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The Poiseuille and thermal transpiration flows of a dense gas between two parallel plates are9
investigated on the basis of the Enskog kinetic equation under the diffuse reflection boundary10
condition. In contrast to the case of an ideal gas, the density and the gradients of pressure11
and normal stress component in the flow direction are not uniform in the direction normal12
to the plates for a dense gas. The nonuniform normal stress gradient contributes also to the13
acceleration or deceleration of the thermal transpiration flow for small Knudsen numbers.14
The profiles of mass and heat flows as well as the net mass flows are obtained for various15
Knudsen numbers and ratios of the molecular diameter to the distance of plates. In the16
analysis of the Poiseuille flow, most characteristics of a force-driven flow with a small force17
are recovered. However, for the case of a dense gas, differences between the force-driven and18
the present pressure-driven flows are observed even within the linearized regime for small19
force and pressure gradient, especially at the microscopic level. The behaviour of velocity20
distribution functions, in particular, the way of their approach to ones for the Boltzmann21
equation as the molecular diameter becomes smaller, is clarified.22

Key words:23

1. Introduction24

Gases in small systems, such as porous media with small pores and micro and nanodevices,25
cannot be described properly by conventional fluid dynamics. This is because the mean free26
path of gas molecules can be comparable to the characteristic length of system so that the27
underlying assumption that the gas is very close to the local equilibrium breaks down due28
to insufficient intermolecular collisions. The kinetic theory of gases is required to describe29
their behaviour correctly.30
Generally, solution of the Boltzmann equation, the governing equation in the kinetic31

theory, is a formidable task since besides a time and a position the molecular velocity also32
plays a role of independent variables and the term representing the effect of intermolecular33
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collisions (the collision integral) is complicated. As for its numerical solution method, both34
the stochastic direct simulation Monte Carlo (DSMC) method (see, e.g., Bird 1994) and35
deterministic methods (see, e.g., Dimarco and Pareschi 2014, and the references therein)36
have been developed continuously from earlier times.Owing to the continuous efforts ofmany37
researchers, there is a huge accumulation of results for the flows of ideal gases these days (see,38
e.g., Sone 2007; Cercignani 1988), which are described by the Boltzmann equation. There39
are a large number of kinetic theory studies on classical problems in fluid dynamics such as40
the Poiseuille flow, the Couette flow, etc. and those on phenomena peculiar to nonequilibrium41
gases such as the thermal transpiration flow, which is induced by a temperature gradient along42
a channel wall in the absence of an external force and a pressure gradient.43
Meanwhile, when gases become dense, they exhibit non-ideal gas effects. Kinetic theory44

descriptions are available also for this case. The Enskog equation, which can describe effects45
owing to the finite size of molecules such as the excluded volume, and its extension, the46
Enskog–Vlasov equation, in which long-range interactions are dealt with by a collective47
mean field, have been widely accepted. Because the finite size of molecules is taken into48
account in the Enskog collision integral, it is more complicated than the Boltzmann collision49
integral. For these equations, the DSMC method was successfully constructed more than50
two decades ago (Frezzotti 1997; Montanero and Santos 1996). Then, using this method51
Frezzotti and his co-workers have conducted many studies on liquid-vapor systems based on52
the Enskog–Vlasov equation (see, e.g., Frezzotti et al 2005, 2019).53
Besides the liquid-vapor systems, the dense gas effects become relevant in small systems54

such as nanoporous media, which has been activating the recent kinetic theory studies (see,55
e.g., Wu et al 2016; Sheng et al 2020; Shan et al 2021). In these studies, the competition56
of system characteristic length, mean free path and molecular diameter is focused on, and its57
effect on the phenomena is investigated. This trend may be due to related applications such58
as shale gas extraction where the pressure is high and the characteristic length is short, and59
to the fact that deterministic numerical computations are becoming feasible thanks to the60
extension of fast Fourier spectral method (Filbet et al 2006) to the Enskog equation (Wu et al61
2015). However, all of the aforementioned works concentrate on the force-driven Poiseuille62
flow, and currently, no other type of flow seems to be investigated at the same level.63
Under these circumstances, a time-dependent heat transfer in a dense gas between two64

parallel plates was investigated in Hattori et al (2022) and interesting features such as the65
effect of the finite molecular size on the propagation of disturbance were demonstrated. In the66
present work, we newly consider the thermal transpiration flow as well as the pressure-driven67
Poiseuille flow of a dense gas between two parallel plates. Analysis of these flows for the case68
of a rarefied gas is a fundamental problem in the kinetic theory (see, e.g., Cercignani and69
Daneri 1963; Cercignani and Sernagiotto 1966; Niimi 1968; Sone and Yamamoto 1968;70
Loyalka 1971; Niimi 1971; Hasegawa and Sone 1988; Ohwada et al 1989; Loyalka and71
Hamoodi 1990; Kosuge et al 2005; Takata and Funagane 2011; Funagane and Takata 2012).72
We investigate the counterpart problem for a dense gas. We clarify how finite-size effects of73
molecules affect these flows, thereby aiming to contribute to increased understanding of the74
dense gas flow characteristics.75
The paper is organized as follows. In Section 2, the problem is stated and formulated.76

The problem is reduced to the spatially one-dimensional boundary-value problems of the77
linearized Enskog equation for the Poiseuille and thermal transpiration flows, in which the78
ratio of the mean free path and that of the molecular diameter to the distance of plates79
are included as nondimensional parameters characterizing the smallness of the system and80
denseness of the gas. Then, the numerical method is briefly explained in Section 3. The81
method is the iteration based on the integral formulation of the Enskog equation combined82
with the fast Fourier spectral method for the computation of the collision integral. Section 483
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presents the numerical results, where we show the behaviour of the macroscopic quantities84
(gradients of pressure and stress and profiles of density and mass/heat flow) as well as the85
velocity distribution functions (VDFs). Comparison between the force-driven and the present86
pressure-driven Poiseuille flows is also carried out. Section 5 concludes the paper.87

2. Formulation88

2.1. Problem and assumptions89

Consider a dense gas between two parallel plates at rest located respectively at 𝑋1 = ±𝐷/2,90
where 𝑋𝑖 are the Cartesian coordinates. The two plates are kept at the temperature 𝑇𝑤 (𝑋2) =91
𝑇0(1 + 𝑐T𝑋2/𝐷) [𝑐T = (𝐷/𝑇0) (d𝑇𝑤/d𝑋2) is a constant], and the gas is subject to some92
pressure gradient in the 𝑋2 direction. We will find a solution that has a pressure gradient93
constant in the 𝑋2 direction (but nonconstant in the 𝑋1 direction). There is no external force94
acting on the gas. The average density of the gas over the cross section 𝑋2 = 0 is given by95
𝜌0. We will investigate the steady behaviour of the gas under the assumptions that (i) the96
behaviour of the gas can be described by the Enskog equation for hard-sphere molecules97
with a common diameter 𝜎 and mass 𝑚 with the factor of pair correlation being given98
according to the Carnahan–Starling equation of state (Carnahan and Starling 1969); (ii) the99
gas molecules are diffusely reflected on the surface of the plates; (iii) the magnitudes of the100
applied temperature gradient |𝑐T | and the pressure gradient (𝐷/𝑝0) |𝜕𝑝/𝜕𝑋2 | are so small101
that the equation and boundary condition can be linearized around the state that is achieved102
when both gradients are absent (𝑝 is the pressure, 𝑝0 = 𝜌0𝑅𝑇0 and 𝑅 is the specific gas103
constant).104
Some comments on the appropriateness of the linearization assumption (iii) may be in105

order. At a glance, the assumption might look restrictive to describe the flows well. However,106
(1) the pressure and temperature gradients can in fact be small in small system likemicro/nano107
channels and porous media with small pores; (2) the assumption is actually employed also108
in literatures (see, e.g., any references cited in the third sentence of the fifth paragraph109
in Section 1); (3) it is reported (see, e.g., Ohwada et al 1989; Sharipov 2003; Ewart et110
al 2007) that the results for rarefied gases obtained based on the linearized Boltzmann111
or model kinetic equations agree well with experimental results for a wide range of the112
Knudsen number. Based on these facts, the assumption is also employed here for the Enskog113
equation. Phenomena due to nonlinear effects, expected to be significant when the applied114
pressure or temperature gradient is not small, e.g., nonuniformity of temperature profile in115
pressure-driven flow (Zheng et al 2002), are outside of the scope of the present work.116

2.2. Basic equation and boundary condition117

Let us denote by 𝑿 = 𝐷𝒙 the position, by (2𝑅𝑇0)1/2𝜻 the molecular velocity, by
𝜌0(2𝑅𝑇0)−3/2 𝑓 the VDF of gas molecules, by 𝜎 = 𝐷𝜎̂ the molecular diameter, by 𝜌0 𝜌̂ the
density of the gas and by 𝑇𝑤 = 𝑇0𝑇𝑤 the temperature of the plates. Then, from assumptions
(i) and (ii), the behaviour of the gas is described by the following boundary-value problem
for 𝑓 :

𝜁1
𝜕 𝑓

𝜕𝑥1
+ 𝜁2

𝜕 𝑓

𝜕𝑥2
=

1
𝑘
𝑄̂( 𝑓 ) (−1 − 𝜎̂

2
< 𝑥1 <

1 − 𝜎̂
2

), (2.1a)

𝑄̂( 𝑓 ) = 1
2
√

2𝜋

∫ [
𝑌

(
𝜌̂

(
𝒙 + 1

2
𝜎̂𝒌

)
; 𝜂0

)
𝑓 (𝒙 + 𝜎̂𝒌, 𝜻 ′∗) 𝑓 (𝒙, 𝜻 ′)
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−𝑌
(
𝜌̂

(
𝒙 − 1

2
𝜎̂𝒌

)
; 𝜂0

)
𝑓 (𝒙 − 𝜎̂𝒌, 𝜻∗) 𝑓 (𝒙, 𝜻)

]
×(𝑽̂ · 𝒌)𝐻 (𝑽̂ · 𝒌)d𝒌d𝜻∗, (2.1b)

𝑌 ( 𝜌̂; 𝜂0) =
𝑌 ( 𝜌̂𝜂0)
𝑌 (𝜂0)

, 𝑌 (𝜂) = 1
2

2 − 𝜂
(1 − 𝜂)3 , 𝜂0 =

(𝜌0/𝑚)𝜋𝜎3

6
, (2.1c)

𝜌̂ =

∫
𝑓 d𝜻 , (2.1d)

