [627’“’ coS (20 — t1> cos (20 + t2>]

1
= log [—262%" (cos Ty + cos 2t1)} ,

where 7 is a large cutoff. In the second equality, we used the condition (3.14). The
condition that the derivative with ¢; vanishes leads to sin2t; = 0. For ¢; and t3 to be in
the range —m < t < 7, they should take

(3.16)

=2 =T
1—27 2 — 2
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Under this condition the sum of the geodesic lengths is
T
log [62’7“’ sin? 20} . (3.17)

Finally, we evaluate the timelike entanglement entropy

s = ! (2 log {e““’ sin 12})] + iﬂ')

b ey (3.18)
. T . .
= CA;S log [2 o 201 + Zﬂcéxds’ (e = 2e™ 1),

which reproduces (3.6).

In this way, the extremality condition imposed in the geometry obtained after the Wick
rotation as the originally spacelike geodesic turned into the timelike one, requires that the
length of the timelike geodesic is m and fixes the end-points of the spacelike geodesics.
This uniquely determined the total shape of I" 4, which is a union of spacelike and timelike
geodesics. .

We can summarize this procedure as follows:*

(i) First we construct candidates of I'4 from a union of spacelike and timelike geodesics
such that o'y = JA.

(ii) Then we take variations of the joining points of spacelike and timelike geodesics
and require that they are all stationary. Here we consider the Wick rotated geometry for

the timelike geodesics.

3.3 BTZ black hole
The metric for the BTZ black hole is given by

ds? =~ (r? = r2) di? + +r2dg? (3.19)

dr?
=)
where r; is the horizon radius and we have set the AdS length Raqg = 1 in the remainer
of this section. The inverse temperature can be written in terms of the horizon radius
as = E—I The BTZ black hole and global AdS3 are related by the following coordinate

transformation

r2—r?
Xo = cosh(p)sin(r) = B sinh(ryt)
+
X1 = cosh(p) cos(T) = - cosh(r;¢)
o (3.20)
X2 = sinh(p) cos(0) = — sinh(r;¢)
T+
r2—r?
X3 = sinh(p) sin(§) = ———— cosh(ryt)
T+

*Similar definitions have already been considered in [16, 22].
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Figure 10. The BTZ black hole in Kruskal coordinates. The left and right boundary are deter-
mined by uv = —1 while the past and future singularity uv = 1. the two horizons are at u = 0 and
v = 0 respectively.

Our first task will be to reproduce (2.10) by considering the lengths of paths of geodesics
in the bulk spacetime and applying our optimization procedure. To aid us we find it useful
to utilize Kruskal coordinates defined by the transformation

. u—+v
X0_1+uv
1—uv
X1 = cosh(ry.¢)
1+ wuv
(3.21)
= i (ry )
= sin
X2 14+ wuv +
_v—u
X?’_l—i-uv'

The corresponding metric is given by

dudv (1 —uw)?
ds® = —4 2 dg? 22
s (14 uv)? + (1+ uv)QT+ ¢ (3.22)

and the geometry is shown in figure 10.
For the calculation of the timelike entanglement entropy we will restrict to the constant
¢ = 0,7 slice. With this choice we can solve for the geodesics which are given by the

equation
(14 uv) + 2 (u — u'v) =0 (3.23)
and obtain the solution
c1 + cov , cy — c%
= - < == 3.24
u(w) = T ) = (3.24)
The causality of these geodesics is determined by the relative values of ¢1, co
2 .
c] > co  spacelike
L= (3.25)

2 <cp timelike.
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The length of geodesics can generally be directly evaluated by integration, however it is
often easier to make use of the embedding distance © between points X; and X5 in the
embedding space R?2. By making use of the coordinate transformation (3.21) this is
given by

—2(viug + ugve) — (1 — viug)(1 — vouz) cosh(ry (¢1 — ¢2))
(1 + viur)(1 + va2uz)

O(X1,X2) = gapX{'XP =

(3.26)
In terms of the embedding distance the geodesic distance is then given by

h(—O(X1, X)), lik
D(X1, X)) = a‘chcos (—O(X1, X)) s‘pace.l e (3.27)
iarccos(—O (X1, X2)), timelike.

To regulate the length of geodesics we introduce a UV cutoff w such that upvy, = —1 + w
for any point (up, vy) on the boundary. Examining xo + x3 using (3.21) and (3.20) we have

2 _ 2
2 r2—r
- —|—vuv = ki (sinh(r4t) 4 cosh(ryt))
2y _ Too o (3.25)
w T4+
2 _ 1 .,
w rLd

which allows us to relate w to the cutoff in BTZ coordinates § and well as the boundary
coordinates. As such we will work with the conventions

2 1
—=—", v ==e
w Tyl ’

T - D a e uy = e 1 - ) A (3.20)

| €

where the upper (lower) signs are for the right (left) boundary respectively. In what follows
we will always work at leading order % dropping any subleading terms.

We proceed by considering several examples. We shall start by determining the timelike
entanglement entropy of a single region A. TIts result can then be used to consider two

regions A and B and define the timelike mutual information Ig and thermofield mutual

information Jgg) (between regions on different boundaries). Lastly we shall consider the

BTZ black hole with a shock wave.
3.3.1 Single interval
We start by determining the timelike entanglement entropy of a single region A = [T7, T3]

on the right boundary where Ty < T. In Kruskal coordinates given by (v1,u;) = (a1, — =)

ar
and (ve,u2) = (ag, —é) where making use of (3.29)

a; = e+, (3.30)

Consider the collection of three geodesics shown in figure 11. This consists of two spacelike
geodesics one from the boundary at v = ag to the future singularity at v = s and one
from the boundary at v = a; to the past singularity at v = q. We also include a timelike

- 29 —



( |) (~1,-1)
P
q

Figure 11. The system of geodesics used to determine the timelike entanglement entropy SI(4T).
In Kruskal coordinates A is determined by the values a1, as which label the endpoints of A on the
right boundary. s, q determines the intersection points of the geodesics on the singularities and are
initially unconstrained.

geodesic between the past singularity at v = ¢ and future singularity at v = s. This forms
a family of candidates I 4 where the values of s, q are to be determined.

Examining the geodesic equation (3.24) we require a timelike geodesic between the
points on the past and future singularity. This is only possible if we take s = ¢ and
provides a family of timelike geodesics g;

1+ v 11

g ulv)=—"=— € <—, ) (3.31)

14+ v s’ s

It can be confirmed using the geodesic distance (3.27) that all such curves of this form are
of maximal length

Iy = im. (3.32)
For the choice ¢; = 0 the geodesic simplifies to
v
= —. 3.33
u(w) = (333)

The two spacelike geodesics gs, and g5 and their lengths are found to be

2vag — (a3 + s?)
: = > 3.34
Gsu u(v 2a282 — (a% n 52)7}7 az = S ( )

Iy = log (iw> (3.35)

ass
2va; — (af + ¢°)
o = . q> 3.36
S Y T @ — (@ 1T (3.36)
1 2 _ .2
ly = log <M> . (3.37)
w alq
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Figure 12. Examples of stationary paths I'%, whose area calculates the timelike entanglement
entropy SiT) in the BTZ geometry. For regions symmetric about ¢ = 0 the timelike curves extends
from the center of the past singularity to the center of the future singularity.

Making use of the requirement ¢ = s the two spacelike geodesics have total length

1 (= ad)(a} - s2>> |

w? s2aias

ly = Loy + 1y = log < (3.38)

Only the parameter s remains unfixed and labels for us many possible paths I'4 all
of varying lengths. Among all these candidate paths we should choose the one which is
stationary5 which requires 950, = 0 and thus s?> = ajas. The total length of the geodesics
which make up the optimized path I'} is

I = log< ! W) + i, (3.39)

E al1ag
Using (3.30) the timelike entanglement entropy is found to be

SE‘T) = glog (fé sinh (g(Tg - Tl))> + giw (3.40)

which is the same as (2.10). Examples of geodesics which calculate the timelike entangle-
ment entropy are shown in figure 12.

3.3.2 Timelike mutual information

We now consider two timelike intervals A = [T41,T42] and B = [T1,Tp2] on the right
boundary of the BTZ geometry. We assume the interval are separated with A later than

5 As constructed each candidate path T'4 is the union of geodesics meaning each spacelike curve is minimal
and each timelike curve maximal. It is important that the optimization over such paths is an extremization
i.e. we look for paths which are stationary. In this example the stationary path I'} is in fact a maximum
among the possible paths T 4.
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Figure 13

Figure 14. Paths I'4 (left) and I'g (right) whose area gives the timelike entanglement entropy
quT) and Sg).

