
A manual for instant computational tool for optothermal fluidics
— Supplemental Material on “Semianalytical model of optothermal fluidics in a confinement [1]” —

Tetsuro Tsuji,∗ Shun Saito, and Satoshi Taguchi

Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan
(Dated: December 13, 2024)

This is a manual for a open-source software written either Python (otf.py) or Fortran (otf.f90).
The software provides an instant computational tool for optothermal fluidics for situations described
in Ref. [1]. This document and related source codes are subject to update. Latest versions will be
available from the Kyoto University database (KURENAI) (see Ref. [2]).

> transport coefficients 
    (e.g. thermal conductivity)
> absorption coefficients
> slip coefficientts
> geometry 
   (e.g. thickness)
> laser details 
    (e.g. beam width)

thermal convection
thermo-osmotic slip

laser

coefficien
conduc
 coefficie
ientts ther

ther

surface heating

coefficients coefficients 
conductivity)
 coefficients

tsts ther
ther

laserlaselaselaselasesurfsurface ace heatheatingingingingingingsurf heatheatsurf heatheat

fluid heating
input file

python or fortran

× slow  (≲ 1 min)

output (raw data, plot, etc)

≲
× need few install cost

STEP 1  prepare your 

STEP 2  run the code of 

STEP 3  temperature & flow fields are given as

wait seconds...

INPUT

overview of instant computational tool for optothermal fluidics

FEATURES OF CODES

Two choices are available:

1. Python code: otf.py

• A standard Python environment such as jupyter
notebook or Spyder can be used. A single Python
file otf.py, which is written in a naive manner, is
all needed; no complicated install process is neces-
sary.

• Plots of temperature and flow fields are generated.
See examples case A and case B in Ref. [1] shown
in Fig. S1.

∗ tsuji.tetsuro.7x@kyoto-u.ac.jp; corresponding author

• Python code is slower compared with a Fortran
code (several tens of times slower).

• Use the Python code if you
– want to compute only a specific case.
– only need some coarse information such as the
order of magnitude, the flow direction, etc.

– do not want to pay costs and time.

2. Fortran 90 code: otf.f90

• Installation of a Fortran environment is necessary.

• Unix environment is expected. See Sec. B below
for advanced options.

• Fortran code is faster compared with a Python pro-
gram (several tens of times faster). Data in Ref. [1]
are produced by the Fortran version.

• All the data are exported in ASCII format. You
can use your familiar plotting tools.

• Preliminary plotting is supported using a software
Tecplot 360 and its macro script.

• Use the Fortran code if you
– want to compute systematically over a wide
range of physical parameters.

– want some high-resolution information over
whole computational domain.

Both codes read an input file 00input-XXXXXX.txt (sam-
ple file for case A in Ref. [1]). The input file includes
physical and computational parameters; any six charac-
ters XXXXXX is a specific ID for input files. The prefix
“00input-” is mandatory and the input file should be
located in the same directory as the Python (or Fortran)
code.

STEP 1: PREPARE AN INPUT FILE

• Create your input file with a name, e.g.,
00input-000000.txt. Figure S2 is an easy guide
to prepare the values in the sample file according
to your setup. The default values of this sample
input file represents the case A in Ref. [1].

• An excel sheet input-generator.xlsm [sample for
a reference case in Fig. 8(a) of the main text] is
available to produce the input files systematically
for various parameter sets.

https://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/287529/9/otf.py
mailto:tsuji.tetsuro.7x@kyoto-u.ac.jp; corresponding author
https://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/287529/8/otf.f90
https://tecplot.com/products/tecplot-360/
https://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/287529/5/SAMPLE_00input-XXXXXX.txt
https://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/287529/5/SAMPLE_00input-XXXXXX.txt
https://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/287529/5/SAMPLE_00input-XXXXXX.txt
https://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/287529/2/SAMPLE_input-generator.xlsm


2

• The name of the parameters are same as those in
the main paper [1]. However, some of them need
additional description:

– Lattice in r-z space for contour plots is defined
as Fig. S3(a). Nr (# of grid points in r direc-
tion) and Nz (# of grid points in z direction
in the fluid) determine the spatial resolution
of results. Same is true for Nz_1 and Nz_2. A
parameter Aspect determines the range of r of
the region of interest. That is, the size of the
fluid domain to be displayed will be Aspect*H
× H. Computational parameters Nr, Aspect,
Nz, Nz_1, and Nz_2 are NOT related to the
accuracy of the results.