𝜻 ′ = 𝜻 + (𝑽̂ · 𝒌)𝒌, 𝜻 ′∗ = 𝜻∗ − (𝑽̂ · 𝒌)𝒌, 𝑽̂ = 𝜻∗ − 𝜻 , (2.1e)

𝑘 =

√
𝜋

2
Kn, Kn =

ℓ0

𝐷
, ℓ0 =

[√
2𝜋𝜎2(𝜌0/𝑚)𝑌 (𝜂0)

]−1
, (2.1f)

b.c: 𝑓 =
𝜌̂𝑤

(𝜋𝑇𝑤 (𝑥2))3/2
exp

(
− 𝜁2

𝑇𝑤 (𝑥2)

)
(𝜁1 ≷ 0, 𝑥1 = ∓1 − 𝜎̂

2
), (2.1g)

𝜌̂𝑤 = ∓2
√︂

𝜋

𝑇𝑤 (𝑥2)

∫
𝜁1≶0

𝜁1 𝑓 d𝜻 , (2.1h)

𝑇𝑤 (𝑥2) = 1 + 𝑐T𝑥2, (2.1i)

with
1

1 − 𝜎̂

(∫ (1− 𝜎̂)/2

−(1− 𝜎̂)/2

∫
𝑓 d𝜻d𝑥1

) ����
𝑥2=0

= 1. (2.1j)

Here, 𝒌 is the unit vector in the direction joining centres of the colliding molecules, 𝐻 is118
the Heaviside function, 𝜂0 and 𝜌̂𝜂0 are the volume fractions of molecules corresponding to119
the average and local densities which indicate denseness of the gas and 𝜁 = |𝜻 |, respectively.120
The ℓ0 is the mean free path of gas molecules at the equilibrium state at rest with density121
𝜌0 and temperature 𝑇0. We shall use 𝑘 in place of the Knudsen number Kn to indicate the122
degree of gas rarefaction (or smallness of the system). The 𝑄̂ is the Enskog collision integral,123
and it includes the parts which are quadratic in 𝑓 like the Boltzmann collision integral.124
However, colliding molecules occupy different positions due to the finite molecular size, and125
the collision frequency is increased by the function 𝑌 that represents an approximate pair126
correlation function. Hence 𝑄̂ is a five-fold integral that is nonlocal in the position 𝒙 as well127
as 𝜻 and it is more complicated than the Boltzmann collision integral which is local in 𝒙. The128
integration in 𝑄̂ is carried out over the whole space of 𝜻∗ and over the whole direction of 𝒌.129
In the integral, quantities, here the VDF 𝑓 (𝒙 ± 𝜎̂𝒌, ·) and the density 𝜌̂(𝒙 ± (1/2)𝜎̂𝒌), are130
read as zero if their arguments are outside of the domain {𝒛 = (𝑧1, 𝑧2, 𝑧3)

��|𝑧1 | ⩽ (1− 𝜎̂)/2}.131
This rule is also applied to various integrals appearing later. The functional form (2.1c) of132
𝑌 (or 𝑌 ) corresponds to the Carnahan–Starling equation of state. The centre of a molecule133
is able to move in the domain with a width 𝐷 − 𝜎, which is narrower than the gap width134
𝐷 by the molecular diameter 𝜎. This fact is reflected to the collision integral (2.1b) and the135
condition (2.1j) as well as the equation (2.1a) and the boundary condition (2.1g).136

Note that the nondimensional numbers 𝑘 , 𝜎̂ and 𝜂0 in (2.1) are not independent but are137
related as (Sheng et al 2020)138

𝑘 =

√
𝜋

2
𝜎̂

1
6
√

2𝜂0𝑌 (𝜂0)
. (2.2)139

In the present paper, 𝑘 and 𝜎̂, the degree of gas rarefaction and the molecular size, are140
considered as the parameters of the problem. We regard the volume fraction of molecules 𝜂0141
as a function of 𝑘 and 𝜎̂ determined by (2.2). Its plot is shown in figure 1, which implies that142
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Figure 1: Plot of the volume fraction of molecules 𝜂0 as a function of 𝑘 for 𝜎̂ = 0.001,
0.01, 0.05, 0.1 and 0.15.

the gas becomes more dense with the decrease of 𝑘 and the increase of 𝜎̂ and that it becomes143
less dense with the increase of 𝑘 and the decrease of 𝜎̂.144

2.3. Macroscopic quantities145

For later convenience, here we introduce the macroscopic variables besides the density given
by (2.1d). The flow velocity, temperature, pressure, stress tensor and heat-flow vector are
given by (2𝑅𝑇0)1/2𝑣̂𝑖 , 𝑇0𝑇 , 𝑝 = 𝑝0𝑝, 𝑝0𝑝𝑖 𝑗 and 𝑝0(2𝑅𝑇0)1/2𝑞𝑖 , respectively, where 𝑣̂𝑖 , 𝑇 , 𝑝,
𝑝𝑖 𝑗 and 𝑞𝑖 are defined as the following moments of the VDF 𝑓 :

𝑣̂𝑖 =
1
𝜌̂

∫
𝜁𝑖 𝑓 d𝜻 , (2.3a)

𝑇 =
2

3𝜌̂

∫
(𝜁𝑘 − 𝑣̂𝑘)2 𝑓 d𝜻 , (2.3b)

𝑝 = 𝜌̂𝑇 × 1 + 𝜂 + 𝜂2 − 𝜂3

(1 − 𝜂)3 , 𝜂 = 𝜌̂𝜂0, (2.3c)

𝑝𝑖 𝑗 = 𝑝
(k)
𝑖 𝑗

+ 𝑝 (v)
𝑖 𝑗
, (2.3d)

𝑝
(k)
𝑖 𝑗

= 2
∫

(𝜁𝑖 − 𝑣̂𝑖) (𝜁 𝑗 − 𝑣̂ 𝑗) 𝑓 d𝜻 , (2.3e)

𝑝
(v)
𝑖 𝑗

=
1

2
√

2𝜋𝑘

∫ ∫ 𝜎̂

0
𝑘𝑖𝑘 𝑗𝑌

(
𝜌̂

(
𝒙 +

(
1
2
𝜎̂ − 𝛼̂

)
𝒌

)
; 𝜂0

)
𝑓 (𝒙 − 𝛼̂𝒌, 𝜻∗) 𝑓 (𝒙 + (𝜎̂ − 𝛼̂)𝒌, 𝜻)

×(𝑽̂ · 𝒌)2𝐻 (𝑽̂ · 𝒌)d𝛼̂d𝒌d𝜻d𝜻∗, (2.3f)
𝑞𝑖 = 𝑞

(k)
𝑖

+ 𝑞 (v)
𝑖
, (2.3g)

𝑞
(k)
𝑖

=

∫
(𝜁𝑖 − 𝑣̂𝑖) (𝜁𝑘 − 𝑣̂𝑘)2 𝑓 d𝜻 , (2.3h)

𝑞
(v)
𝑖

=
1

4
√

2𝜋𝑘

∫ ∫ 𝜎̂

0
𝑘𝑖

[
(𝜁 ′ℓ − 𝑣̂ℓ)

2 − (𝜁ℓ − 𝑣̂ℓ)2]
×𝑌

(
𝜌̂

(
𝒙 +

(
1
2
𝜎̂ − 𝛼̂

)
𝒌

)
; 𝜂0

)
𝑓 (𝒙 − 𝛼̂𝒌, 𝜻∗) 𝑓 (𝒙 + (𝜎̂ − 𝛼̂)𝒌, 𝜻)

×(𝑽̂ · 𝒌)𝐻 (𝑽̂ · 𝒌)d𝛼̂d𝒌d𝜻d𝜻∗. (2.3i)
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Equation (2.3c) is the Carnahan–Starling equation of state. The stress tensor 𝑝𝑖 𝑗 and the146

heat-flow vector 𝑞𝑖 are given by a sum of two parts respectively. The first part, 𝑝 (k)𝑖 𝑗
and147

𝑞
(k)
𝑖
, is called the kinetic part and has a familiar form. The second part, 𝑝 (v)

𝑖 𝑗
and 𝑞 (v)

𝑖
, is148

called the potential part (Cercignani and Lampis 1988), and it represents the contribution of149
instantaneous transfers of momentum and energy in binary collisions.150

2.4. Linearization151

Recalling that we consider the situation where the applied temperature and pressure gradients
are small [see the assumption (iii) in Section 2.1], within the linearized regime, we can seek
the solution 𝑓 of problem (2.1) as a sum of reference state and perturbation, as follows:

𝑓 = 𝑀̂ (𝑥1, 𝜻) +Φ(𝑥1, 𝑥2, 𝜻) +𝑂 (Φ2) ( |Φ| ≪ 𝑀̂), (2.4a)
𝑀̂ = 𝜌̂𝑀 (𝑥1)𝐸 (𝜁), 𝐸 (𝜁) = 𝜋−3/2𝑒−𝜁

2
, (2.4b)

Φ = 𝑐T

{
𝑥2𝐸 (𝜁)

[
𝜔̂T(𝑥1) + (𝜁2 − 3

2
) 𝜌̂𝑀 (𝑥1)

]
+ ΨT(𝑥1, 𝜻)

}
+𝑐P [𝑥2𝐸 (𝜁)𝜔̂P(𝑥1) + ΨP(𝑥1, 𝜻)] . (2.4c)

Here, some notes may be in order:152
(1) The 𝑀̂ is the reference state of the gas that is achieved when both the temperature and153

pressure gradients are absent, i.e., when there is no driving factor in the system. While for an154
ideal gas (the case of the Boltzmann equation) this state is a uniform equilibrium state at rest,155
for a dense gas it is an equilibrium state at rest with a density distribution 𝜌̂𝑀 (𝑥1) varying in156
the direction normal to the plates [Frezzotti (1997); see also figure 2(a) shown later]. The157
nonuniformity of the reference density is attributed to the fact that some of intermolecular158
collisions which detach the molecules from the plates are forbidden near the boundary due159
to their finite size and accordingly they are pushed to the plates.160
(2) The Φ is a perturbation around the reference state 𝑀̂ . In its expression, the subscripts161

T and P are attached to discriminate the quantities related to the thermal transpiration162
and Poiseuille flows, respectively. The 𝑂 (Φ2)-term in (2.4a) is the negligible error in the163
linearized regime. As will be seen later in Section 4, when the molecular size 𝜎̂ is finite, the164
pressure gradient 𝜕𝑥2 𝑝 and the stress gradient 𝜕𝑥2 𝑝22 are not identical, and moreover they are165
nonuniform in 𝑥1. Here, the latter is regarded as the driving force for the Poiseuille flow since166
it is the stress rather than the pressure that has a role of the mechanical surface force. Thus, we167
require that its average in the 𝑥1 direction to be normalized and zero, in accordance with the168
nature of the Poiseuille and thermal transpiration flows, respectively. To bemore precise, with169