B. In Kruskal coordinates this can be written as

A: v =ay, vA2 = ag, a; = e+ T4 (3.41)
B: wp1=0b, vpy=by, by = e+
where because these points are on the boundary we have v,u, = —1. The set up is shown

in figure 13.
Using our results (3.40) the single party timelike entanglement entropies SI(4T) and Sg)
are given by

Ty _ ¢ B o (T _ c.

with the corresponding geodesics shown in figure 14.
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Figure 15. Paths I'yp whose area gives the timelike entanglement entropy 51(42. There are two
possible phases in analogy with the connected/disconnected phase transition for the entanglement
entropy Sap. L: disconnected phase R: connected phase.

For the two party timelike entanglement entropy SI(4TB) there are two configurations

of geodesics we can consider. The first corresponds to the disconnect phase in which
Sgtz = f) + Sg) so that

2
s = glog <7£52 sinh (g(TAQ - TA1)> sinh <g(TB2 - T31)>> + gm. (3.43)

The second corresponds to the connect phase where the geodesics correspond to the two
intervals of length T 4o — T'B1 and T41 — T'Bo so that

2
S = glog (Wf 53 sinh (g(TA2 - T31)> sinh (g(TAl - TBQ))> + gm. (3.44)

In this example we see that the two possible phases for S,(E%) are comprised of stationary

paths but have the same imaginary value. To distinguish between these configurations, we
choose, in analogy with the case of the usual entanglement entropy, to take the one with
the smallest real value to be the optimal configuration.®

Both sets of geodesics are shown in figure 15. We can now consider the timelike mutual

information
T T T T
145 =8 + 857 - 84 (3.45)

where we have taken the spacelike entanglement entropy and replaced each term with the

respective timelike entanglement entropy. Since we choose the configuration of SQB for

which the real part is minimal the timelike mutual information should be maximized with

5This is a definition and it is possible that other prescriptions should be considered. We comment briefly
on this in the discussion section 6.
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respect to the two possible configurations. Combining our results we find

c (Sinh(g(TMTAl)) Sinh(g(TmTBz)))

11(42 — max 370 Sinh(%(Tm—TBl)) Sinh(%(Tm—TBz))
0

(3.46)

Note that here the imaginary part completely cancels so that the maximization is over
an entirely real quantity. The timelike mutual information should be compared with the
mutual information of two spacelike regions [58, 59] A = [041,042] and B = [0p1,0p2]
which we take to be arranged such that there is no thermal contribution coming from the
area of the horizon

1o <sinh(g(0A2—9A1)) sinh(
3 sinh(%(@Ag—GBl)) sinh(

(931—932))>

B
5641 —932))

Iap = max (3.47)

0.

3.3.3 Timelike thermofield mutual information

In the BTZ geometry it is also possible to consider entanglement entropies where the regions
are placed on opposite boundaries. For example [60] considered the mutual information of
two spacelike regions A = [041,042] and B = [0p1,0p2] in such a set up. This quantity
was defined to be the thermofield mutual information J4p and found by calculating the
lengths of minimal geodesics” that it takes the form

slo (sinh(g(eAQ—eAl))sinh(
cosh(%(9A1+931)) cosh(

(923—913)) >
Jap = max (3.48)

0.

To determine the timelike thermofield mutual information we instead consider two time
like intervals on different boundaries. The interval on the right boundary is given by
A = [T'a1,Ta2] while the left by B = [Ty, Tp2] both of which are defined with respect to
the time coordinate on the right boundary. We use the same conventions (3.41) to define
these intervals in Kruskal coordinates. The setup is shown in figure 16.

There are once again two possible configurations of geodesics for the two party en-
tropy Sgg) (see figure 17). For the connected phase the geodesic are entirely spacelike
and connects through the geometry between endpoints on either boundary. The geodesic

connecting the left boundary at vy, to the right boundary at vg is given by

vpvp — 1 — 2vpv
(vpvr — 1)v + 2up

u(v) = (3.49)

which has length

log (fé cosh (g(TL + TR))) . (3.50)

"The authors of [60] also provided derivations of the thermofield mutual information for the CFT of a 2d
massless Dirac fermion, but were unable to extend the result to 2d holographic CFTs. This is essentially a

historical artifact as [60] appeared before [61] which provided the necessary tools of vacuum block expansion.
To our knowledge a complete derivation for 2d holographic CFTs has not appeared in the literature so we
have provided one in appendix A.
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Figure 16. Two timelike regions A = [T41,T42] and B = [Tp1,Tp2]. For the calculation of the
timelike thermofield mutual information one region is paced on each of the left and right boundaries.
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Figure 17. Paths I'4p whose area gives the timelike entanglement entropy 5’1(42. There are two
possible phases in analogy with the connected/disconnected phase transition of the thermofield
mutual information. L: the disconnected phase is constructed from our result in the single interval
case. Because time runs oppositely on the two boundaries the two imaginary geodesics should
contribute with opposite sign. As such these areas cancel so that SQE is entirely real. R: the
connected phase consists of two spacelike geodesics extending through the geometry to opposite
boundaries.

so that in this phase we have

2
Sgg = glog (7552 COSh(g(Tm + T31)> cosh(g(TAg + TBQ))) . (3.51)

In the disconnected phase we have Sj(gg) = SgT) + Sg) where the paths are the same as in
the single interval case with one on each of the two boundaries. One must take care that
because time on the left boundary runs opposite to that on the right the timelike surfaces

~ 98 —



should contribute with opposite sign. That is

SI(L‘T) ; log <65 sinh (Z(TAQ — TA1)>> + %iﬂ'

o e 5 . . (3.52)
Sp’ = 3 log <5 sinh (B(TBQ — T31)>> - ém.
This can be more clearly demonstrated by using (3.50) and the relation
th=1tr + zg (3.53)

between times on the left and right boundary. Note that here ¢;, is defined with respect to
the time on the left boundary which runs opposite of that on the right. By substituting
such that both end points are on the same boundary the result is precisely (3.52). As
a consequence S( ) in the disconnected phase is entirely real. We define the timelike
thermofield mutual information to be

J4 =8 + 55 — () (3.54)

with A and B on different boundaries. The timelike thermofield mutual information is
then found to be

c log (Sinh(%(TAQ—TAl)) Sinh(%(TgB—TlB)) )
B

I = max cosh (5 (Ta1+T51)) cosh(5 (Taz+Tp2)) (3.55)

0.

3.3.4 The necessity of timelike entanglement entropy in thermofield double
state

So far we have considered various choices of subsystems in two-sided BTZ black holes.
Here we consider yet another choice of subsystem such that two twist operators are placed
on the different sides of the black holes, depicted in figure 18a and figure 18b. As we will
explain below, the corresponding entropy defined by the usual replica method, cannot be
interpreted as the entanglement entropy, but as the timelike entanglement entropy. This
provides an argument towards the necessity of introducing timelike entanglement entropy.
Note that although this setup looks similar to [62], we consider only one twist operator in
each AdS boundary, which is compactified on a circle.
Let us consider the thermofield double state

ﬁz e PE /2 n)  n) (3.56)

where the Hilbert space of the CFT is doubled such that the left and right boundary of the
BTZ are dual to CFT;, and CFTg. This state is the zero eigenstate of the Hamiltonian

ITFD) =

Hrp=1® Hr— H, ®1, (3.57)

i.e. the thermofield double state is invariant under the time evolution generated by Hrpp.
In the bulk point of view, |TFD) is interpreted as the Euclidean construction of the Hartle-
Hawking state in the BTZ black hole. The real time evolution generated by Hrpp is realized
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Figure 18. (a) An interpretation of the configuration of o,,, &, such that they are on the different
sides of the black hole from each other. When the space is S!, the twist operators cannot be
connected by a single spacelike region as depicted in (b).

as the gluing of the Fuclidean geometry to the Lorentzian BTZ black hole geometry at t = 0.
In this geometry, time evolves forward in the right half and backward in the left half, the
opposite direction of which corresponds to the relative sign in (3.57).

As a model that has the non-trivial time evolution, we consider time evolution of the
thermofield double state under another Hamiltonian

H=1® Hp+ H, ®1. (3.58)

As a result of flipping the relative sign from Hrgrp, H generates the forward time evolution
in the both sides. In [62], a half plane z < 0 in the planar CFT and a strip region
—L < x < L are considered as subsystems. In the both cases, geodesics connecting two
twist operators on the left and right boundaries can be considered as candidate extreme
surfaces. For example, if we consider a half plane as a subsystem, the entanglement entropy
is calculated as the area of the extremal surface behaves as S4 o<t (¢ > ) [62].

Now, instead, let us consider the thermal state on a circle S'. We can again consider
the configuration of two twist operators such that one is on the right boundary and the
other is on the left. In the replica method we can calculate the corresponding entropy by
the two-point function of the twist operators on the torus as before. In the AdS dual, this is
a geodesic distance between the two points in the BTZ as sketched in figure 18a. However,
we cannot interpret this as EE because we cannot take the subsystem A such that the
twist operators are on JA. The Hilbert space is given by fields on two disconnected circles,
situated in the left and right boundary and we only have a single twist operator in each
of the circle, which makes the definition of the subsystem A impossible. However, we can
understand this quantity as the timelike EE as depicted in figure 18b.

