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Barrier penetration with a finite mesh method
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A standard way to solve the Schrödinger equation is to discretize the radial coordinates and apply a numerical
method for a differential equation, such as the Runge-Kutta method or the Numerov method. Here I employ a
discrete basis formalism based on a finite mesh method as a simpler alternative, with which the numerical com-
putation can be easily implemented by ordinary linear algebra operations. I compare the numerical convergence
of the Numerov integration method to the finite mesh method for calculating penetrabilities of a one-dimensional
potential barrier and show that the latter approach has better convergence properties.
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I. INTRODUCTION

In most physics problems, the Schrödinger equation cannot
be solved analytically but has to be solved numerically. For
a bound-state problem, one may expand wave functions on
some finite basis and diagonalize the resultant Hamiltonian
matrix. Alternatively, one may discretize the radial coordi-
nates and successively obtain a wave function at the mesh
points with, e.g., the Runge-Kutta method or the Numerov
method [1].

A yet different method, referred to as a discrete-basis for-
malism,1 has been proposed in Ref. [2]. In this method, one
first forms a Hamiltonian matrix based on discretized radial
meshes and solve it with a linear algebra with appropriate
boundary conditions. An advantage of this method is that the
method is well compatible with a many-body Hamiltonian,
in particular in a configuration-interaction formulation [6–8].
Notice that the discrete-basis formalism is referred to as a
three-dimensional (3D) mesh method in the context of nuclear
density-functional theory [9–14].

Even though the discrete-basis formalism has been applied
to an induced fission problem [2–5,7], its applicability has not
yet been clarified, at least for a scattering problem. In this pa-
per, I therefore apply the discrete-basis formalism to a simple
one-dimensional barrier penetration problem and carry out a
comparative study of the numerical accuracy. To this end, I
consider a Gaussian barrier and compare the penetrabilities
obtained with the discrete-basis formalism to those with the
standard Numerov method.

The paper is organized as follows: In Sec. II, I detail the
discrete-basis formalism for a one-dimensional problem. In
Sec. III, I apply it to a barrier penetration of a one-dimensional
Gaussian barrier and discuss the applicability of the discrete-
basis formalism. I then summarize the paper in Sec. IV.

1Even though the term “discrete-basis formalism” was not intro-
duced in Ref. [2], the method given in Ref. [2] is equivalent to the
discrete-basis formalism shown in later publications [3–5].

II. DISCRETE-BASIS FORMALISM FOR BARRIER
PENETRATION

Consider a one-dimensional system for a particle with
mass m under a potential V (x). The Hamiltonian for this
system reads

H = − h̄2

2m

d2

dx2
+ V (x). (1)

I discretize the radial coordinate as xi = xmin + (i − 1)�x and
consider the model space from x1 = xmin to xN ≡ xmax. Using
the three-point formula for the kinetic energy in H , the Hamil-
tonian (1) is transformed to a matrix form of

Hi j = −tδi, j+1 + (2t + Vi )δi, j − tδi, j−1, (2)

where t is defined as t = h̄2/2m(�x)2 and Vi ≡ V (xi ). The
wave function φi ≡ φ(xi ) then obeys

−tφ0δi,1 +
N∑

j=1

Hi jφ j − tφN+1δi,N = Eφi. (3)

In the absence of the potential V , the wave function φ(0)
n

obeys the equation

−t
(
φ

(0)
n+1 − 2φ(0)

n + φ
(0)
n−1

) = Eφ(0)
n . (4)

I consider a free-particle solution given by

φ(0)
n ∝ e−ikn�x − eikn�x. (5)

Substituting this into Eq. (4), one finds

cos (k�x) = 1 − E

2t
. (6)

In the presence of the potential V , I consider the case where
the particle is incident from the left-hand side of the potential.
Assuming that the potential V almost vanishes at xmax, the
wave function φN+1 is given by φN+1 = eik�xφN . Substituting
this into Eq. (3), one finds

φi = [(H̃ − E )−1]i1tφ0 ≡ Gi1tφ0, (7)
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where H̃ is defined as H̃i j = Hi j − teik�xδi,Nδ j,N , and the
Green’s function G is defined as G = (H̃ − E )−1.