𝑝22 being evaluated with 𝑓 = 𝑀̂+Φ, we require that (1−𝜎̂)−1
∫ (1− 𝜎̂)/2
−(1− 𝜎̂)/2 𝜕𝑥2 𝑝22 |𝑐T=0d𝑥1 = 𝑐P170

and (1 − 𝜎̂)−1
∫ (1− 𝜎̂)/2
−(1− 𝜎̂)/2 𝜕𝑥2 𝑝22 |𝑐P=0d𝑥1 = 0 for respective flows, where the constant 𝑐P171

represents the magnitude of the averaged stress gradient in the Poiseuille flow [|𝑐P | ≪ 1172
by assumption (iii)]. Since 𝜕𝑥2 𝑝22 = 𝜕𝑥2 𝑝 = const. for the Boltzmann equation, 𝑐P also173
corresponds to the magnitude of pressure gradient (𝐷/𝑝0) |d𝑝/d𝑋2 | in this case. The parts174
𝑐P𝑥2𝐸 (𝜁)𝜔̂P(𝑥1) and 𝑐T𝑥2𝐸 (𝜁) [𝜔̂T(𝑥1) + (𝜁2 − 3

2 ) 𝜌̂𝑀 (𝑥1)] are the perturbed Maxwellians175
representing the pressure (or stress) and temperature gradients, respectively. Recall that the176
magnitude of the latter is represented by the coefficient 𝑐T [= (𝐷/𝑇0) (d𝑇𝑤/d𝑋2)]. The ΨT177
and ΨP, which are considered to be odd in 𝜁2, represent the respective flows.178
(3) The expression (2.4) might look like an arbitrary assumption at a glance, however,179

it turns out to be an appropriate form of the solution. It is an extension of the similarity180
solution for a rarefied gas [see also, e.g., (2.8) in Takata and Funagane (2011) or (1) in181
Ohwada et al (1989)] to the case of the dense gas, where the nonuniformity of densities182



7

in 𝑥1 is taken into account here due to the finite molecular size both for the reference part183
𝜌̂𝑀 and the perturbed parts 𝜔̂T,P [the case of Boltzmann equation corresponds to the case184
𝜌̂𝑀 (𝑥1) ≡ 1, 𝜔̂T(𝑥1) ≡ −1 and 𝜔̂P(𝑥1) ≡ 1]. To confirm the consistency of (2.4), actually185
we can proceed in the following way, which is detailed in Appendix A. First, substitute186
𝑓 = 𝑀̂ = 𝜌̂𝑀𝐸 into the equation (2.1a) and the condition for average density (2.1j). Then,187
we reach the system which determines the reference density 𝜌̂𝑀 (and 𝑀̂ accordingly) with188
no inconsistency. Second, introduce the perturbation Φ and substitute 𝑓 = 𝑀̂ + Φ [see also189
(2.4a)] into the equation (2.1a), the boundary condition (2.1g) and the condition for average190
density (2.1j), and neglect the second and higher-order terms of perturbation Φ according191
to the assumption (iii). Then, we are left with the linearized system for the perturbation Φ,192
without any inconsistency. Third, substitute the expression (2.4c) into the system for Φ and193
closely examine the resulting expressions, in particular those of the collision integral. Then,194
we find that the form (2.4c) introduces no inconsistency, and the systems for the perturbed195
densities 𝜔̂T,P and the VDFs ΨT,P are accordingly obtained.196

2.4.1. Problems of 𝜌̂𝑀 , 𝜔̂T,P and ΨT,P197

In (2.4), 𝜌̂𝑀 , 𝜔̂T,P and ΨT,P are the functions to be determined. Following the above steps
explained in the item (3) or Appendix A, we find that the densities 𝜌̂𝑀 , 𝜔̂T and 𝜔̂P satisfy
the following integro-differential equations, while the VDFs ΨT and ΨP are the solutions of
the following boundary-value problems of the linearized Enskog equation:

d𝜌̂𝑀 (𝑥1)
d𝑥1

= 𝐽1 [ 𝜌̂𝑀 ] (𝑥1) (−1 − 𝜎̂
2

< 𝑥1 <
1 − 𝜎̂

2
), (2.5a)

with
1

1 − 𝜎̂

∫ (1− 𝜎̂)/2

−(1− 𝜎̂)/2
𝜌̂𝑀 (𝑥1)d𝑥1 = 1, (2.5b)

d𝜔̂𝛽 (𝑥1)
d𝑥1

= 𝐾1 [𝜔̂𝛽 , 𝜌̂𝑀 ] (𝑥1) (−1 − 𝜎̂
2

< 𝑥1 <
1 − 𝜎̂

2
), (2.6a)

with 𝐾2 [𝜔̂T, 𝜌̂𝑀 ] = 𝐽2 [ 𝜌̂𝑀 ] − 1, (2.6b)
𝐾2 [𝜔̂P, 𝜌̂𝑀 ] = 1, (2.6c)

𝜁1
𝜕Ψ𝛽

𝜕𝑥1
=

1
𝑘
𝐿 (Ψ𝛽) + 𝐼𝛽 (−1 − 𝜎̂

2
< 𝑥1 <

1 − 𝜎̂
2

), (2.7a)

b.c. Ψ𝛽 = 0 (𝜁1 ≷ 0, 𝑥1 = ∓1 − 𝜎̂
2

). (2.7b)

Here, 𝛽 = T, P in (2.6a) and (2.7). The 𝐽1, 𝐽2 and 𝐽3 appearing in (2.5a), (2.6b) and the
definition (2.11a) of the source term 𝐼T shown later are integrals of 𝜌̂𝑀 given by (B 1)
in Appendix B. The 𝐾1, 𝐾2 and 𝐾3 appearing in (2.6) and the definition (2.11) of 𝐼𝛽 are
integrals that are linear with respect to 𝜔̂𝛽 given by (B 3) in Appendix B. The integrals 𝐽1
and 𝐾1 represent the contribution coming from the collision integral 𝑄̂ to the densities 𝜌̂𝑀
and 𝜔̂𝛽 . Equations (2.6c) and (2.6b) are the reduced form of aforementioned conditions on
the stress gradient 𝜕𝑥2 𝑝22 explained in the item (2) of Section 2.4 (see also the last paragraph
in Appendix A.3). By these conditions (2.6c) and (2.6b), 𝜔̂P and 𝜔̂T, which satisfy the same
linear equation (2.6a) and are thus equal up to a multiplicative constant, are distinguished
each other. The 𝐿 appearing in (2.7a) is the following Enskog collision operator linearized
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around the reference local equilibrium state 𝑀̂ (𝑥1, 𝜻):
𝐿 (𝜓) (𝒙, 𝜻) = 𝐶 (𝜓) (𝒙, 𝜻) − 𝜈(𝑥1, 𝜻)𝜓(𝒙, 𝜻), (2.8a)

𝐶 (𝜓) (𝒙, 𝜻) = 1
2
√

2𝜋

∫ {
𝑌

(
𝜌̂𝑀

(
𝑥1 +

1
2
𝜎̂𝑘1

)
; 𝜂0

)
×
[
𝑀̂ (𝑥1 + 𝜎̂𝑘1, 𝜻

′
∗)𝜓(𝒙, 𝜻 ′) + 𝜓(𝒙 + 𝜎̂𝒌, 𝜻 ′∗)𝑀̂ (𝑥1, 𝜻

′)
]

−𝑌
(
𝜌̂𝑀

(
𝑥1 −

1
2
𝜎̂𝑘1

)
; 𝜂0

)
𝜓(𝒙 − 𝜎̂𝒌, 𝜻∗)𝑀̂ (𝑥1, 𝜻)

+𝑌1

(
𝜌̂𝑀

(
𝑥1 +

𝜎̂

2
𝑘1

)
; 𝜂0

)
⟨𝜓⟩ (𝒙 + 𝜎̂

2
𝒌)𝑀̂ (𝑥1 + 𝜎̂𝑘1, 𝜻

′
∗)𝑀̂ (𝑥1, 𝜻

′)

−𝑌1

(
𝜌̂𝑀

(
𝑥1 −

𝜎̂

2
𝑘1

)
; 𝜂0

)
⟨𝜓⟩ (𝒙 − 𝜎̂

2
𝒌)𝑀̂ (𝑥1 − 𝜎̂𝑘1, 𝜻∗)𝑀̂ (𝑥1, 𝜻)

]}
×(𝑽̂ · 𝒌)𝐻 (𝑽̂ · 𝒌)d𝒌d𝜻∗, (2.8b)

𝜈(𝑥1, 𝜻) =
1

2
√

2𝜋

∫
𝑌

(
𝜌̂𝑀

(
𝑥1 −

1
2
𝜎̂𝑘1

)
; 𝜂0

)
×𝑀̂ (𝑥1 − 𝜎̂𝑘1, 𝜻∗) (𝑽̂ · 𝒌)𝐻 (𝑽̂ · 𝒌)d𝒌d𝜻∗, (2.8c)

where

𝑌1 (𝑟; 𝜂0) =
1

𝑌 (𝜂0)
𝜂0(5 − 2𝑟𝜂0)
2(1 − 𝑟𝜂0)4 , (2.9a)

⟨𝜓⟩ (𝒙) =
∫

𝜓(𝒙, 𝜻)d𝜻 . (2.9b)

In the decomposition (2.8a) of 𝐿,𝐶 is the integral operator with some smoothing property in198
the molecular velocity 𝜻 and 𝜈 is the collision frequency for the reference equilibrium state199
𝑀̂ (𝑥1, 𝜻). The 𝑌1 given in (2.9a) is just a perturbed part of 𝑌 such that200

𝑌 ( 𝜌̂𝑀 + 𝑐 ⟨𝜓⟩ ; 𝜂0) = 𝑌 ( 𝜌̂𝑀 ; 𝜂0) + 𝑐 ⟨𝜓⟩𝑌1( 𝜌̂𝑀 ; 𝜂0) +𝑂 (𝑐2) ( |𝑐 | ≪ 1). (2.10)201

The source term 𝐼𝛽 in (2.7a) is given in terms of the densities 𝜌̂𝑀 and 𝜔̂T,P as

𝐼T(𝑥1, 𝜻) = −𝜁2𝐸 (𝜁)
[
𝜌̂𝑀 (𝑥1) (𝜁2 − 3

2
) + 𝜔̂T(𝑥1)