3.4 BTZ with shock wave

Following [63] we introduce a shock wave into the BTZ geometry. For early low energy
perturbations along the u = 0 horizon this takes the form of a simple shift a between two
regions above and below such that v = v + «.
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Figure 19. The BTZ geometry with a shock wave characterized by the parameter a. The geometry
above and below the u = 0 horizon is BTZ but the two are shifted such that o = v + «. Here 0 is
the shifted coordinate for u > 0.

The metric has the form

ds? = —4 dudv L Q—utab@))” 5,0 (3.59)
(14 u(v+ad(u)?  (14+u(v+ ad(u)))? T
and the geometry is shown in figure 19.

Note that spacelike geodesics in the ¢t = 0 plane will not cross the horizon. As a result
the entanglement entropies of spacelike regions will be unaffected by the shock wave and
given by (2.22). If we consider the analytic continuation of the spacelike entanglement
entropy we would incorrectly conclude that the timelike entanglement entropy should be
similarly unaffected and given by (3.40) which is independent of a. To see that this is
incorrect we will carry out our optimization procedure and find in subsection 3.5 that the
result exactly matches the timelike entanglement entropy when computed from a careful
Wick rotation of the boundary CFT.

We consider a single region A = [T1,T5] on the right boundary where 77 < Ty and
use (3.41). To define I'y we use the collection of five geodesics shown in figure 20. This
consists of three spacelike geodesics one from the boundary at v = a9 to the horizon at
(hs,0), from the horizon at (hs,0) to the future singularity at v = s and one from the
boundary at v = a1 to the past singularity at v = q. We also include two timelike geodesic
between the past singularity at v = ¢ and future singularity at v = s which intersect the
horizon at (h¢,0). This forms a family of candidates I'4 where the values of s, ¢, hs, hy are
to be determined.

Upper spacelike geodesic. We consider two geodesics: one below u = 0 which we call
gu, and one above u = 0 which we call gz. These can be solved using (3.24) with the
additional constraint that smoothness across the horizon at u = 0 determines the point of
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Figure 20. The five geodesics which make up the candidate paths I" 4. To account for the change
of coordinates geodesics which cross the © = 0 horizon where there is a shock wave are separated
into two geodesics. The point which these geodesics cross the horizon as well as the location of the
endpoints on the singularities are initially free parameters. These can all be fixed by requiring that
I' 4 is stationary. For hg, h; this is equivalent to requiring that the geodesics are smoothly connected
across the horizon.

intersection hg
v — hg
- 2hsas — a% — hgv
ga: u(®) = % (3.60)
s+ a% —a?
2(a2+a)

gu:  u(v)

Together these have length

2 4y — i Vs FaZ =2 4 he +a—
w a9

(hs +a@)? —s? — (hs + a — s)
= log (1(@2 +a)? - 52)
w ass

Note that hs; can also be determined directly from the geodesics length by considering
8hs (lu + 1z = 0.

(3.61)

Lower spacelike geodesic. The lower spacelike geodesic g; remains in the lower half
of the geometry and does not cross the shock wave the result is the same as the BTZ
black hole

2va1 — (af + ¢°)
: = . 2
g U(U) 2&1(]2 — ((I% + q2)v (3 6 )

I, = log <1M> . (3.63)

w aq
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Timelike geodesic. The two timelike geodesics g; and g; are given by

g ule)= g
b =5
¢~ he (3.64)
prou(d) = 0= (uta)
gi: s2— (hy + a)d
with smoothness across the horizon requiring
§2 — g% — a2
hy=——. .
¢ 9 (3.65)

The total length is
) q—hy s—(u+a)
le+1; =2 [arctan ( = ht> + arctan < m
7 s—(hs+a) 3.0
—ht [s—(hta)
1— /i m

where h; can also be determined directly from the geodesics length by considering 9, (I¢ +

= 27 arctan

l;) = 0. the timelike geodesics will be maximal with length im when the denominator is
zero. As such this becomes the condition
_la—s+gq|

o
1 =0—s=gq, h=——. 3.67
la+ 5 —q| ¢ 2 (3:67)
Using that s = g the spacelike geodesics have combined length
1 2 2\(2 _ 2
lu+1a+1 =log (2((“2+0‘) 82)(5 ai) (3.68)
w a1a28
which is stationary when s? = aj(as + «). Then
1 (ag — a1 +a)?
ly +la+1; = log (2(21)> . (3.69)
w ai1an
Now with all the free parameters fixed it is found that the area of I is given by
glog (fa (s,mh(g(T2 - Tl)) + ge_g(T2+T1)>> + gm. (3.70)

where there is a correction due to the shift o. An example of a such path I'}; with this
area is shown in figure 21. As a check the geodesic length between two points on opposite
boundaries in the shock wave geometry was computed in [63] to be:

c I5) T « ﬂ(tR+tL)>:|
- ~ - _ o8
3 log [mi (cosh 5(tR tr) + 5¢ . (3.71)

By continuing tgp = T and t;, = 11 — gz using (3.53), we can reproduce (3.70).

As a result we have shown that the two constructions — the analytic continuation of
the entanglement entropy given by (3.40), which is independent of «, and the optimization
of extremal surfaces given by (3.70), which depends on o« — are not the same. We return
to this in section 3.5 where we will show the correctness of (3.70) by comparing this result
with that of the CFT calculation.
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Figure 21. An example of a stationary path I'}, whose area calculates the timelike entanglement
entropy SI(4T) in the BTZ geometry with a shock wave.

3.5 Timelike EE under local quench in thermofield double state from the CFT

In section 3.4, we have observed a surprising feature that the gravity dual calculation
of timelike EE in the shock wave geometry is affected by the shock wave sent in the
left boundary i.e. CFTp, though the timelike EE is defined in the other boundary i.e
CFTpg. In the gravity calculation this occurs because the geodesics whose sum computes
the holographic timelike EE, extend to the region which is not causally related to the
CFTg boundary. This makes us wonder if the timelike EE in CFTs can have a similar
behavior. To study this we consider the setup of a local quench in a thermofield double
state considered in [64]. This is dual to a localized shock wave geometry, depicted in the
left panel of figure 22.

We insert the local primary operator O(tr, ¢r) in CFTy, at t;, = —t,, and ¢;, = 0 with
a regularization parameter -, which is infinitesimally small, such that e~7% is multiplied
on the local operator. The subsystem A is defined as the interval between two points
(tr,oRr) = (to, ¢0) and (tgr, ¢r) = (to + At, ¢o + A¢p). In this setup we have

(O™(y1, 51) 00 (Y2, Y2) 0 (Y3, Y3) O™ (ya, §a))
(O(y1,41)O(ya, ya))" ’

where we defined the coordinates on a cylinder such that

Tr(pa)"] = (3.72)

. B . B
y1=—1y+iz, Yoa=¢0—to—tw, Y3s=0¢0+Ap—tg— At —ty, ys=1iy+iz,

2 2
I I - I
=1y -1, Y2 =¢otto+lw, Us= o+ Ag+to+ Al+ 1y, Ya=—ty—13.
(3.73)
The coordinates (tr, ¢r) are related to those on the complex plane via
(¥,9) = (¢r — tr, dR + tR), (3.74)
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Figure 22. The sketches of geodesic in the gravity dual of local quench. The left picture describes
the geodesics whose sum computes the timelike EE. The right panel shows the geodesic which
connect a point in the left boundary and a point in the right panel. The brown arrows depict the
localized shock wave created by the local operator.

and the time in the CFT is related to tg via
_ B
tR—tL‘f’lg. (375)

27
Now we perform the conformal transformation to a complex plane w = e # ¥ and introduce

the cross ratio z = ¥12Wsd
w13wW24

Since + is infinitesimally small, we find

g 2 sinh [5(A¢ — At))]
B B cosh [%(qﬁo ity — tw)} cosh [%(% T AG—ty— At — tw)} ’
co, 2T sinh [g(m + At)] -

B cosh {%(qﬁo +to + tw)} cosh [%(% + Ap+to + At + tw)} '

This shows that when the subsystem A is spacelike A¢p—At > 0, we have (z,2) — (1,1).
Howeever when it is timelike A¢ — At < 0, we find (z,2) — (e727,1). As in [65], the non-
trivial monodromy around z = 1 gives a non-zero entropy, assuming the HHLL conformal
block approximation is justified in holographic CFTs. Indeed the total entropy looks like
(0 is the UV cut off):

Sa = £ log [szz sinh (5(a0 - 40)) sinh (5 (a0 + At))] +500, @m)

where the monodromy contribution SI(LXM) is given by

o _c lz%“—awz%“—%)(l —2°0)(1 - >] (3.78)

|
54 = gloe o (1—2)(1—2)

The parameter ap is related to the (chiral) conformal dimension ho = ho of the primary

operator O via apg = 4/1 — %.
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The EE for the spacelike interval does not depend on the local operator excitation
because SI(LXM) = 0 and is identical to the standard result. On the other hand, the timelike
EE is computed as follows (we set A¢ = 0):

SE4T) =< log {ﬁ sinh (ﬂAt)] +< log [6sin(7rao)

3 m I6; 6 TQOY
cosh (% (o — to — tw) ) cosh ( Z(po — to — At —1y)
+1og (3 ) cosh 5 ) + Tie. (3.79)
6 sinh (%At) 6

The result above shows that the timelike EE for CFTpg is influenced by the excitation
in CFTp as in the shock wave analysis in section 3.4. Moreover, if we take the limit
tw/B — —oo, then we can expect that the setup gets closer to the gravity dual result for
shock wave geometry in section 3.4, Indeed, in this limit we find from (3.79) the following
behavior

SI(AT) ~ glog [%e—%(Qtwﬁ-toﬂ-toﬂ-Aﬂ} + %Ci. (3.80)

If we identify o = % eIl as in [63], then this agrees with (3.70) by setting to = 77 and
to + At = Ts.