– s_max0 and Nm are the computational param-
eters related to accuracy. s_max0 determines
the upper limit of the integrals with respect
to s for the inverse Hankel transform. Nm is #
of grid points in s space. Therefore, ideally,
large s_max0 and Nm are preferable. (Auto-
matic search option is available; See Sec. A
below.)

– Try the small values of Nr, Nz, Nz_1, Nz_2,
and Nm as an initial trial. For instance,
the computation in the Python code with
Nr=Nz=Nz_1=Nz_2=8 and Nm=16 will end in 3
secs.

STEP 2: RUN THE CODE

Run the Python code

• The Python code needs mpmath and gmpy2 pack-
ages for multiple-precision arithmetic. To install
them, just try pip install as

pip install mpmath
pip install gmpy2

You may also be required to update pandas.

• Put your input file in the same directory of your
Python code.

• Change ID specified by id=XXXXXX in the code.
XXXXXX is the same as ID in the input file name.

• Run the code and then you will soon get the results
in a new directory XXXXXX.

• For advanced options, see Sec. A below. In partic-
ular, to change the range of the view, truncate and
magnify options together with Fig. S3 is useful.

Run Fortran code

• Compile using a command (‘-o‘ option specifies
the name of execution file), e.g.,

ifort otf.f90 -o otf

(Note: command for compile may change depend-
ing on the detail of the Fortran environment.)

• Put your input file in the same directory of your
execution file otf. Download auxiliary files from
here and put them in the same directory.

• Run the code using the command below and
then you will get the results in a new directory
date_time-XXXXXX-arg, where arg can be freely
used as tags.

./otf XXXXXX arg

• For advanced option, see Sec. B below.

STEP 3: CHECK THE RESULTS

Outputs of the Python code

• The files with the prefix “OUTPUT-XXXXXX” will be
created in the directory XXXXXX.

• dimensional_quantities.png (sample png file for
case B) is the image file of macroscopic quantities,
i.e., temperature increase ∆T = T −T0 (left), tem-
perature gradient ∇T (center), and flow velocity v.
(see, e.g., Fig. S1.)

• macro-**.csv is the 2D array of the values in the
r-z plane, where “row 1” and “column A” are r and
z values, respectively. A tag ** indicates below.

– dT: temperature rise of fluid T − T0 [K]
(sample csv file for case B)

– dT_1: temperature rise of solid 1 T1 − T0 [K]
– dT_2: temperature rise of solid 2 T2 − T0 [K]
– Tr: partial derivative ∂T/∂r [K/m]
– Tz: partial derivative ∂T/∂z [K/m]
– vr: flow velocity vr [m/s]
– vz: flow velocity vz [m/s]

• parameters.dat (sample for case B) is the numer-
ical values of dimensional and nondimensional pa-
rameters, which are computed based on the pa-
rameters given in the input file. Note that when
the Reynolds number Re is not small, then the lin-
earization assumption may not be safe.

Outputs of the Fortran code

• All the output files are included in the directory
yyyymmdd_hhmmss-ID-tag such as

\20240227_171932-000031-ref------------

inside of which you find dbg directory. Two-
dimensional macroscopic profiles are contained
here. Each file has a header information (written
for Tecplot use). The overview of the contents are

– mac-sp-all.dat: nondimensional quantities

– mac-sp-all-dim.dat: dimensional quantities

– mac-sp-log-maxval.dat: maximum over
(r, z) plane of the solutions of the separated
problems (i.e., τ (x) and u(x,y)).

https://mpmath.org/
https://gmpy2.readthedocs.io/en/latest/
https://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/287529/1/fortran-aux-files.zip
https://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/287529/4/SAMPLE_dimensional_quantities.png
https://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/287529/6/SAMPLE_macro-dT.csv
https://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/287529/3/SAMPLE_parameters.dat


3

– mac-sp-tau-a0.dat: τ (a)

· · ·
– mac-sp-u-b2d2.dat: u(b2,d2)

In addition to temperature and flow fields, force F
are also computed in the Fortran code.

• The portions of the integrand, i.e., sτ̄ (x), −s2τ̄ (x),

s(∂τ̄ (x)/∂z̃), sū
(x,y)
r , and sū

(x,y)
z are stored in

integrad directory (see also the inverse Hankel
transform for semianalytical solution Eq. (21) in
Ref. [1]). These files can be used to check the be-
havior of the integrand.