]
− 𝜎̂𝐸 (𝜁)
𝑘2

√
2𝜋

{
𝜁2𝐾3 [𝜔̂T, 𝜌̂𝑀 ] (𝑥1) + 𝐽3 [ 𝜌̂𝑀 ] (𝑥1, 𝜻)

}
, (2.11a)

𝐼P(𝑥1, 𝜻) = −𝜁2𝐸 (𝜁)𝜔̂P(𝑥1) −
𝜎̂

𝑘2
√

2𝜋
𝜁2𝐸 (𝜁)𝐾3 [𝜔̂P, 𝜌̂𝑀 ] (𝑥1). (2.11b)

Thanks to the symmetry of the present problem with respect to the middle of the gap202
𝑥1 = 0, we can seek the VDF Ψ𝛽 with the following property:203

Ψ𝛽 (𝑥1, 𝜁1, 𝜁2, 𝜁3) = Ψ𝛽 (−𝑥1,−𝜁1, 𝜁2, 𝜁3) (0 < 𝑥1 <
1 − 𝜎̂

2
; 𝛽 = T, P). (2.12)204

Thus, hereafter, we impose the following condition205

Ψ𝛽 (0, 𝜁1, 𝜁2, 𝜁3) = Ψ𝛽 (0,−𝜁1, 𝜁2, 𝜁3) (2.13)206

on Ψ𝛽 , which is obtained by substituting 𝑥1 = 0 into (2.12), and we consider the problem of207
Ψ𝛽 on −(1 − 𝜎̂)/2 < 𝑥1 < 0.208
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2.4.2. Expressions of macroscopic quantities209

Substituting the solution (2.4) into (2.1d), (2.3a)–(2.3c), (2.3e), (2.3f), (2.3h) and (2.3i),
within negligible error𝑂 (𝑐2

P, 𝑐
2
T) in the linearized regime, we have the following expressions

for the macroscopic quantities 𝜌̂, 𝑣̂𝑖 , 𝑇 , 𝑝, 𝑝 (k)𝑖 𝑗
, 𝑝 (v)

𝑖 𝑗
, 𝑞 (k)

𝑖
and 𝑞 (v)

𝑖
:

𝜌̂ = 𝜌̂𝑀 (𝑥1) + 𝑐T𝑥2𝜔̂T(𝑥1) + 𝑐P𝑥2𝜔̂P(𝑥1) +𝑂 (𝑐2
P, 𝑐

2
T), (2.14a)

𝑣̂2 = 𝑐T𝑢[ΨT] (𝑥1) + 𝑐P𝑢[ΨP] (𝑥1) +𝑂 (𝑐2
P, 𝑐

2
T), (2.14b)

𝑣̂1 = 𝑂 (𝑐2
P, 𝑐

2
T), 𝑣̂3 = 𝑂 (𝑐2

P, 𝑐
2
T), (2.14c)

𝑇 = 1 + 𝑐T𝑥2 +𝑂 (𝑐2
P, 𝑐

2
T), (2.14d)

𝑝 = 𝜌̂𝑀 (𝑥1)𝑆1( 𝜌̂𝑀 (𝑥1)𝜂0) + 𝑐T𝑥2𝐺T(𝑥1) + 𝑐P𝑥2𝐺P(𝑥1) +𝑂 (𝑐2
P, 𝑐

2
T), (2.14e)

𝑝
(k)
22 = 𝜌̂𝑀 (𝑥1) + 𝑐T𝑥2𝐺

(k)
22,T(𝑥1) + 𝑐P𝑥2𝐺

(k)
22,P(𝑥1) +𝑂 (𝑐2

P, 𝑐
2
T), (2.14f)

𝑝
(k)
12 = 𝑐T𝑃

(k)
12 [ΨT] (𝑥1) + 𝑐P𝑃

(k)
12 [ΨP] (𝑥1) +𝑂 (𝑐2

P, 𝑐
2
T), (2.14g)

𝑝
(k)
11 = 𝑝

(k)
22 +𝑂 (𝑐2

P, 𝑐
2
T), 𝑝

(k)
33 = 𝑝

(k)
22 +𝑂 (𝑐2

P, 𝑐
2
T),

𝑝
(k)
13 = 𝑂 (𝑐2

P, 𝑐
2
T), 𝑝

(k)
23 = 𝑂 (𝑐2

P, 𝑐
2
T), (2.14h)

𝑝
(v)
11 = 𝑃

(v)
11,𝑀 (𝑥1) + 𝑐T𝑥2𝐺

(v)
11,T(𝑥1) + 𝑐P𝑥2𝐺

(v)
11,P(𝑥1) +𝑂 (𝑐2

P, 𝑐
2
T), (2.14i)

𝑝
(v)
22 = 𝑃

(v)
22,𝑀 (𝑥1) + 𝑐T𝑥2𝐺

(v)
22,T(𝑥1) + 𝑐P𝑥2𝐺

(v)
22,P(𝑥1) +𝑂 (𝑐2

P, 𝑐
2
T), (2.14j)

𝑝
(v)
12 = 𝑐T𝑃

(v)
12,T(𝑥1) + 𝑐P𝑃

(v)
12,P(𝑥1) +𝑂 (𝑐2

P, 𝑐
2
T), (2.14k)

𝑝
(v)
33 = 𝑝

(v)
22 +𝑂 (𝑐2

P, 𝑐
2
T), 𝑝

(v)
13 = 𝑂 (𝑐2

P, 𝑐
2
T), 𝑝

(v)
23 = 𝑂 (𝑐2

P, 𝑐
2
T), (2.14l)

𝑞
(k)
2 = 𝑐T𝑄

(k) [ΨT] (𝑥1) + 𝑐P𝑄
(k) [ΨP] (𝑥1) +𝑂 (𝑐2

P, 𝑐
2
T), (2.14m)

𝑞
(v)
2 = 𝑐T𝑄

(v)
T (𝑥1) + 𝑐P𝑄

(v)
P (𝑥1) +𝑂 (𝑐2

P, 𝑐
2
T), (2.14n)

𝑞
(k)
1 = 𝑂 (𝑐2

P, 𝑐
2
T), 𝑞

(k)
3 = 𝑂 (𝑐2

P, 𝑐
2
T), 𝑞

(v)
1 = 𝑂 (𝑐2

P, 𝑐
2
T), 𝑞

(v)
3 = 𝑂 (𝑐2

P, 𝑐
2
T). (2.14o)

Here,

𝑢[Ψ𝛽] =
1
𝜌̂𝑀

∫
𝜁2Ψ𝛽d𝜻 , (2.15a)

𝐺T = 𝜌̂𝑀 (𝑥1)𝑆1( 𝜌̂𝑀 (𝑥1)𝜂0) + 𝜔̂T(𝑥1) [𝑆1( 𝜌̂𝑀 (𝑥1)𝜂0) + 𝑆2( 𝜌̂𝑀 (𝑥1)𝜂0)], (2.15b)
𝐺P = 𝜔̂P(𝑥1) [𝑆1( 𝜌̂𝑀 (𝑥1)𝜂0) + 𝑆2( 𝜌̂𝑀 (𝑥1)𝜂0)], (2.15c)

𝑆1(𝑟) =
1 + 𝑟 + 𝑟2 − 𝑟3

(1 − 𝑟)3 , 𝑆2(𝑟) =
2𝑟 (2 + 2𝑟 − 𝑟2)

(1 − 𝑟)4 , (2.15d)

𝐺
(k)
22,T = 𝜌̂𝑀 (𝑥1) + 𝜔̂T(𝑥1), 𝐺

(k)
22,P = 𝜔̂P(𝑥1), (2.15e)

𝑃
(k)
12 [Ψ𝛽] = 2

∫
𝜁1𝜁2Ψ𝛽d𝜻 , (2.15f)

𝑃
(v)
12,𝛽 (𝑥1) = 𝑃 (v)

12,𝜔𝛽
(𝑥1) + 𝑃 (v)

12 [Ψ𝛽] (𝑥1), (2.15g)

𝑄 (k) [Ψ𝛽] =
∫

𝜁2

(
𝜁2 − 5

2

)
Ψ𝛽d𝜻 , (2.15h)

𝑄
(v)
T = 𝑄 (v) [ΨT] (𝑥1) −

{
𝑢[ΨT] (𝑥1) +

𝜎̂
√

2𝜋

}
𝑃
(v)
22,𝑀 (𝑥1), (2.15i)

𝑄
(v)
P = 𝑄 (v) [ΨP] (𝑥1) − 𝑢[ΨP] (𝑥1)𝑃 (v)

22,𝑀 (𝑥1). (2.15j)
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The expressions of the stress contributions 𝑃 (v)
11,𝑀 , 𝑃

(v)
22,𝑀 , 𝑃

(v)
12,𝜔T

and 𝑃 (v)
12,𝜔P

and the gradients210

𝐺
(v)
11,T, 𝐺

(v)
11,P, 𝐺

(v)
22,T and 𝐺

(v)
22,P, which are all defined as the integrals of the densities 𝜌̂𝑀 , 𝜔̂T211

and 𝜔̂P, and those of 𝑃 (v)
12 [Ψ𝛽] and 𝑄 (v) [Ψ𝛽], are given in Appendix C. Note that 𝑐T𝐺T,212

𝑐T(𝐺 (k)
22,T +𝐺

(v)
22,T) and 𝑐T(𝑄 (k) [ΨT] +𝑄 (v)

T ) [or 𝑐P𝐺P, 𝑐P(𝐺 (k)
22,P +𝐺

(v)
22,P) and 𝑐P(𝑄 (k) [ΨP] +213

𝑄
(v)
P )] are the gradient of pressure 𝜕𝑥2 𝑝, that of (2, 2) component of stress 𝜕𝑥2 𝑝22 and the heat214
flow 𝑞2 for the thermal transpiration (or Poiseuille) flow, respectively within the linearized215
regime [see (2.14e), (2.3d), (2.14f), (2.14j), (2.3g), (2.14m) and (2.14n)].216
It is better to mention again the expression (2.14) is obtained within the linearized regime.217

At a glance, it might look strange that the temperature 𝑇 is uniform for the Poiseuille flow218
and that the diagonal kinetic-part stress components are equal to each other [see (2.14d) with219
𝑐T = 0 and (2.14h)]. However, they are justified in the linearized regime, and deviations220
from them are attributed to nonlinear effects of 𝑂 (𝑐2