We can also show that the same result (3.79) can be obtained from the geodesic length
in the gravity dual of the local quench. Consider the spacelike geodesic which connects the
point (tgr,pr) = (tr, ¢o) on the right boundary and the point (¢, ¢r) = (t1, ¢0), depicted
in the right panel of figure 22. Its length divided by 4Gy was computed in [64] as

o [BZCOSh (”(tR—tL)ﬂ + glog [BSm(WO‘O)]

6 w242 6] TaoY
c ) T s
+6 log {smh (ﬁ(% —tr — tw)> cosh <ﬁ(¢0 —tp— tw)ﬂ . (3.81)
By continuing the point in the left to the right we set
tp =to+ At, tp=tg— gl (3.82)

This gives the geodesic length between two timelike separated points, which computes
the timelike EE, depicted in the left panel of figure 22. Indeed, this precisely reproduces
the CFT result (3.79). Notice that the standard EE for a spacelike interval in CFTpg is
static and indepenedent of the local operator excitation in CFT . This means that a naive
analytic continuation from the spacelike subsystem to timelike one does not work because
we need a careful analysis of conformal blocks in the holographic CFT. It is intriguing to
note that the holographic analysis gives us a useful guide for the correct prescription.
3.6 Rotating BTZ
Finally we would like to study the rotating BTZ black hole. The metric looks like

2 2\(p2 _ 22 2
(r" —ri)(r T_)dtQ 1 27° S

r2 (r2 —r3)(r2 —r2)

where we have compactified * ~ z + L and imposed r > r_.

r4r
r2

2
ds® = — dr? +r? <da: + = dt) (3.83)
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In order to consider the CFT dual to this system, we must perform a Wick rotation
t — 47 and compactify the imaginary time direction 7 ~ 7 + 3, where [ is the inverse
temperature. We obtain the following metric after the rotation.
(=1} ~12) &

dr? +

ds® =
y r2 (rz2 —r1)(r2 —r%)

2
dr? + r? (dm e dT) (3.84)

r
r2
Near the outer horizon, i.e. » = r; + n where n/ry < 1, the periodicity of time

is determined as 8 = 27TT2T:LT2 by requiring that there is no conical singularity at the
+ -

horizon. The cross term between dx and dr also implies we must further impose another
compactification of the x coordinate of the form, z ~ 2 — i8{2. Near the horizon, one can

find that Q = :—J‘r These compactifications give rise to a density matrix of the form

p = e PHHBQP (3.85)
where H and P are the Hamiltonian and the momentum of the CF'T respectively. Taking
a general subsystem interval, the holographic entanglement entropy is cited as [4]

S = glog (B;sz_ sinh (W(AlﬂjAt)) sinh (W)) (3.86)

where f1 = (1 £ ), and Al and At are the spatial and temporal lengths of the interval
in the dual CFT. It becomes immediately clear that, in the limit where Al — 0, the term
inside the logarithm becomes real and negative, leaving an imaginary contribution of gmi

to the entropy, which is a key characteristic of the timelike entanglement entropy.

We can then make the replacement r— — ir_ and render the Euclidean theory real.
However, this would in turn make the original Lorentzian metric complex-valued. Due
to the dependence of 2 on r_, both 1+ become complex (in fact, complex conjugates of
each other), giving us complex-valued entanglement entropy, which we should interpret as
pseudo entropy. The newly obtained pseudo entropy can be written as follows.

2 2
(P) _ €4 g1+ Q%) . h<7T(Al—|—At)> ) h<7r(Al—At)>
Sy G log <7T2€2 sin BT sin BA-) (3.87)
In its most general form, the imaginary contribution can be expressed as
(P) c 2w Al 2mwQAL o 2w Al o 2mQAL )
I =-A h — h
m(S, ) 5 rg((cos B0+ ) cos 501+ ) isin 30+ sin B0+
~ (Al At)). (3.88)

The consideration of a system consisting of a rotating BTZ black hole has given us yet
another example of pseudo entropy being manifest in a physical setting. The non-static
nature of this system has allowed us to make a choice of equipping the Euclidean theory with
a real metric while simultaneously equipping the corresponding Lorentzian theory with a
complex-valued metric. The holographic entanglement entropy of the system is evaluated to
be complex valued in general, even for spacelike intervals. This occurrence of the complex-
valued entanglement entropy should be correctly interpreted as pseudo entropy.
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4 Holographic timelike entanglement entropy in AdS,.,/CFT,

In the previous section, we only considered the holographic timelike EE in AdS3/CFTs.
Since we have not used any specific features in three-dimensional gravity, it is natural
to extend it to higher-dimensions. As generalizations of a temporal subsystem we have
considered, here we consider two examples; a hyperbolic region t? — x? < T¢2 /4 and a strip
region [t| < Tp/2. For both cases, we first compute the timelike EE by performing the
ordinary Wick rotation tg = it, and then try to give geometric interpretations to the result
in the similar way as we did in sections 3.1 and 3.2.

4.1 Hyperbolic subsystem

First let us consider a hyperbolic subsystem A defined by ? —x? < T2/4 as a generalization
of a temporal interval in the d = 2 case. After we obtain the EE for A by applying the
Wick rotation to the calculation for Euclidean AdS;; (EAdSg41), we will find out the
geometric configuration reproducing the result of the Wick rotation.

4.1.1 Wick rotation
First we review the ordinary computation of the EE for the Poincaré EAdS 41

dz? + dy* + dt}, + dx>
2
z

ds®* = R34 : (4.1)
where y is a direction that we regard as an alternative “time” direction and x € R%~2 are
the remaining directions. We define a subsystem A of the y = 0 slice on the boundary as
t2 + x> < T3 /4, where we again adopt the Poincaré coordinates (5.23). Here we introduce
a radial coordinate £ = t12~3 + x2, then the entanglement entropy is the extremal value of
a functional

R{as d—2 g2
!
4G(d+1)V01 (S /dz 1+¢&(2)2, (4.2)
N
d-1
where Vol(S972) = 137(21;21 ) is the area of S¥=2. By varying this functional, we find that the
2

extremal surface is a hemisphere 22 + ¢2 = T2 /4. Therefore the entanglement entropy is

d—3

Rigs d-2) (1-v?)=
Sy = e Vol(S / o) E (4.3)

where we have rescaled as z = %u and introduced a UV cutoff z = €. For odd d,

g ok & d-1
SA _ RAdS _AdS vy I(Sd 2) 22: % (il)k <T’0>d 22 + ( 1) ’ ﬁr( 2 )
4G(d+1) s\ k Jd—2k—2\2€ or (%l)

(4.4)
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and for even d,

Vs

SA _ RAdS Vo I(Sd 2)

G(d+1) d—2k—2

k:O(k (26> i d ®
(4.5)

Here we would like to perform the Wick rotation. As before, we replace tg — it and
To — i1p, then the extremal surface will be a hyperbolic surface

T2
2 —x? -2t = ZO (4.6)

which ends on A at the boundary. As before, we define a radial coordinate & = /12 — x2
for the unit H?2. Since the volume of the unit hyperboloid H% 2 diverges, in order to
define the volume we regularize it as

Vol(H2) = Vol(S473) - 2 /0 ! dvsinh® 3 . (4.7)

By taking A — i3, the right-hand side becomes
i72Vol(S473) - 2 /0 : df sin?=3 6 = i972Vol(S?72). (4.8)
Therefore Vol(S?2) should be replaced with (—i)?=2Vol(H%~2) under the Wick rotation.

Note that the phase factor (—i)?=2 is i(—1 )% for odd d and <_1)%—1 for even d. Thus
the timelike EE becomes

d—3

37 /d-3 d—2k—2 z\fr d=1

(T) _ RAdS d—2 : 2 1 E ( 2 )

S 4G(d+1)V1(H ) Z( : )d—2k—2 5 J . (4.9)
2

for odd d and

(T) _ RAdS d—2
Sy 4G(d+1)v ol(H*™#)

52 /4-3 1 T\ d—2k—2 F(@)
5 10 2 )
* Z(k)d—?k—Q(Qe) N

k=0

Note that all the divergent terms are real and the O(e") term is purely imaginary. It is
remarkable that the form of the imaginary part does not depend on whether d is odd
or even.