• mac directory contains the maximum values over
(r, z) plane of macroscopic quantities. Each
file contains the physical and numerical param-
eters. The same files are copied in a directory
../summary; these are useful when comparing the
results over various parameters. For instance,
Figs. 8(a), 9(a), and 10(a) in Ref. [1] are created
using these dataset.

ADVANCED SETTINGS

A. Python code

Advanced options are available in the header zone in the
code (see the documentation in the code for detailed de-
scription):

• display_macro_val_on_console: Use if you need
outputs only in a console. No file will be created.

• manual_enter_parameter: Use if you enter pa-
rameters directly without preparing the input file.

• truncate: Use when omitting the display of solid
parts away from the fluid part (see Fig. S3(b)).

• magnify: Use when zooming up a specified region
in a fluid domain (see Fig. S3(c)).

• show_nd: Use when you need to see the nondimen-
sional quantities of separated problems (e.g., τ (a)

and u(a,c) in Ref. [1]).

• search_s_max & search_Nm: Use when the au-
tomatic search of nice values of s_max0 or Nm is
necessary. This option takes a bit of additional
computational time. The recommended values of
s_max0 or Nm will be displayed on the console and
parameters.dat.

• hdl_layout: Use when the layout option in
Python is used. The function plot_result() con-
trols the layout of the contour plots. Adjust as you
like the local variables fig and axsd there if you
need the well-ordered figure for publication.

• hdl_aspect: Use when you lock the aspect ratio of
the contour plots.

• ct_lv & clb_shk: Some contour settings.

• power: A parameter that controls the density of the
grid points of s space in the inverse Hankel trans-
form. Try to change when you want to decrease Nm
keeping the accuracy.

B. Fortran code

• OS is expected to be Unix. However, since this
limitation comes only from the file manipulation in
the code, the users will be able to modify easily
to accommodate with your environment. For non-
Unix users, rewrite the sentences in the code start-
ing with “call system(...)” according to your
operating system.

• Some preliminary plotting macros for Tecplot are
available. Opening these files with Tecplot leads to
comprehensive display of

– mac-sp_all-summed-vis.mcr: dimensional
and nondimensional macroscopic quantities.

– mac-sp_each-solution_***.lay: separated
macroscopic quantities τ (x) and u(x,y).

– integrand.mcr the part of integrand as a
function of s (i.e., the data in integrand di-
rectory) for various values of z̃. (This file is
used only for debugging and the display set-
ting is specialized to the case with Nz=20.)

• Some convenient scripts: 00run.sh can be used to
run all the input files in the working directory. Drag
and drop 00export_allframes.mcr to the working
Tecplot window creates the eps and png files.

C. Technical comments

Some trouble shooting is introduced as follows.

• If you get FileNotFoundError in the Python code,
check whether your current directory displayed in
the console is an intended one. (Use a command
os.chdir(’C:\Users\...’) to change the work-
ing directory.)

• Choosing large values of H, H1, H2 and/or small
w0 results in the appearance of large numbers in the
exponential, cosh, and sinh functions. To handle
these large numbers, the Python code employs the
floating-point arithmetic with arbitrary precision
and the Fortran code uses the quadruple precision.
Nonetheless, putting small w0 and large H (e.g.,
w0 = 1 µm and H = 1 mm) may result in error.
An ad hoc approach for such cases is to use smaller
H. when w0 is small, the value of H is not really
effective on the temperature and flow fields near the
laser focus. Therefore, the use of smaller H is not
harmful as long as one is interested in the behavior
near the laser focus.

• The integrands in the inverse Hankel transform are
assumed to vanish as s → 0. This is confirmed



4

a posteriori by observing the integrands for the
settings presented in Ref. [1]. To implement this
feature in the code, the integrand is forced to be
zero at s = small, where a constant small imi-
tates the value +0 and is a small quantity such as
10−15. Without this forcing, the computation of
the value of the integrand suffers from the serious
cancellation of significant digits, leading to 0/0 or
NaN. When Nm is too large, very small s may appear
(e.g., s = 10−10) and in this case the integrand can-
not be obtained due to the error above. For such
case, an ad hoc approach is to increase the number
of multiple precision by increasing mp.dps (default
is mp.dps=200) in the Python code. Unfortunately,
the Fortran code is not compatible to higher preci-
sion.