P, 𝑐
2
T), which are neglected here due to221

the smallness (see also the last sentence in Section 2.1). The 𝑐P,T need to be sufficiently222
small compared to 1, and in addition, compared to the degree of gas rarefaction 𝑘 when we223
consider the flow with small 𝑘 . [Some of the quantities of interest in the present paper are of224
𝑂 (𝑘) rather than 𝑂 (1).] Although there is no definite threshold, e.g., when 𝑐P,T ≲ 0.001 or225
𝑐P,T ≲ 0.0001, the nonlinear effects would likely not be significant for the cases presented226
in Section 4, where 𝑘 is in the range [0.05, 10].227
Also, as in other works based on the linearization assumption, flows between two infinitely228

wide parallel plates are considered in the present work. Thus, when flows in a finite-length229
channel with moderate pressure and temperature differences is considered, its length (and230
the lateral width when a rectangular channel is considered as in experiments) needs to be231
sufficiently long compared to both its gap width 𝐷 and the mean free path so that the results232
for infinitely wide plates give a good description of the flow (Sharipov 1999). Note that,233
for the case of a rarefied gas, there is an experiment of pressure-driven flow (Ewart et al234
2007) taking this condition carefully into consideration (the channel length and lateral235
width are respectively about 1000 and 52 times the gap width). There, it is reported that the236
experimental results agree well with numerical results for infinitely wide plates (Loyalka237
1975) based on a model kinetic equation for a wide range of the Knudsen number about up238
to 10.239

2.4.3. Net mass flow and conservation law240

Denoting by 𝜌0(2𝑅𝑇0)1/2𝐷M the net mass flow through the gap per unit time and unit length241
in 𝑋3,M is given as242

M = 𝑐TMT + 𝑐PMP +𝑂 (𝑐2
P, 𝑐

2
T), (2.16)243

where244

M𝛽 =

∫ (1− 𝜎̂)/2

−(1− 𝜎̂)/2
𝜌̂𝑀 (𝑠)𝑢[Ψ𝛽] (𝑠)d𝑠. (2.17)245

Multiplying (2.1a) by 𝜁2 and integrating the result over the whole space of 𝜻 , we have the246
following conservation equation for the momentum in the 𝑥2 direction within the negligible247
error in the linearized regime:248

𝜕𝑝12

𝜕𝑥1
+ 𝜕𝑝22

𝜕𝑥2
= 𝑂 (𝑐2

P, 𝑐
2
T). (2.18)249

Substituting the expression of 𝑝12 and 𝑝22 [see (2.3d), (2.14f), (2.14g), (2.14j) and (2.14k)]250
into (2.18) and integrating the result over [−(1 − 𝜎̂)/2, 𝑥1] with respect to 𝑥1, we obtain251

𝑐T𝑆T(𝑥1) + 𝑐P𝑆P(𝑥1) = 𝑂 (𝑐2
P, 𝑐

2
T), (2.19)252

Rapids articles must not exceed this page length
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where253

𝑆𝛽 (𝑥1) = 𝑃
(k)
12 [Ψ𝛽] (𝑥1) + 𝑃 (v)

12,𝛽 (𝑥1) − 𝑃 (k)
12 [Ψ𝛽] (−

1 − 𝜎̂
2

)

+
∫ 𝑥1

−(1− 𝜎̂)/2

[
𝐺

(k)
22,𝛽 (𝑠) + 𝐺

(v)
22,𝛽 (𝑠)

]
d𝑠. (2.20)254

In obtaining (2.20), we have used the fact that the potential part of the stress 𝑃 (v)
12,𝛽 vanishes255

on the boundary 𝑥1 = −(1 − 𝜎̂)/2. The relation (2.19) will be used for the accuracy test of256
our computation.257

3. Numerical method258

The densities 𝜌̂𝑀 , 𝜔̂T and 𝜔̂P, which are defined by (2.5) and (2.6), can be obtained259
numerically by the method in Frezzotti (1997). Thus, the problem is reduced to (2.7)260
with (2.13) for the VDFs ΨT and ΨP.261
Let us explain the numerical solution method for the problems of ΨT and ΨP. We solve

them by using the iteration based on the integral formulation (Takata and Funagane 2011;
Hattori and Takata 2015) of the Enskog equation combined with the fast Fourier spectral
method (Filbet et al 2006) for the computation of the collision integral. Taking into account
(2.8a) and (2.13) and formally integrating the equation (2.7a) with respect to 𝑥1, we have

Ψ𝛽 (𝑥1, 𝜻) =
∫ 𝑥1

−(1− 𝜎̂)/2

[
1
𝑘𝜁1

𝐶 (Ψ𝛽) (𝑠, 𝜻) +
1
𝜁1
𝐼𝛽 (𝑠, 𝜻)

]
exp

(
− 1
𝑘𝜁1

∫ 𝑥1

𝑠

𝜈(𝑝, 𝜻)d𝑝
)

d𝑠,

(−1 − 𝜎̂
2

< 𝑥1 < 0, 𝜁1 > 0), (3.1a)

Ψ𝛽 (𝑥1, 𝜻) = Ψ𝛽 (0, 𝜻−) exp
(
− 1
𝑘𝜁1

∫ 𝑥1

0
𝜈(𝑝, 𝜻)d𝑝

)
+
∫ 𝑥1

0

[
1
𝑘𝜁1

𝐶 (Ψ𝛽) (𝑠, 𝜻) +
1
𝜁1
𝐼𝛽 (𝑠, 𝜻)

]
exp

(
− 1
𝑘𝜁1

∫ 𝑥1

𝑠

𝜈(𝑝, 𝜻)d𝑝
)

d𝑠,

(−1 − 𝜎̂
2

< 𝑥1 < 0, 𝜁1 < 0), (3.1b)

where 𝜻− = (−𝜁1, 𝜁2, 𝜁3) and 𝛽 = T, P. Since 𝐶 is an integral operator, 𝐶 (Ψ𝛽) is mild in 𝜻262
even if its argument function Ψ𝛽 is not. Thus, the factor of steep variation of Ψ𝛽 in 𝜻 (or263
𝜁1) is explicit in this formulation, which will be advantageous in accurately capturing the264
structure of the solution. The solution Ψ𝛽 is constructed by iteration based on (3.1) from265
its initial guess. The data of 𝐶 (Ψ𝛽) are computed by the fast Fourier spectral method from266
the given data of Ψ𝛽 . The fast Fourier spectral method for the nonlinear Enskog collision267
integral is explained in Wu et al (2015). Following the reference, we can prepare the method268
for the linearized Enskog collision operator 𝐶 in the present work. The spatial integration269
with respect to 𝑝 and that with respect to 𝑠 in (3.1) are performed analytically after 𝜈 and270
(𝐶 (Ψ𝛽), 𝐼𝛽) are interpolated respectively with piecewise linear and quadratic functions from271
their data on the lattice points for position 𝑥1.272
Information of lattice systems and accuracy is briefly given in Appendix D.273

4. Numerical results and discussions274

Figure 2 shows the quantities related to the density and the gradients of the pressure and the275

(2, 2) component of stress in the 𝑥2-direction, namely 𝜌̂𝑀 , 𝜔̂T and 𝜔̂P, 𝐺T, 𝐺 (k)
22,T + 𝐺 (v)

22,T,276
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Figure 2: Profiles of quantities related to the density and the gradients of the pressure and
the (2, 2) component of stress. (a) 𝜌̂𝑀 , (b) 𝜔̂T and 𝜔̂P, (c) 𝐺T, (d) 𝐺

(k)
22,T + 𝐺 (v)

22,T, (e) 𝐺P

and (f ) 𝐺 (k)
22,P + 𝐺 (v)

22,P.

𝐺P and 𝐺 (k)
22,P + 𝐺 (v)

22,P, for the molecular-size parameter 𝜎̂ = 0.01 and 0.1 and the degree of277

gas rarefaction 𝑘 = 0.1, 1 and 10 (see also the last sentence in Section 2.4.2). The profiles278
for small 𝜎̂ and large 𝑘 (e.g., for 𝜎̂ = 0.01 and 𝑘 = 10) are almost uniform and close to the279
counterparts for the Boltzmann equation. On the other hand, for large 𝜎̂ and small 𝑘 (e.g.,280
for 𝜎̂ = 0.1 and 𝑘 = 0.1), or when the gas is dense, they vary significantly near the boundary281
and are nonuniform in the 𝑥1 direction. As for the origin of nonuniformity of densities 𝜌̂𝑀282
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and 𝜔̂T,P [figures 2(a) and 2(b)], see also the item (1) in Section 2.4. The gradient of the283
pressure actually differs from that of the (2, 2) component of stress [compare figures 2(c)284
and 2(d), and figures 2(e) and 2(f)], even if their averages over 𝑥1 are taken. This is in marked285
contrast to the case of an ideal gas (or the Boltzmann equation), in which the gradients of286
the pressure and the normal stress components are uniform and identical for each of the two287
flows considered here. The stress gradient for the thermal transpiration flow is negative near288
the boundary and positive in the central part of the gap [figure 2(d)]. That for the Poiseuille289
flow is smaller in the central part of the gap than near the boundary [figure 2(f)].290
The densities 𝜌̂𝑀 (𝑥1) and 𝜔̂P(𝑥1) shown in figures 2 seem to variate significantly only291

near the boundary within the distance𝑂 (𝜎̂) and approach to their values 𝜌̂𝑀 (0) and 𝜔̂P(0) at292
the middle of the gap. By using the rescaled distance from the boundary (𝑥1 + (1− 𝜎̂)/2)/𝜎̂293
and semilog plot, figures 3(a)–(d) demonstrate the observation. The approach to the values294
𝜌̂𝑀 (0) and 𝜔̂P(0) in the uniform region is actually sufficiently fast in the scale of 𝑂 (𝜎̂).295
Moreover, the magnitude of the deviation between the density on the boundary and that at296
the middle of the gap is of the order of the volume fraction of molecules 𝜂0 [figures 3(e)–(f)].297
From these results, when 𝜎̂ and 𝑘 are decreased simultaneously so that 𝜂0 is finite, a thin298
layer with the thickness of 𝑂 (𝜎̂) adjacent to the boundary, where the densities deviate up to299
𝑂 (𝜂0) from their values in the uniform region outside the layer, is expected to appear.300
In figure 4, the profiles of the mass flow 𝜌̂𝑀𝑢[ΨT] for the thermal transpiration flow are301