4.1.2 Extremal surface

We would like to find the geometric configuration in the Lorentzian AdS;, 1 spacetime

dz? 4 dy? — dt? + dx?
22 )

d82 = RAdS (411)
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which reproduces the result above. In the Lorentzian case, we should extremize the func-

tional

Bas o2 [ a8 e (4.12)
4G(d+1) A1 : :

The solution extremizing this functional is
222 =T3/4, (4.13)

then the contribution to the entanglement entropy that comes from the two spacelike
surfaces that end on the future and past part of JA respectively is

Rigs d—2 (1+wu?)=
Syq= G(d+1)V ol(H*"%) 2 duiud_l
0
2 a3 1 Ty 4-2k—2
2 <> (d:odd)
— k | d—2k—2 \ 2¢
_ RAdS VO](Hd 2) k=0
2 -v _v .
< i )koQ <2€> +\ff(d) log . (d : even)
k=0 s D)

(4.14)

We can see that this result reproduces the real part of (4.9) and (4.10). In addition to the
spacelike surfaces considered above, we also consider a timelike surface

22— €2 =2 (4.15)
where C' is an arbitrary positive constant. This is embedded into the global patch of AdSs

as a geodesic at the center p = 0. The area of this surface is

-3

[e’s) d—2 0o 2 5
Vol(H?2) /C dzid_l /1 —€(2)% = Vol(H2) . z/l du(uud_lz

. _ 4.16
oo VT (43) o
= Vol(H )7(2[
2r ()
Thus the contribution of this timelike surface to the entanglement entropy is
i/l d—1

G(d+1)

EOn

which is independent of C'. This expression is identical to the imaginary part of (4.9)
and (4.10). In particular, this result reduces to iCTdS when d = 2.
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4.1.3 Global coordinate

Next let us give an interpretation to the result above by considering the extremal surface
in the global coordinate in the similar way to subsection 3.2.
We consider the AdS; slicing of AdSg41

dsias,,, = Raas(dn® + cosh® ndsigs,)- (4.18)
Here we adopt the open slicing as the coordinate of AdSy:
ds%dsd = —dr? +sin® 7 dsZu 1, (4.19)
where dsIQHId,1 is the metric of the unit hyperbolic space:
dsfa-1 = dp® + sinh? pdQ3_,. (4.20)

As done in subsection 3.2, we consider the gluing of this geometry at n = 0 to the Wick-
rotated geometry by n — in:

ds® = RXys(—dii* + cos® ijds3gs,)- (4.21)

We would like to evaluate the sum of the spacelike and timelike surfaces connecting
T = 179/2 and 7 = —79/2. Let us first consider the spacelike surface emanating from
T = 79/2 and reaching n = 0. We regard a coordinate 6 of S“=2 as a time and take a time
slice § = 0. Then the induced metric of the codimension-2 extremal surface 7 = 7(n) is

ds® = Rigs {(1 — cosh? n7"?)dn?® 4 cosh? nsin® ds%d,g} (4.22)
and the area is

Moo
R4 45 Vol(H—2) /0 dn\/m cosh® 2 psind=2 7 (4.23)

The solution of the equation of motion with respect to 7(n) reads

cot T

7" —(d — 1)sinhncoshn7’® — (d — 2) cot 7 7/? + dtanhn 7’ + (d — 2)T =0. (4.24)
cosh”n
The solution with a boundary condition 7(00) = 79/2 is given by
COS T = COS % tanh 7. (4.25)

Note that this surface reaches 7 = 7/2 at n = 0. Also, we can check that this equation is
equivalent to (4.13) by a coordinate transformation to the Poincare coordinate. The area
of this surface is

Moo 2
RiﬁéVol(Hd_% /0 dn sin % (1 — cos? % tanh? n) cosh®2p (4.26)
sin 7—70 sinh 7oo B
= RigsVol(H"?) / du(1+u?)Z . (4.27)
0
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Introducing the cutoff sinh 9y, ~ e~ = 1 and identifying as sin 3 = Tp, we can see that

this area reproduces the real part of the result above (4.14).
Let us move on to the timelike surface. The induced metric of a surface 7 = 7(7) on
a slice 0 = 0 is given by

ds® = R4 {—(1 + cos® 71 7')dif* 4 cos® fjsin® T ds%d_g] , (4.28)

and the area functional is

iR & Vol (H 2 /dn\/msmd 21 cos? 2. (4.29)

In the same way as solving the spacelike one, we can find solutions to the equation of
motion for this action:

cosT = C'tan1j, (4.30)

where C'is an arbitrary constant that cannot be determined by boundary conditions. From
the similar calculation to the spacelike case, we find that the area is

var (%)
(@)

which does not depend on the constant C. Thus we have derived the same result as the

i R 45 Vol (H~2) (4.31)

one obtained by the Wick rotation.

4.2 Strip subsystem

Next, let us consider a strip subsystem. First, we compute the timelike entanglement
entropy by Wick rotation. Consider again the Poincaré EAdS;y; with a metric

dz? + dt% + dy? +dx

ds® =
22

(4.32)

We take a subsystem A as a strip —7p/2 < tg < Tp/2 on the y = 0 surface. Furthermore,
we take an IR cutoff L as the lengths of the remaining directions x. In this setup, the
entanglement entropy of the dual CF'T can be obtained as the extremal value of a functional

1+ t’ )
AdS d—2
G [t (4.33)

The solution of the Euler-Lagrange equation with a boundary condition tg(0) = Tp/2 is
given by [2]

d _ 2d—2 T
:I:tE(Z) = 272}71 1, d , 3d 2’ (Z) i(i
dzd-1 2°2(d—1)"2d -2’ \ z, r (

M
lO

, (4.34)

w

MH
N— [ N—
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where z = z, is the tip of the surface satisfying t;(z«) = 0 and given by

_ I (o) . (4.35)
2T (i)

Then the resulting EE becomes
d—1
Riﬁé a2 | 1 2yl ( 2(d— 1)) 1
S = WL — — 5 Tz (4.36)
(d 2)G €AdS r (2(d—1)> 0

Let us perform the Wick rotation tg = ¢t. Simultaneously, we also replace with Ty — 7y,
then the subsystem becomes —Ty/2 < t < Tp/2.

T R L1 (A () i
S( ) _ s 142 _ = ) . (4.37)
)

2a—2ad |22\ (G T2

is sensitive to dimensions and the term depends

Note that the imaginary factor (—i)?=2
on the width of strip 7. These features are highly different from the spherical case and
counterintuitive as we will see soon.

Unfortunately, in the strip case, we do not have a clear interpretation as the bulk

extremal surface in the Lorentzian Poincaré AdSg4

dz? — dt* + dy* + dx>

ds*> =R 4.38
S AdS 22 ) ( )
for which the extremal surface are obtained by varying a functional
1— t’
AdS Ld 2 / dzYr—— "0 (4.39)
The Euler-Lagrange equation leads to
t'(z)
— =C, (4.40)

1—1t(2)?

where C is a real constant. The leading area term proportional to egécé can be reproduced
because it does not depend on the integral constant C, in other words it is determined only
from the information around the boundary z = 0. On the other hand, the sub-leading term
of the area of (4.40) depends on C. As noted above, whether the sub-leading term is real
or imaginary is sensitive to the dimension d, thus there seems to be no proper constant
C that reproduces the result by Wick rotation since C' should be real. One observation is
that the imaginary part of (4.37) is reproduced by considering in the continued coordinate
z = iZ and simultaneously performing z, = iZ,. This is easily understood because this
analytic continuation is equivalent to Ty — i1y through (4.35). This idea looks similar to
the procedure in section 3.2, but we do not have a clear construction of this surface in the

complexified geometry as we had there.
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However, if we follow a higher dimensional extension of the prescription shown in
the end of section 3.2, we would obtain a different result because this assumes either
timelike or spacelike extremal surfaces instead of the complexified surface. In this way, the
comparison between the holographic timelike EE in higher dimensional CFTs and its field
theoretic computation when the subsystem A is a strip, look non-trivial. We will leave
better understandings of this for a future problem.

5 Holographic pseudo entropy in dS/CFT

In this section, we study the holographic properties of quantum entanglement in de Sit-
ter spacetime and its relation to the timelike EE in AdS/CFT. The dS;4+1/CFT4 corre-
spondence [24] is a conjecture for holographic duality between the quantum gravity on
d + 1-dimensional de Sitter (dS4.1) space

ds®* = Rig(—dr? + cosh? T dQ3), (5.1)

where in is the metric of the unit sphere S? and a d-dimensional Euclidean CFT defined
on the future boundary (=~ S%) of dSy,1.