Assuming that the potential V (x) is negligible at x = x1

and x2, the wave functions at these points are given as linear
superpositions of e±ikn�x with n = 1 and 2, respectively. I
parametrize the coefficients of the linear superpositions in
terms of t and the wave function φ0 as

φ1 = (Aeik�x + Be−ik�x )tφ0, (8)

φ2 = (Ae2ik�x + Be−2ik�x )tφ0. (9)

This is equivalent to assuming

G11 = Aeik�x + Be−ik�x. (10)

Substituting Eqs. (8) and (9) into Eq. (3) and using Eq. (6),
one finds

Ae2ik�x + Be−2ik�x = 2 cos (k�x)G11 − 1

t
. (11)

Combining this with Eq. (10), one finds

A = e−ik�x

eik�x − e−ik�x
(eik�xG11 − 1/t ), (12)

B = − eik�x

eik�x − e−ik�x
(e−ik�xG11 − 1/t ). (13)

Writing the wave function φN as φN = GN1tφ0 ≡ Teik�xtφ0,
the penetrability P(E ) reads

P(E ) =
∣∣∣∣
T

A

∣∣∣∣
2

=
∣∣∣∣
2 sin (k�x)GN1

eik�xG11 − 1/t

∣∣∣∣
2

. (14)

III. PENETRABILITY OF A GAUSSIAN BARRIER

Let us now numerically evaluate the penetrability for a
given potential. For this purpose, I consider a Gaussian po-
tential,

V (x) = V0 e−x2/2s2
. (15)

Following Refs. [15–17], the parameters are chosen to be V0 =
100 MeV and s = 2 fm together with m = 29mN , where mN is
the nucleon mass, to mimic the fusion reaction of 58Ni + 58Ni.
I set xmin = −10 fm and xmax = 10 fm.

The upper panel of Fig. 1 shows the penetrabilities of the
Gaussian barrier obtained with �x = 0.05 fm. The dashed
line and the solid circles denote the results with the standard
Numerov method and the discrete-basis formalism, respec-
tively. The value of �x is small enough in this case, and both
the methods lead to accurate results. The lower panel shows
the results with a larger value of �x, that is, �x = 0.15 fm.
In this case, the numerical error is significantly large with the
Numerov method: the penetrabilities do not reach unity even
at energies well above the barrier (see the dashed line). This
is the case also with the modified Numerov method [18], with
which the penetrability even exceeds unity at high energies
with a nonmonotonic behavior (see the dotted line). In marked
contrast, the results with the discrete-basis formalism is rather
robust and the penetrabilities are almost the same as the one
with �x = 0.05 fm shown in the upper panel. Notice that
the discrete-basis formalism employs the simple three-point
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FIG. 1. The penetrabilities of a Gaussian barrier given by
Eq. (15) with V0 = 100 MeV and s = 2 fm. The mass is set to be m =
29mN , where mN is the nucleon mass. The upper panel is obtained
with the Numerov method (the dashed line) and the discrete-basis
formalism (the filled circles) with the mesh size of �x = 0.05 fm.
On the other hand, the lower panel shows the results of the Numerov
method (the dashed line), the modified Numerov method (the dotted
line), and the discrete-basis formalism (the solid line) with a mesh
size of �x = 0.15 fm.

formula for the kinetic energy, while a more sophisticated
formula is used in the Numerov and the modified Numerov
methods. Yet, it is interesting to notice that the discrete-basis
method is numerically more stable than the Numerov and the
modified Numerov methods. I point out that �x cannot be
taken larger than (2h̄2/Em)1/2, though. If �x exceeds this
value, the right-hand side of Eq. (6) exceeds unity and the
wave number k cannot be defined unless it is extended to a
complex number.

IV. SUMMARY

I examined the applicability of the discrete-basis method
for a reaction theory. To this end, I considered barrier
penetration of a one-dimensional Gaussian barrier. It was
demonstrated that the discrete-basis method provides a more
accurate and stable method than the standard Numerov
method. This property may be helpful in obtaining numeri-
cally stable solutions of coupled-channels equations [19,20].

The discrete-basis formalism has a good connection to
a many-body Hamiltonian. As a matter of fact, there have
been several applications of this method to microscopic
descriptions of induced fission. In such applications, absorb-
ing potentials, or imaginary energies, are introduced to a
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model Hamiltonian, and the absorbing probability is com-
puted with the so-called Datta formula [2]. Even though the
model setup is somewhat different from a barrier problem
in one-dimension, in which there is no absorbing part in the
Hamiltonian, the conclusion in this paper would remain the
same in the fission problem as well.
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