shown for various values of the degree of gas rarefaction 𝑘 and the molecular-size parameter302
𝜎̂. When 𝑘 is not small, the flow is smaller for larger 𝜎̂ [see panel (a)]. Its main reason is303
simply that the increase of the temperature along the plate in the units of the effective width304
𝐷 − 𝜎 where the centre of a molecule can move, which becomes shorter for larger 𝜎, is305
small, so that the flow is less driven. This effect is more significant than the enhancement306
of the flow due to the increase of the effective Knudsen number defined with the length307
𝐷 − 𝜎, which should be taken into account too. Related observation will be done for the308
net mass flow shown later. When 𝑘 is relatively small, in turn, as 𝜎̂ increases, the flow is309
enhanced over the whole gap including near the boundary. Indeed, for 𝑘 = 0.1, the mass flow310
is larger for larger 𝜎̂ [see panel (b)]. This is expected to be associated with the increase of the311
thermal conductivity of the gas accompanied by the increase of 𝜎̂, which is explained by the312
Chapman–Enskog theory for a dense gas (Chapman and Cowling 1991) for small Knudsen313
numbers, because the thermal slip coefficient, which approximately represents the magnitude314
of the induced flow, is likely larger for the gas with larger thermal conductivity, judging from315
the relation between them for monoatomic rarefied gases. The negative gradient of stress near316
the boundary also contributes to the increase of the mass flow there [see figure 2(d)]. With317
further decrease of 𝑘 , we observe considerable decrease of the mass flow in the central part318
of the gap [see figures 4(c) and 4(d)]. Figure 2(d) implies that this is due to the deceleration319
by the positive gradient of stress there. Incidentally, when 𝑘 is small and 𝜎̂ is large, although320
the profile of the flow velocity 𝑢[ΨT] differs quantitatively from the mass flow 𝜌̂𝑀𝑢[ΨT]321
due to the nonuniformity of 𝜌̂𝑀 , the qualitative features mentioned above is common with322
𝑢[ΨT].323
The profiles of the mass flow 𝜌̂𝑀𝑢[ΨP] for the Poiseuille flow are shown in figure 5324

for various values of the degree of gas rarefaction 𝑘 and the molecular-size parameter 𝜎̂.325
The profile is flatter and the flow is smaller for larger 𝜎̂, which is consistent with that the326
magnitude of the Poiseuille flow is roughly inversely proportional to the viscosity for small327
𝑘 and its increase accompanied by the increase of 𝜎̂.328
Figure 6 shows the profiles of the heat flow for the thermal transpiration flow. When 𝑘 is329

small, the heat flow is enhanced for larger 𝜎̂, which is consistent with the aforementioned330
increase of the thermal conductivity. It changes steeply near the boundary for large 𝜎̂ as in331
the mass flow. The profile of the heat flow for the Poiseuille flow is shown in figure 7. This332
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Figure 3: Deviation of densities 𝜌̂𝑀 and 𝜔̂P from their values at the middle of the gap.
(a) | 𝜌̂𝑀 (𝑥1) − 𝜌̂𝑀 (0) | for 𝑘 = 0.1, (b) | 𝜌̂𝑀 (𝑥1) − 𝜌̂𝑀 (0) | for 𝑘 = 1, (c) |𝜔̂P (𝑥1) − 𝜔̂P (0) |
for 𝑘 = 0.1, (d) |𝜔̂P (𝑥1) − 𝜔̂P (0) | for 𝑘 = 1, (e) | 𝜌̂𝑀 (−(1 − 𝜎̂)/2) − 𝜌̂𝑀 (0) |/(4𝜂0) and
(f ) |𝜔̂P (−(1 − 𝜎̂)/2) − 𝜔̂P (0) |/(8𝜂0). In (a)–(d), the quantities are plotted as functions of
(𝑥1 + (1 − 𝜎̂)/2)/𝜎̂, the distance from the boundary scaled by the molecular diameter 𝜎̂.
In (e) and (f), the quantities are scaled by the volume fraction of molecules 𝜂0 and plotted

as functions of 𝑘 .
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Figure 4: Profiles of the mass flow of the thermal transpiration flow. 𝜌̂𝑀𝑢[ΨT] versus 𝑥1.
(a) 𝑘 = 10, 1 and 0.3, (b) 𝑘 = 0.1, (c) 𝑘 = 0.07 and (d) 𝑘 = 0.05.

heat flow is known to be owing to the effect of gas rarefaction in the case of an ideal gas333
since it occurs under the isothermal condition and it has no direct relation to the thermal334
conductivity and viscosity. Our result shows that heat flow of this kind is also enhanced with335
the increase of 𝜎̂.336
Let us consider the force-driven flow, a flow driven by a uniform external force in the337

direction parallel to the plates. This flow has been studied in the framework of kinetic theory338
with an interest in non-Navier–Stokes effects such as the heat flow along the force direction,339
the temperature bimodality and the anisotropy of normal stress components (see, e.g., Tij340
and Santos 1994; Malek Mansour et al 1997). Note that these are nonlinear effects, i.e.,341
they manifest themselves in second order in the magnitude of the normalized force. The342
behaviour of the mass flow of the Poiseuille flow observed in figure 5 is similar to those of343
the force-driven flow within the linearized regime for small force (Wu et al 2016; Sheng et344
al 2020), where the aforementioned effects are suppressed sufficiently. Thus, we have also345
carried out the computations of the latter case, which is described by the solution of the346
problem (2.7) of ΨP with the source term 𝐼P being replaced by347

−𝜁2 𝜌̂𝑀𝐸 ≡ 𝐼F. (4.1)348

Since 𝐼P and 𝐼F are identical for the Boltzmann equation (both are given by −𝜁2𝐸), so are the349
VDFs (ΨP and its counterpart) and the flow velocities, heat flows and shear stresses obtained350
as their moments. On the other hand, for the case of a dense gas, there are differences for the351
profiles of mass and heat flows between two cases although the differences are very slight352
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Figure 5: Profiles of the mass flow of the Poiseuille flow. 𝜌̂𝑀𝑢[ΨP] versus 𝑥1. (a) 𝑘 = 10
and 1, (b) 𝑘 = 0.3, (c) 𝑘 = 0.1, (d) 𝑘 = 0.07 and (e) 𝑘 = 0.05.

[see figures 8(a) and 8(b), in particular, the curves for 𝜎̂ = 0.15]. Recall that the expressions353
of 𝐼P and 𝐼F [see (2.11b) and (4.1)] differ for the case of a dense gas. Actually, there is a354
difference between their marginal functions355 ∫ ∞

−∞

∫ ∞

0
(𝐼P(𝑥1, 𝜻), 𝐼F(𝑥1, 𝜻))d𝜁2d𝜁3 ≡ (𝐼†P (𝑥1, 𝜁1), 𝐼†F (𝑥1, 𝜁1)) (4.2)356

near the boundary for large 𝜎̂ as shown in figures 8(c) and 8(d). For 𝜎̂ = 0.1 and 𝑥1 = −0.45,357

their difference normalized by maximum, max𝜁1 |𝐼
†
P − 𝐼

†
F |/max𝜁1 |𝐼

†
F |, is larger than 0.051358
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Figure 6: Profiles of the heat flow of the thermal transpiration flow. 𝑄 (k) [ΨT] +𝑄 (v)
T

versus 𝑥1. (a) 𝑘 = 10, 1 and 0.3, (b) 𝑘 = 0.1, (c) 𝑘 = 0.07 and (d) 𝑘 = 0.05.

(5.1%). This demonstrates that, for the case of the Enskog equation, there are differences359
between the force-driven and the pressure-driven flows even within the linearized regime,360
especially at the microscopic level.361

In figure 9, we show the net mass flows for the thermal transpiration and Poiseuille flows.362
In panels (a) and (b),MT andMP given by (2.17) are shown respectively, while in panels363
(c) and (d), their ratios to the net mass flows for the case of the Boltzmann equation, say364
MT,B andMP,B, are shown. TheMT exhibits the behaviour corresponding to that for the365
mass flow profile observed in figure 4. Namely, as 𝑘 becomes smaller, the enhancement of366
the flow with the increase of 𝜎̂ compensates the decrease of the effective gap width, and367
consequently the values of the net mass flows are close to each other for different 𝜎̂’s (e.g.,368
for 𝑘 = 0.1 and 0.07). With further decrease of 𝑘 , the mass flow rate is smaller for larger 𝜎̂369
again because the flow decreases in the central part of the gap. For the Poiseuille flow, when370
𝜎̂ is small, the Knudsen minimum is clearly observed [see panel (b)], which is attributed to371
that the braking effect due to the plate becomes smaller both as 𝑘 → 0 and 𝑘 → ∞ (more372
thorough explanation is found in the literature). On the other hand, as is also pointed out in373
Wu et al (2016) and Sheng et al (2020) for the force-driven flows, the plot becomes flatter374
for larger 𝜎̂ and the Knudsen minimum becomes more invisible. This is because the flow375
is not enhanced in the central part of the gap as 𝑘 becomes smaller; see the plot curves for376
𝜎̂ = 0.1 or 0.15 in figures 5(c)–5(e), which are almost unchanged. In figures 9(e) and 9(f),377
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Figure 7: Profiles of the heat flow of the Poiseuille flow. 𝑄 (k) [ΨP] +𝑄 (v)
P versus 𝑥1.

(a) 𝑘 = 10, 1 and 0.3, (b) 𝑘 = 0.1, (c) 𝑘 = 0.07 and (d) 𝑘 = 0.05.

we show the following quantities378

𝑘∗ =
𝑘

1 − 𝜎̂ , M𝛽,∗ =
M𝛽

(1 − 𝜎̂)2 (𝛽 = T, P) (4.3)379

introduced by the conversion which corresponds to the replacement of the reference length380
𝐷 by 𝐷 − 𝜎. As 𝑘∗ becomes larger, the plots for different 𝜎̂’s exhibit the common trend,381
which implies that the behaviour of the gas for large Knudsen numbers can be characterized382
well in terms of the length 𝐷 − 𝜎. This is consistent with the explanation of the mass flow383
for the thermal transpiration flow given in the third paragraph of this section.384
Figures 10–12 show the VDFΨT for the degree of gas rarefaction 𝑘 = 0.1, 1 and 10 at three385

spatial points 𝑥1 = −(1 − 𝜎̂)/2, −0.25 and 0 as functions of the normal velocity component386
𝜁1 with (𝜁2, 𝜁3) being fixed at (1.106, 0). In the figures, the close-ups of the VDFs at the387
boundary near 𝜁1 = 0 are also shown in panel (b) of each figure. First, the following overall388
behaviour similar to the case of the Boltzmann equation is observed:389

• There is a jump discontinuity at 𝜁1 = 0 on the boundary 𝑥1 = −(1 − 𝜎̂)/2.390
• When 𝑘 is small, the discontinuity is small and the VDFs behave moderately in the gas.391
• When 𝑘 is large, the VDFs are localized around 𝜁1 = 0 including in the gas.392

However, for the finite molecular size 𝜎̂ ≠ 0, the VDFs deviate considerably from those for393
the Boltzmann equation for 𝜁1 < 0 near the origin on the boundary even when 𝜎̂ is small394
[see panel (b) of each figure]. As 𝜎̂ is decreased, while the values of macroscopic quantities395
approach those for the Boltzmann equation uniformly in 𝑥1 (see, e.g., figures 4 and 5), the396
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Figure 8: Comparison between the pressure-driven and force-driven Poiseuille flows for
the mass flow, heat flow and marginal source term. 𝑘 = 0.1. (a) 𝜌̂𝑀𝑢[ΨP],

(b) 𝑄 (k) [ΨP] +𝑄 (v)
P , (c) 𝐼†P and 𝐼

†
F for 𝜎̂ = 0.1 and (d) 𝐼†P and 𝐼

†
F for 𝜎̂ = 0.001. In (a) and

(b), the symbols indicate the pressure-driven case, while the solid lines the force-driven
case. In (c) and (d), the solid lines indicate the pressure-driven case, while the dashed lines

the force-driven case.