The dS/CFT dictionary analogous to the GKPW relation [66, 67] in AdS/CFT is
given by

Vas[po] = ZcrT|do)- (5.2)

The left-hand side W4g[¢o] is defined as a path integral over all fields ¢ on dSz41 with fixing
the boundary condition ¢g at the future boundary:

Wys[¢o] = / D¢ etlasloy, (5.3)
(b“":‘f'oo =d¢o

where W;, denotes an initial state at ¢ = 0. Throughout this paper we only focus on the

Hartle-Hawking initial state [68], which is prepared by the path integral on a half of the

Euclidean dSg41(~ B?) given by the Wick rotation g = i7:

ds® = R3g(dr + cos? T dQ3). (5.4)

Therefore the geometry can be seen as the gluing of the Lorentzian dS 41 and the Euclidean
dSg+1 along 7 = 75 = 0 as depicted in figure 1. On the other hand, the right-hand side
is a generating functional of correlation functions with ¢g being sources. It is defined by
the Euclidean path integral with the measure [D® e~ lerrl® ) where @ is a collection of
fields of the CFT. Due to the relative i factor in the exponential of the two path integrals
in (5.2), we can predict that the dual CFT to dS may be non-unitary. Indeed, it is known
that the central charge of the CFT,; dual to dSz4;1 takes complex-valued [69]

d—1
-1 RdS

GS\C;H) :

¢~ (=)

(5.5)
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This can be easily checked by using the relation of the AdS radius to the dS radius:
Rags = —iRqs. Therefore we can see that (at least when d # 1 mod 4) the dual CFT is a
non-unitary theory. For example, when d = 2 the Brown-Henneaux’s formula [70]

3RAds

= 5.6
CAds = o (5.6)
gives the central charge of the dual CFT to dSs
3R
c= —i2ij = —icgs, (5.7)

where we have defined cqs = 3R4s/2G N .

We would like to define the entanglement entropy in the dual CF'T, which is defined on
S? at the future 7 = 75 > 1 with a large radius cosh 75, ~ %GT‘X’. We choose an arbitrary
direction in S% as an imaginary time tg and take a subsystem A on a time slice tg = 0.
Note that the imaginary time tg is different from the time 7 in the global dS with the
metric (5.1). A state on the time slice is prepared by path integral as usual. However,
since the CFT is non-unitary, a ket state |¥) and a bra state (¥|, which are prepared by
the path integrals of the past and future halves of S? with the same insertions of operators,

are different in general, i.c. (U] # |¥)T. Therefore we should call the operator
o= W) (v (5.8)

as a transition matrix instead of density matrix following [35]. This discussion is similar to
that for timelike entanglement entropy in section 2.2. For this reason, henceforth we call
the quantity

ST = —tr[palog pal, pa=trip (5.9)

as pseudo entropy. Thus in dS/CFT, we expect that the holographic relation analogous
to holographic entanglement entropy in AdS/CFT holds for pseudo entropy, which can be
imaginary-valued, rather than entanglement entropy.

5.1 Holographic pseudo entropy in dS;/CFT,

In this subsection we restrict ourselves to the three-dimensional dS space given by

ds® = R3g(—dr? + cosh? T(dt} + cos® tgdh?)), (r>0) (5.10)
with the Euclidean part corresponding to the initial state

ds® = R3q(dr + cos® T (dt} + cos? tgdf?)), (0 < 75 < 7). (5.11)

On the boundary 7 = 7., we take a subsystem A on a time slice tg = 0 as an arc of a region
—¢0/2 < ¢ < ¢o/2. In this case, the pseudo entropy of the CFT dual to dSs is expected to
dual to the geodesic length. However, there seems to be a problem that we cannot connect
the two edges A by a single geodesic because a geodesic emanating from an edge of A
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should be timelike so that it cannot turn back to the other edge of A in the global dS.
Indeed, if we naively apply the geodesic formula, the length takes an imaginary value

D = Rgs cos™ ! (cosh? 7, cos ¢pg — sinh? 7,

— 1 o

~ 1 Z 62T 2

~ Rgs cos ( 5€ T cos 5 > (5.12)
= mR4s — 2t Rqs log (eTw cos d;o) )

Hence this is not a geodesic in the usual sense. Nevertheless we can give an interpretation
to this result as follows. Remember that we are considering the Hartle-Hawking wave
functional, i.e. the gluing of dSs and the Euclidean dS3 at 7 = 7 = 0. In this geometry,
we have one possibility that a timelike geodesic emanating from an edge of A goes through
the Euclidean part of geometry and turns back to the other edge of A, as depicted in
figure 23a. Let us assume this configuration and impose the “extremality” condition that
both the real and imaginary parts of the length is extremized.

We fix the points that the two timelike curves from ¢y/2 and —¢y/2 will attach at
7 =0 as ¢ and ¢o. First we consider the real part. The geodesic length of the Euclidean
part is obtained by varying the length functional

Ras /th\/l + cos? tg (dth)f (5.13)

dig

with suitable boundary conditions. This is the same problem with varying (3.11) except
for the absence of the overall i, so there is a condition

oL — o= (5.14)
and the resulting length is
TRys. (5.15)

Therefore the geodesic takes the largest length in the hemisphere, depicted as a green line
in figure 23a. Next we consider the imaginary part. The sum of geodesic length with fixing
&1 and 152 is
-1 o~ -1 P | ~
Rgs cos cosh 7o, cos 5 ¢1 )| + cosh cosh 7o, cos 5 + @9
~ 1Rqs log [627“’ cos (QZ;O — <;~51) coS (d;o + (232)]
1 -
= iRgg log [—262T°° (cos ¢o + cos 2@51)} ,

where in the second equality we have used the condition (5.14). From the condition that
the derivative with ¢; vanishes, we have sin 2¢; = 0, leading to

(5.16)
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(a) Global dSs (b) Poincaré dSs

Figure 23. The geodesic configuration whose length reproduces the pseudo entropy in the dual
CFT. The red curve means the timelike geodesic, which contributes to the imaginary part of the
pseudo entropy, and the green curve is the spacelike geodesic giving the real part, which goes
through the boundary of the hemisphere B3. The left panel (a) shows the global dS3 and the right
panel (b) shows the Poincaré dS3, which is depicted as the blue region, embedded into the Penrose
diagram of the global dSs.

Then the contribution from the timelike geodesic reads
. oo e PO
—2iRgs log | €7 sin 5 ) (5.17)

Thus the sum of (5.15) and (5.17) is identical to the naive calculation (5.12).
From the calculations above, the holographic pseudo entropy is

1
s [—QiRds log (eTOO sin ¢;> + 7I‘Rds:|

SR (5.18)
= —z’cd?s log ( " ) + WCGdS, (e =2e7 ),

where cqs = 3Rgs/2G n. Thus the pseudo entropy always takes a complex value.

Another observation from the result and the geodesic configuration in this subsection
is the similarity with the timelike entanglement entropy in AdS/CFT we discussed in
subsection 3.2. In the next subsection, we will elaborate the relation between the two
notions.

Finally let us describe an interpretation of the result in the Poincare dS;

—dn? + dt% + dx?
Uk '

ds® = R3g (5.19)

In the Poincaré dSs, the geodesic configuration looks like the one depicted in figure 23b,
where the blue region is the Poincaré patch embedded into the global dS3. In that figure,
the timelike geodesics (green ones) satisfy

T2
—n? 4 2? = ZO’ (5.20)
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whose area is
X
—2iRgs log =2 (5.21)
€

where we took a cutoff at 17 = e. The red line in figure 23b is spacelike and the length is

mRas. (5.22)
Therefore the sum of the lengths matches the global dSs calculation by identifying Xg =
2sin 2.
2

5.2 Relation to timelike entanglement entropy

In this subsection, we relate the pseudo entropy in dS/CFT to the timelike entanglement
entropy in AdS/CFT. We will see that pseudo entropy for dS/CFT and timelike entan-
glement entropy in AdS/CFT can be regarded as the two different analytic continuations
from the Euclidean AdS (EAdS).

Let us first consider the analytic continuation from EAdSs to dSs. For simplicity, we
consider the Poincaré coordinates in EAdS3

dz? + dt + da?
22 '

d82 = RQAdS (523)
For later convenience, now we regard x as the time direction and take a subsystem A as
an interval with length Ty on the cutoff surface z = eagqg. Of course, whether we take
the subsystem as “temporal” or “spatial” is not essential in this phase because we are
considering the Euclidean theory. The entanglement entropy for A is

Tt
Sy = SAdS log< 0 > : (5.24)
€AdS

where caqg is the central charge of the CFT dual to EAdS and in the bulk language
cads = 3Raqs/2GnN. The analytic continuation to dS is accomplished by Wick-rotating
the radial coordinate z as

z=—in (5.25)

and simultaneously the radius as®

Rpqs = —iRgs. (5.26)
Indeed, from these Wick rotations the metric (5.23) is continued to the metric of dS in
Poincaré coordinate

—dn? + dt}, + da?