• When large r is concerned, Nm and s_max should
be more carefully selected. For instance, see the
temperature gradient of Fig. S1(b). Near z = 0
and r = 8 × 10−5 m, the careful observation tells
you that the vectors there look nonphysical, and
actually it is nonphysical. This is typical behavior
when Nm is not large enough. An ad hoc approach

is to just reduce the range of r, provided that you
are not interested in the behavior at large r. This
is not harmful at all because the range of r is not
related to the accuracy of the quantities at smaller
r.

VERSIONS & ENVIRONMENT

The computations are done under the following system
environment:

• Fortran: Intel(R) Fortran Intel(R) 64 Compiler XE
for applications running on Intel(R) 64, Version
14.0.0.080 Build 20130728. The code was on Cent
OS 6.4 -bash with Intel(R) Xeon(R) CPU E5-2650
v2 2.60GHz.

• Python: Python 3.10.13 on Spyder 5.4.3 with
numpy 1.26.4, matplotlib 3.8.3, mpmath 1.3.0, pan-
das 2.2.1. The code was run on Windows 10 Pro
with Intel(R) Core(TM) i7-9700K CPU 3.60GHz.

• Tecplot: Tecplot 360 EX 2018 R2, version
2018.2.1.93726

[1] T. Tsuji, S. Saito, and S. Taguchi, Semianalytical model of
optothermal fluidics in a confinement, Phys. Rev. Fluids
9, 124202 (2024).

[2] T. Tsuji, S. Saito, and S. Taguchi, Instant compu-

tational tool of optothermal fluidics, Kyoto University
Research Information Repository (KURENAI) (2024),
https://doi.org/10.57723/287529.

https://doi.org/10.1103/PhysRevFluids.9.124202
https://doi.org/10.1103/PhysRevFluids.9.124202
https://doi.org/10.57723/287529
https://doi.org/10.57723/287529


5

case A case B

FIG. S1. Examples of the output from the Python code. Computation ends in several seconds.

solid 1

laser
T(r, z)TTTTTTTT((TTTT r,,rrrr z)zzzz

surface heatingsurface heating

T(r, z)TTTTTTTTT(TT r,,rr z)zz

fluid heatingfluid heating

λ

ambient air

ambient air

fluid
gravity

solid 2

thin film 2

thin film 1

axisymmetry

laser

z₀

z₀

laserlaser

T₀

H

H

H₂

H₂
H₁

H₁
Hm1

thermal convection

thermo-osmotic slip

w₀w₀

u(r, z)

ν

A(a)

Hm2

A(b2)

K (d1)

K (d2)

thermo-osmotic slip

β(c)

g

thermal conductivity  (fluid)
thermal conductivity  (solid 1)
thermal conductivity  (solid 2)
thermal conductivity  (thin film 1)
thermal conductivity  (thin film 2)
density (fluid)
absorption coefficient (fluid)
absorption coefficient (thin film 1)
absorption coefficient (thin film 2)
laser power
beam width at z = z₀
z-position of focal plane
laser wavelength
acceleration of gravity
temperature of ambient air
thermal expansion coefficient (fluid)
thickness (fluid)
thickness (solid 1)
thickness (solid 2)
thickness (thin film 1)
thickness (thin film 2)
kinematic viscosity
slip coefficient (fluid-solid 1 interface)
slip coefficient (fluid-solid 2 interface)

κ
κ₁
κ₂
κm₁
κm2
ρ

A(b1)

P

r

z

FIG. S2. Description of the contents of the input file.

Number of lattice points

Nz_1

Nz_2

Nz

Nr

H

H_2

H_1

Aspect * H

r

z

Number of lattice points

Nz_1

Nz_2

Nz

Nr

H

H_2

H_1

Aspect * H

r

z

magnify = ‘n’

truncate = ‘y’

Number of lattice points

Nz

Nr

H

H_2

H_1
r

z

magnify = ‘y’

truncate = ‘y’ or ‘n’

r_min r_max

z_min

z_max

H_trnc

H_trnc

(a) (b) (c)

FIG. S3. Description of the computational parameters in the input file.


	 A manual for instant computational tool for optothermal fluidics  — Supplemental Material on ``Semianalytical model of optothermal fluidics in a confinement Tsuji2024" — 
	Abstract
	Features of codes
	Step 1: prepare an input file
	Step 2: run the code
	Run the Python code
	Run Fortran code

	Step 3: check the results
	Outputs of the Python code
	Outputs of the Fortran code

	Advanced settings
	Python code
	Fortran code
	Technical comments

	Versions & Environment
	References