VDFs exhibit nonuniform approach in (𝑥1, 𝜁1). In the following, we consider the cause of397
this behaviour of the VDFs with the aid of the expression (3.1b). Since the first term in the398
right-hand side of (3.1b) is exponentially small for |𝜁1 | ≪ 1, we only have to examine the399
second term. As in the case of the Boltzmann equation, the integral 𝐶 (ΨT), the collision400
frequency 𝜈 and the source term 𝐼T are smooth in velocity 𝜻 (or 𝜁1) also for finite 𝜎̂, which401
can be confirmed actually from the numerical results. Thus it is the exponential function402
that induces the steep variation of ΨT in 𝜁1 < 0 near the origin. Taking into account the403
expression of the argument of the exponential function, we see that only the integrand in the404
range |𝑠 + (1 − 𝜎̂)/2| ≲ 𝑘 |𝜁1 | actually contributes to the integral with respect to 𝑠. In the405
meantime,𝐶 (ΨT) and 𝜈 vary significantly in 𝑥1 in the region within𝑂 (𝜎̂) from the boundary406
as figure 13 implies. Thus, for |𝜁1 | ≲ 𝜎̂/𝑘 , Ψ𝛽 is determined from𝐶 (Ψ𝛽) and 𝜈 substantially407
affected by the boundary and accordingly its value may deviate largely from that for the case408
of the Boltzmann equation. To confirm the estimate, we show the deviation of the VDF ΨT409
from that for the case of the Boltzmann equation ΨT,B, say ΔΨT = ΨT −ΨT,B, normalized by410
its value at 𝜁1 = −0 in figure 14. When they are plotted as functions of 𝑘𝜁1/𝜎̂, they overlap411
well each other for large 𝑘 and small 𝜎̂. This supports the above estimate. Note that ΨP also412
has the features described in this paragraph although their figures are omitted.413
The comparison of the results shown in this section with other approaches like molecular414
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Figure 9: Quantities related to the net mass flows for the thermal transpiration and
Poiseuille flows. (a)MT, (b)MP, (c)MT/MT,B, (d)MP/MP,B, (e)MT,∗ and (f)MP,∗.

dynamics (MD) simulation is not carried out here since unfortunately it is difficult to find the415
simulation result of a corresponding system such as molecules under the dense gas condition416
confined in the channel joined to two reservoirs maintained at different temperature and417
pressure. However, instead, let us mention some known correspondences between results418
obtained by the Enskog equation and molecular dynamics, which supports the description of419
phenomena in dense gases based on the kinetic theory:420
(1) It is known that the profile of reference density obtained from the Enskog equation,421

𝜌̂𝑀 (𝑥1) in the present paper, agrees well with that obtained by the MD simulation [see, e.g.,422
Fig. 6 in Frezzotti (1997)].423
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Figure 10: The VDF ΨT at (𝜁2, 𝜁3) = (1.106, 0) for 𝑘 = 0.1. (a) 𝑥1 = −(1 − 𝜎̂)/2,
(b) close-up of (a), (c) 𝑥1 = −0.25 and (d) 𝑥1 = 0.

(2) For the force-driven flow, it is demonstrated in Sheng et al (2020) that the velocity424
profile obtained from the Enskog equation agrees well with that obtained by the MD425
simulation (see Figs. 5 and 6 in the reference).426
(3) As for the thermal response, heat flow as well as the profiles of stress, density and427

temperature between two parallel plates kept at different constant temperatures obtained from428
the Enskog equation agrees well with that obtained by the MD simulation [see Frezzotti429
(1999)].430

5. Concluding remarks431

We have investigated the thermal transpiration and Poiseuille flows of a dense gas between432
two parallel plates based on the Enskog equation under the diffuse reflection boundary433
condition. The problem was linearized around the local equilibrium state that is achieved in434
the absence of driving sources. Then, the reduced spatially one-dimensional problems were435
solved numerically by a method based on the integral formulation combined with the fast436
Fourier spectral method for the computation of the Enskog collision integral. Our findings437
in the present work are summarized as follows:438
(i) In contrast to the case of an ideal gas, the density and the gradients of pressure and439

normal stress component in the flow direction are not uniform in the direction normal to the440
plates for a dense gas. The nonuniformity or significant variation has been observed near441
the boundary within the distance of the order of molecular diameter for various quantities442
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Figure 11: The VDF ΨT at (𝜁2, 𝜁3) = (1.106, 0) for 𝑘 = 1. (a) 𝑥1 = −(1 − 𝜎̂)/2,
(b) close-up of (a), (c) 𝑥1 = −0.25 and (d) 𝑥1 = 0.

for a dense gas. The nonuniform normal stress gradient contributes to the acceleration or443
deceleration of the thermal transpiration flow for small Knudsen numbers.444
(ii) The behaviour of mass and heat flows as well as net mass flows has been clarified for445

various Knudsen numbers and ratios of the molecular diameter to the distance of plates.446
(iii) In the analysis of the Poiseuille flow, most characteristics of the force-driven flow with447
a small force are recovered. However, for the case of a dense gas, differences between the448
force-driven and the present pressure-driven flows are observed even within the linearized449
regime for small force and pressure gradient, especially at the microscopic level.450
(iv) The behaviour of VDFs, in particular, the way of their approach to ones for the451
Boltzmann equation as the molecular diameter becomes smaller, has been clarified.452
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Figure 12: The VDF ΨT at (𝜁2, 𝜁3) = (1.106, 0) for 𝑘 = 10. (a) 𝑥1 = −(1 − 𝜎̂)/2,
(b) close-up of (a), (c) 𝑥1 = −0.25 and (d) 𝑥1 = 0.

Appendix A. Outline of linearization procedure459

In this Appendix, we summarize the outline of the linearization procedure for the Enskog460
equation.461

A.1. reference equilibrium state462

First, substitute 𝑓 = 𝑀̂ = 𝜌̂𝑀 (𝑥1)𝐸 (𝜁) into equation (2.1a). Then, the left hand side (LHS)463
of (2.1a) is recast as464

[LHS of (2.1a)] = 𝜁1𝐸 (𝜁)
d𝜌̂𝑀 (𝑥1)

d𝑥1
. (A 1)465

On the other hand, the right hand side (RHS) of (2.1a) is transformed as466

[RHS of (2.1a)]

=
1

𝑘2
√

2𝜋

∫ [
𝑌

(
𝜌̂𝑀

(
𝑥1 +

1
2
𝜎̂𝑘1

)
; 𝜂0

)
𝜌̂𝑀 (𝑥1 + 𝜎̂𝑘1)𝐸 (𝜁 ′∗) 𝜌̂𝑀 (𝑥1)𝐸 (𝜁 ′)

−𝑌
(
𝜌̂𝑀

(
𝑥1 −

1
2
𝜎̂𝑘1

)
; 𝜂0

)
𝜌̂𝑀 (𝑥1 − 𝜎̂𝑘1)𝐸 (𝜁∗) 𝜌̂𝑀 (𝑥1)𝐸 (𝜁)

]
(𝑽̂ · 𝒌)𝐻 (𝑽̂ · 𝒌)d𝒌d𝜻∗

= − 1
𝑘2

√
2𝜋

∫
𝑌

(
𝜌̂𝑀

(
𝑥1 −

1
2
𝜎̂𝑘1

)
; 𝜂0

)
𝜌̂𝑀 (𝑥1 − 𝜎̂𝑘1) 𝜌̂𝑀 (𝑥1)
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Figure 13: Plots of the collision integral 𝐶 (ΨT) and the collision frequency 𝜈 at
(𝜁2, 𝜁3) = (1.106, 0) for 𝑘 = 1. (a) 𝐶 (ΨT) at 𝑥1 = −(1 − 𝜎̂)/2, (b) 𝐶 (ΨT) at 𝑥1 = −0.25,

(c) 𝜈 at 𝑥1 = −(1 − 𝜎̂)/2, (d) 𝜈 at 𝑥1 = −0.25, and (e) 𝜈 at 𝜁1 = 0.

×(𝑽̂ · 𝒌) [𝐻 (−𝑽̂ · 𝒌) + 𝐻 (𝑽̂ · 𝒌)]𝐸 (𝜁∗)𝐸 (𝜁)d𝒌d𝜻∗

=
1

𝑘2
√

2𝜋

∫
𝑌

(
𝜌̂𝑀

(
𝑥1 −

1
2
𝜎̂𝑘1

)
; 𝜂0

)
𝜌̂𝑀 (𝑥1 − 𝜎̂𝑘1) 𝜌̂𝑀 (𝑥1)

×(𝜁1𝑘1 + 𝜁2𝑘2 + 𝜁3𝑘3)𝐸 (𝜁)d𝒌

=
2𝜋

𝑘2
√

2𝜋
𝜌̂𝑀 (𝑥1)𝜁1𝐸 (𝜁)

∫ 1

−1
𝑌

(
𝜌̂𝑀

(
𝑥1 −

1
2
𝜎̂𝑧

)
; 𝜂0

)
𝜌̂𝑀 (𝑥1 − 𝜎̂𝑧)𝑧d𝑧



25

Figure 14: Plots of the normalized deviation of the VDF for the Enskog equation from that
for the Boltzmann equation. ΔΨT/(ΔΨT) |𝜁1=−0 at (𝜁2, 𝜁3) = (1.106, 0). (a) versus 𝜁1 and

(b) versus 𝑘𝜁1/𝜎̂.