2 2
dS = RdS 772

(5.27)

8Note that this is a different convention from the one adopted in [27].
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dSs

AdSs

Figure 24. The analytic continuation of dSs to AdSs. This is accomplished by the double Wick
rotation (5.34).

Let us take this analytic continuation for the entanglement entropy (5.24). The cutoff and
the central charge are deformed as

€AdS = —1U€dS, (5.28)
3R aas 3Ras .
e = — = — 5.29
CAdS = O & O icqgs, (5.29)

then the pseudo entropy becomes

T
SI(L‘P) _ _Z‘Cdi log (0> + ﬂ-cds7 (5.30)
3 €4S 6

which is consistent with a result of [27]. Note that we choose the branch of the logarithmic
function as taking the conventional principal value —w < argz < 7.

Next we consider another analytic continuation which takes EAdS to the Lorentzian
AdS. We adopt the usual Wick rotation

tg =1t (5.31)
and simultaneously replacing the parameter Ty with

In this case, the cutoff and the central charge do not change. Therefore we have

T 1TCAdS
G(T) _ AdS ( 0 > . 5.33
A 3 0g A + 6 ( )

Intuitively, we can interpret the relation between the two notions as connected by the
“double Wick rotation”

n—z=—in, tgp — t = —itg. (5.34)

We can regard this as rotating the Penrose diagram by 90° (see figure 24) and the additional
parts of the entropy as the effect of the boundary condition at the center of the diagram.
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Next, we discuss in terms of the global coordinates. Since we are regarding tg as a
spatial coordinate, Let us start with the global dSs (5.10) with swapping tg and 6:

ds® = R3g(—dr? + cosh? 7(d6* + cos® 0dt},)). (5.35)
As discussed above, the holographic pseudo entropy for a subregion of —T/2 < tg < Ty/2
takes
(P) cds 2sin 2 TCds
Sy’ =—i—>log 2+ : (5.36)
3 €4S 6

where eqg = 2e77>°. We perform the following analytic continuation
p =10, Rgs = 1iRaqs (5.37)
and replace 7 — n and tg — t, then the metric becomes
ds® = R345(dn? + cosh? n(— cosh? pdt* + dp?)). (5.38)

Correspondingly, we replace as eqs — €ads, ¢as — icaqgs in (5.37), then

2sin 20 ]
S0 _ CAdS ) 2 ) 4 [TOAdS (5.39)
5.3 Higher dimensions
Let us move on to extension to higher dimensions. We consider the Poincaré dS;1
—dn? + dtZ, + dy? + dx?
ds®> = Rig £ . (5.40)

Ui

As in the previous subsection, we regard tg as a spatial direction for later convenience. We
take a subsystem A as a sphere with a radius 7(/2 on a slice y = 0. It is useful to introduce
a radial coordinate £ = \/t% + x2, then the subsystem is defined by & < Tp/2.

Analogous to the three-dimensional case, we consider the timelike surface

T2
—n?+ &= TO' (5.41)
The area of this surface is
00 d—2 T [eS) 2 T2 /4 =3
RiSVol(S772) / dn—5 1+ & (n)? = i?ORfjglVol(Sd_Z) / dn (" + d{/l )2 (5.42)
€ n € n
d—1 iy [, (DT
= iR3q Vol(S™ dy——————— 5.43
iRl Vol >/u — (5.43)
The integral is identical to (4.14). Similarly, the real part is given by a geodesic
T2
pog =T (540

— 50 —



whose area is evaluated as

o) 2 a-3 ﬁr —1
—1
R(Oilgl\/Ol(Sd_Q)/l dnw — Rgsl\/Ol(Sd_Q)() (545)

Therefore we have obtained the pseudo entropy

d— d—1
S,(AP)_ RdSI Vi I(SdQ)ﬁF( 2 )
4GS 2r ()
% d—3 d—2k—2
a3 1 To\ 42k
2 —— (2 d : odd
-1 k:0< k )d—Qk—2 (26> (d: odd)
+i Eidsﬂ)v 1(s42) ¢
4G i2as\ o qnde2 D(GY) g
2 () + log =2 (d : even)
k ) d—2k—2 €

(5.46)

We can easily check that this result is related to the timelike entanglement entropy (4.9)
and (4.10) in AdS;y1/CFTy by an analytic continuation

Rgs — 1RaAgqs, €4s — teaqs, 1o — 1o, VOl(Sd_2) — (—i)d_2V01(Hd_2). (5.47)

Next, let us discuss the extremal surface in the global dS411. The following discussion
is parallel with that in section 3.2. As a generalization of (5.10), we consider dSgz.1 with
a metric

ds®> = R3g (—d72 + cosh? 7 (dt% + sin? tg dQZ_l)) , (5.48)

where d23_, denotes the metric of the unit sphere S%1. We regard a coordinate 6 of S~!
with dQ?l_l = dh? 4 cos? 0 dly_o as a time direction. As described above, this is glued with
the Euclidean geometry with the metric

ds®> = R3g (dﬁ% + cos? Tr(dt? + sin® tg del_l)) (5.49)

at 7 =0.
First let us consider the Lorentzian part. We consider the codimension-2 surface given
by tg = tg(7) on # = 0. The induced metric for the surface is

ds* = R’q {(—1 + cosh? 7 t}2)dr? + cosh? 7sin® t dQ?l,Q} . (5.50)
Then the pseudo entropy is evaluated as the extremal value of a functional
Rig' d d d
4G?ds+1) Vol(S972) /dT\/—l + cosh? 7t ()2 cosh® 2 7 sin® 2 . (5.51)
N

In the same manner as section 4.1.3, we can obtain the solution of the Euler-Lagrange
equation with a boundary condition tg(7 — 00) = T/2:

T
costy = cos ?0 tanh 7. (5.52)
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Note that for 7 = 7, the surface ends on tg = 0. Inserting this solution, we can evaluate

the contribution from the timelike surface

Ris' dogy [Fn 3 s 2y 453 Ris' d—2
-5 yo](s-2) / du(l + )5 =i Vol(S4-2) (5.53)
1GFD 0 4G
d—3
7 /d-3 ig Lo\ 42k—2
== 1 sin <2
2 2 d : odd
ko(k)d—2k—2< % ) (d: odd)
s
4 ok _
22 (d=s 1 sin 22 d-2h=2 F(dTl) sin 20
2 T ok 3| 3 + = log (d : even)
k=0 ek ¢ vVl (5) €

(5.54)

Next we move on to the Euclidean part. The induced metric for a surface tg = tg(7g)

defined on a 8 = 0 slice is
ds® = R3g {(1 + cos? T 1) dri + cos® g sin® tg dQZ_Q} , (5.55)

so we would like to evaluate the extremal value of

Rdfl
4 N

Varying this integral, we obtain the solutions
costg = C'tan 7, (5.57)

where C is an arbitrary constant. The contribution from these solutions is

Rd—l \/’TTF d—1
?il)vol(gd?)(;). (5.58)
4G 2r ()
Thus the holographic pseudo entropy have been obtained by
d—1
Rl vl (5 RiS!
S =8 _yio)(s9-2) ), Vol(S*2) (5.59)

+1
4G(d+1) oT (%) 4G(d+1)

d—3
2 /d-3 d—2k=2
=5 1 sin =
2 :
,;)(k)d—zk—Q( 2 ) (d:odd)
=
d_ _
2 =3 1 sin 22 -2k F(%) sin 22
Z P ey 5 —|—7dlog ——= ] (d:even)
g\ ka2 CIORISE

(5.60)

which can be regarded as a generalization of the three-dimensional case (5.18).
Here we make a comment on a proposed holographic calculation of EE [30, 31] in
dS4/CFTs, in which a concrete example is known; a duality between a higher-spin gravity

~52 -



on dSy and large N Sp(N) vector model [25]. The authors of [30, 31] claimed that the
leading term of the holographic entanglement entropy in dS;41/CFTg4 has an overall factor
(—i)%~1, so that the entanglement entropy takes real-valued when d = 3. For example, the
leading area term takes the form

R} Vol(s!)
el

(5.61)

One might think that this is not consistent with our calculation, in which the leading term
always takes imaginary-valued. However, this is actually consistent with the imaginary
part of our calculation. To see this, we have to be careful for definition of the cutoff €. As
noted above, the cutoffs in AdS and dS are related by exqs = —ieqs. In fact, the cutoff €
in (5.61) is the one defined in AdS, i.e. eaqs. Therefore if we rewrite (5.61) by using eqs,
then the result is imaginary and consistent with the leading term of our calculation.

On the other hand, the real part in (5.46) is a new ingredient of our calculation. We
can see that the real part

Rggl Vol(Sde) ﬁr (%1)
oT (g)

(5.62)
4G\
is identical to a half of the de Sitter entropy in dSg41.

6 Conclusions and discussions

In this paper we introduced a new quantity called timelike entanglement entropy (EE)
and studied its properties from both the field theoretic and the holographic viewpoint.
The timelike EE S1(4T) is defined by changing a spacelike subsystem A into a timelike one.
This is also equivalent to flipping the role of the time and space coordinates. We present
analytical expressions of timelike EE in two dimensional CFTs based on both the replica
method analysis and the numerical computation in free field theories. This quantity has a
universal imaginary part and can be regarded as a special example of pseudo entropy.

Next we considered a holographic calculation of timelike EE by extending the holo-
graphic entanglement entropy. Through calculations of holographic timelike EE in the
basic examples of pure AdSs and BTZ, we propose the following definition for the holo-
graphic timelike entanglement entropy. Given a timelike boundary region A we consider
the union of timelike and spacelike extremal surfaces which form a single simply connected
surface which is homologous to A. We call such a surface a “path” and the collection of
all such paths {T'4}. Over this space we vary the joining points and keep only those paths
which are stationary with respect to this variation {I'j}. In general, these paths include
timelike geodesics which produce the imaginary part of timelike EE. This implies that the
time coordinate emerges from the imaginary part of the timelike EE (or pseudo entropy)
generalizing the familiar idea that the space coordinate emerges from the entanglement
entropy.
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In the examples of section 3 we did not construct all possible paths. Instead, only
those paths were considered which allowed for the imaginary part to be maximal which
matched the expectation coming from the boundary calculation via Wick rotation. This
essentially forced the joining parts to lie as far to past or future as possible such that they
occurred on horizons or singularities. In order for the answers to agree this was essentially
necessary. It is possible that more care will be needed in defining the correct set of paths
to optimize with respect to. It is possible that a generalization of the ‘Hartle-Hawking’
like geometry shown in figure 9, which provided the specific locations of joining points of
paths in global AdS3, may provide additional insight.

Also in principle there may be multiple stationary paths with different complex val-
ued areas in which case it is necessary to distinguish between them in order to correctly
determine the path that corresponds to the timelike entanglement entropy. This already
happened for the two party timelike entanglement entropies which exhibit a similar con-
nected /disconnected transition compared with their spacelike counterparts. However, when
considering the timelike mutual information for the examples presented we found it as de-
fined to always be entirely real. As such for this specific situation it seems natural to
select the saddle for which the timelike mutual information is maximized. This is however
a prescription highly specific to the setups considered. One would desire a set of concrete
rules to distinguish between stationary paths of different complex valued area. Presum-
ably such a general prescription for multiple saddles will include some comparison of the
relative magnitudes of the imaginary and real components of the areas of these saddles.
At the present we are agnostic as to what the correct prescription is, additional explicit
examples which include multiple saddles are needed to make further progress.” We leave
such explorations to future work.

For the shock wave geometry and local operator quench we found the surprising result
that the timelike entanglement entropy of a single region on one boundary is dependent
on the shock wave and is capable of probing beyond the horizon. This conclusion was
confirmed by explicit CF'T calculations which implement the careful Wick rotation of the
boundary CFT. This demonstrates that to determine the timelike entanglement entropy it
is generally incorrect to simply analytically continue the entanglement entropy and more
care must be taken. As a consequence the timelike entanglement entropy could play a larger
role in our understanding of black hole information and the interior and the emergence of
spacetime geometry from entanglement.

We also studied a higher dimensional generalization of holographic timelike EE. This
is straightforward for hyperbolic subsystems. However, the holographic calculation turned
out to be very non-trivial for strip shaped subsystems, where a naive analytic continuation
of the holographic result from the spacelike subsystem to timelike one is difficult to under-
stand from the extremal surface viewpoint. We leave a better understanding of this issue
for a future problem.

9See for example [22] which appeared while this paper was in preparation. Given multiple stationary
paths the authors suggest that only those with the smallest imaginary component should be considered and
among these the one of smallest real component selected. At present it is not clear to us that their or our
examples can fully distinguish between this or other possible proposals.
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Finally we also found that if we apply the idea of holographic EE to the dS/CFT,
we obtain a complex-valued entropy as the extremal surface consisting of both timelike
and spacelike pieces. This looks analogous to the holographic timelike EE, though the
imaginary part is universal in the latter, while it is not in dS/CFT. We argued that this
complex-valued entropy can also be properly understood as the pseudo entropy. We also
pointed out that the holographic pseudo entropy in dS/CFT is related to the holographic
timelike EE in AdS/CFT via a double Wick rotation. Furthermore, we found that the real
part of the holographic pseudo entropy can be interpreted as a half of the dS entropy in
any dimensions. Recently, it was argued [71] using algebraic considerations that the dS
entropy has the maximal entropy. Although their definition of entropy is distinct from
ours, relating these discussions to that of pseudo entropy is an interesting direction for
possible future work.
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A Calculation of thermofield mutual information for holographic CFTs

In this appendix we derive the thermofield mutual information for a 2d holographic CFT.
For a thermal state of inverse temperature 8 the boundary manifold is a cylinder of radius
B. We consider two intervals A = [uq,v,] and B = [up, vp] with

ug =a, v4q=0>0, uB:c—l—g, v32d+§, a<b, c<d (A.1)
this has the effect of placing the interval B on the opposite side of the cylinder. Such a set
up corresponds to placing one interval on each of the boundaries of the dual bulk geometry
which is the BTZ black hole [60].

The thermofield mutual information can be calculated using the replica method where
twist operators o4 are inserted at the end points of boundary regions. Note the twist
operators must be inserted with opposite ordering on one side due to the opposing time
orientation of the two boundaries (see e.g. [60, 72]). The correct prescription is shown in
figure 25.
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Figure 25. The boundary manifold With twist operator insertions for the calculation of tr(p% z).
The two intervals are placed a distance £ 5 apart in euclidean time. This corresponds to one interval
being located on each of the two boundarles of the BTZ black hole. Because the time runs in
opposite directions on the two boundaries the correct prescription requires that the twist operators
o+ be placed in the opposite orientation on one side.

The thermofield mutual information is defined as the mutual information for these
regions and is written in terms of the twist operators as

1 tr(ph) tr(p}h)
Jap =iy 7 los l tl‘?PﬁB)B ] (A.2)
= lim log [<UJ(UA)%(UA)>/3<0$(UB)%(UB)>,B] .
n>11—mn (0w (ua)on (va)on (uB)oid (vB))s

where n is the number of replicas which we will analytically continued and then take to
be one. To start we consider the two point functions which are entirely fixed by conformal
symmetry and given by

e |*An
(o o () = | 55— (A3
Here the conformal dimension A,, of the twist operators is given by
-1 1
A, = c@-Hn+1) (A.4)
12 n
and for convenience we have defined
Sij = smh( (1 — ])) Cij = cosh( (i —])) (A.5)
g p
It is also necessary to consider the 4-point function
(on (ua)oy (va)oy (up)ay (vB))s (A.6)

2w
We make use the conformal map z = e # which maps the cylinder to the plane

JAVS
27 27 27 27

5 2 (€7 oy (e P)a (e ) (AT)

where for a function f(¢) correlation functions of primary operators transform as

4
| (27T6> e%r(uA—i-vA-i-uB—i-vB)

n

(@(f(61)) - @(f(n))) = [T (65)] 72 (D(61) - - @ () (A.8)

J
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In order to evaluate the 4-point function

(o0 (21)0y, (22)0, (23)0, (24)) (A.9)

we need the twist operators to take the usual ordering. We make use of the Mobius
transformation

B (z—2z1)(24 — 23)
q(z) = R (A.10)

which maps z; — 0, 23 — 00, z4 — 1. 29 determines the cross-ratio « which is real with

0 <z <1 and given by

. CcaCdb T . Sbanc

SbaS,
_ PbaPdc =1 — 7= , — .
CiaCoe 1—2 CeaCap

= , t =
Cda ch

Ts =2

(A.11)

Using conformal symmetry the 4-point functions are related by [73]

n

4An
x(x—1) 3

221243241232231242

(o (a1)oy (g2)07 (43)07 (ga))-
(A.12)
This 4-point function is now in the standard form and for the large ¢ holographic limit can

(o7 (21)0,, (22)0, (23)0,t (24)) =

be expanded in vacuum conformal blocks [61] fo(x)
(o (@1)oy, (g2)7 (a3)0, (aa)) ~ che 870 =500 (A.13)

where ¢2 — 1 as n — 1. There are two ways fo can be expanded corresponding to the s
and t channels where to leading order fy is given by

n — 1) log(x), s-channel
folay = " 7 D1ost) (A1)
(n —1)log(l —x), t-channel.
Altogether the full 4-point function can be written as
4A 2A
n 1 n_(p—1)E
o ey ot ea)a = (5) e lgg| el )
We are now prepared to calculate the thermofield mutual information. Gathering the pieces
we have
1)<
. xgt )3 Cdach 28n
Jap = lim lo :
n— —-n 0721 SbaSde
(A.16)
c 1 ( SbaSde )
=-lo
3 Zst \CaaCop
so that g g
c bardc
Jap = — max (0,10 { }) A7
b 3 8 Ccacdb ( )

as required.
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