= 𝜁1𝐸 (𝜁)𝐽1 [ 𝜌̂𝑀 ] (𝑥1), (A 2)467

where 𝐽1 is given in Appendix B. Note that (1) at the second equality, 𝐸 (𝜁 ′∗)𝐸 (𝜁 ′) =468
𝐸 (𝜁∗)𝐸 (𝜁) is used and change of a variable 𝒌 → −𝒌 is applied for the first term in the469
integrand; (2) at the third equality, 𝐻 (−𝑽̂ · 𝒌) + 𝐻 (𝑽̂ · 𝒌) = 1 is used and the integration470
over 𝜻∗ is carried out; (3) at the fourth equality, with the 𝑥1 direction as the polar direction,471
the integration with respect to the azimuthal angle of 𝒌 is carried out (then the contribution472
from the parts multiplied by 𝜁2𝑘2 and 𝜁3𝑘3 vanish) and that with respect to the polar angle473
of 𝒌 is expressed as the integral with respect to the variable 𝑧.474

Equating (A 1) and (A 2), we have the equation (2.5a) for the density 𝜌̂𝑀 (𝑥1). Since 𝑀̂475
is a Maxwellian, it satisfies the diffuse reflection boundary condition (2.1g) with the plate476
temperature 𝑇𝑤 (𝑥2) being replaced by the reference temperature 1. Substituting 𝑓 = 𝑀̂ =477
𝜌̂𝑀 (𝑥1)𝐸 (𝜁) into the condition (2.1j) for average density, immediately we have (2.5b). When478
the density 𝜌̂𝑀 (𝑥1) satisfies (2.5), the local equilibrium state 𝑀̂ = 𝜌̂𝑀 (𝑥1)𝐸 (𝜁) satisfies the479
Enskog equation (2.1a) in the domain − 1− 𝜎̂

2 < 𝑥1 <
1− 𝜎̂

2 .480

A.2. perturbation481

Now, let us introduce the perturbation, Φ, and express 𝑓 as 𝑓 = 𝑀̂ + Φ. Then, subtracting482
Enskog equation (2.1a) for 𝑓 = 𝑀 from that for 𝑓 = 𝑀̂ +Φ, we have483

𝜁1
𝜕Φ

𝜕𝑥1
+ 𝜁2

𝜕Φ

𝜕𝑥2
=

1
𝑘
[𝑄̂(𝑀̂ +Φ) − 𝑄̂(𝑀̂)] = 1

𝑘
𝐿 (Φ) +𝑂 (Φ2), (A 3)484

where 𝐿 is the collision operator linearized around the reference local equilibrium state485
𝑀̂ (𝑥1, 𝜻). The expression (2.8) of 𝐿 is obtained in a straightforward way by using the486
transformation𝑌 ( 𝜌̂) 𝑓 𝑓 = [𝑌 ( 𝜌̂𝑀 )+⟨Φ⟩𝑌1 ( 𝜌̂𝑀 )+𝑂 (Φ2)] (𝑀̂+Φ) (𝑀̂+Φ) = 𝑌 ( 𝜌̂𝑀 ) 𝑀̂ 𝑀̂+487 {
𝑌 ( 𝜌̂𝑀 ) (𝑀̂Φ +Φ𝑀̂) + ⟨Φ⟩𝑌1 ( 𝜌̂𝑀 ) 𝑀̂ 𝑀̂

}
+𝑂 (Φ2) [see also (2.10)].488

Subtracting the boundary condition (2.1g) or the condition (2.1j) for average density for



26

𝑓 = 𝑀 from those for 𝑓 = 𝑀̂ +Φ, respectively, we have

b.c. Φ =

[
𝜌̌𝑤 + 𝜌̂𝑀

(
∓1 − 𝜎̂

2

) (
𝜁2 − 3

2

)
𝑐T𝑥2

]
𝐸 (𝜁) +𝑂 (𝑐TΦ,Φ

2),

(𝜁1 ≷ 0, 𝑥1 = ∓1 − 𝜎̂
2

), (A 4a)

𝜌̌𝑤 = −1
2
𝑐T𝑥2 𝜌̂𝑀

(
∓1 − 𝜎̂

2

)
∓ 2

√
𝜋

∫
𝜁1≶0

𝜁1Φd𝜻 , (A 4b)

with
(∫ (1− 𝜎̂)/2

−(1− 𝜎̂)/2

∫
Φd𝜻d𝑥1

) ����
𝑥2=0

= 0. (A 4c)

Derivation of (A 4) is straightforward and parallel to the case of Boltzmann equation.489

A.3. form of perturbation490

Weneed to find the appropriate formof the perturbationΦ such thatΦ represents the gradients491
of temperature and pressure (or stress) and satisfies its equation (A 3) and conditions (A 4)492
within the linearized regime.493
For the Boltzmann equation, it is known that such a solution Φ can be sought in the form494

Φ = 𝑐T

[
𝑥2𝐸 (𝜁)

(
−1 + (𝜁2 − 3

2
)
)
+ Ψ̄T(𝑥1, 𝜻)

]
+ 𝑐P

[
𝑥2𝐸 (𝜁) + Ψ̄P(𝑥1, 𝜻)

]
, (A 5)495

where 𝑐P is a small constant and Ψ̄T and Ψ̄P are odd in 𝜁2. The bar is attached to discriminate496
the quantities from those for the Enskog equation. Calculating the temperature𝑇 and the stress497
𝑝22with 𝑓 = 𝑀̂+Φ for the Boltzmann equation, we have𝑇 = 1+𝑐T𝑥2 and 𝑝22 = 1+𝑐P𝑥2(= 𝑝)498
within the linearized regime [the negligible 𝑂 (𝑐2

P, 𝑐
2
T) error terms are dropped in these499

expressions]. We see that 𝑐P corresponds to the gradient of stress (or pressure) in the 𝑥2500
direction. The problem for Φ is rewritten to those for Ψ̄T and Ψ̄P.501
Unfortunately, for the case of Enskog equation, the form (A 5) can not satisfy the equation502

(A 3) and a modification is required. A clue for an appropriate modification is that the refer-503
ence state 𝑀̂ is a Maxwellian with uniform temperature but variable density profile in the 𝑥1504
direction for the case of Enskog equation.We attempt tomake the perturbation have the corre-505
sponding properties too. Accordingly, we introduce perturbed density profile, say 𝜔̂T(𝑥1) and506
𝜔̂P(𝑥1), as well while keeping the temperature is constant in 𝑥1. This leads to the introduction507
of the form (2.4c) of Φ, i.e., Φ = 𝑐T

{
𝑥2𝐸 (𝜁)

[
𝜔̂T(𝑥1) + (𝜁2 − 3

2 ) 𝜌̂𝑀 (𝑥1)
]
+ ΨT(𝑥1, 𝜻)

}
+508

𝑐P [𝑥2𝐸 (𝜁)𝜔̂P(𝑥1) + ΨP(𝑥1, 𝜻)]. Note that the case of Boltzmann equation corresponds to509
the case 𝜌̂𝑀 (𝑥1) ≡ 1, 𝜔̂T(𝑥1) ≡ −1 and 𝜔̂P(𝑥1) ≡ 1.510
Calculating the temperature 𝑇 and the stress 𝑝22 with 𝑓 = 𝑀̂ +Φ for the Enskog equation,511

we have 𝑇 = 1 + 𝑐T𝑥2 and512

𝑝22 = 𝑝
(k)
22 + 𝑝 (v)22 (≠ 𝑝)

= [ 𝜌̂𝑀 (𝑥1) + 𝑃 (v)
22,𝑀 (𝑥1)]

+𝑐T𝑥2 [𝐺 (k)
22,T(𝑥1) + 𝐺 (v)

22,T(𝑥1)] + 𝑐P𝑥2 [𝐺 (k)
22,P(𝑥1) + 𝐺 (v)

22,P(𝑥1)] (A 6)513

within the linearized regime [the negligible 𝑂 (𝑐2
P, 𝑐

2
T) error terms are dropped in these

expressions], where 𝐺 (k)
22,T = 𝜌̂𝑀 (𝑥1) + 𝜔̂T(𝑥1) and 𝐺 (k)

22,P = 𝜔̂P(𝑥1), and the expressions of
the stress contribution 𝑃 (v)

22,𝑀 and the gradients𝐺
(v)
22,T and𝐺

(v)
22,P are given in Appendix C. The

calculation of 𝑝 (k)22 is parallel to the case of Boltzmann equation. As for that of 𝑝
(v)
22 [(2.3f)],
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thanks to the explicit functional form of Φ in 𝜻 except the parts of ΨT,P, the integration with
respect to 𝜻 and 𝜻∗ can be carried out firstly with 𝒌 and 𝛼̂ being fixed and that with respect
to the azimuthal angle of 𝒌 can also be carried out subsequently. The contribution from ΨT,P
vanishes due to their oddness in 𝜁2. Now, in accordance with the nature of the Poiseuille and
thermal transpiration flows, we require that

1
1 − 𝜎̂

∫ (1− 𝜎̂)/2

−(1− 𝜎̂)/2
[𝐺 (k)

22,P(𝑥1) + 𝐺 (v)
22,P(𝑥1)]d𝑥1 = 1, (A 7a)

1
1 − 𝜎̂

∫ (1− 𝜎̂)/2

−(1− 𝜎̂)/2
[𝐺 (k)

22,T(𝑥1) + 𝐺 (v)
22,T(𝑥1)]d𝑥1 = 0. (A 7b)

See also the item (2) in Section 2.4. Under (A 7), 𝑐P corresponds to the gradient of stress514
in the 𝑥2 direction averaged in the 𝑥1 direction [see (A 6)]. Substituting the expressions of515

𝐺
(k,v)
22,P and 𝐺

(k,v)
22,T into (A 7a) and (A 7b), they reduce to the subsidiary conditions (2.6c) and516

(2.6b) for 𝜔̂P and 𝜔̂T. Their derivations are straightforward.517

A.4. compatibility of perturbation518

Finally, we have to check if the solution Φ of the equation (A 3) under the conditions (A 4)519
can be sought without any inconsistency in the form (2.4c) within the negligible error in the520
linearized regime.521
Since Φ|𝑥2=0 = 𝑐TΨT + 𝑐PΨP and ΨT,P is considered to be odd in 𝜁2, the condition (A 4c)522

for average density is satisfied automatically. Substituting (2.4c) into the boundary condition523
(A 4a) and (A 4b) leads to the homogeneous boundary condition (2.7b) for ΨT,P, whose524
derivation is parallel to the case of Boltzmann equation. The remaining is to check the525
compatibility to equation (A 3).526
Substituting (2.4c) into equation (A 3) for Φ, its LHS is recast as527

𝜁1
𝜕Φ

𝜕𝑥1
+ 𝜁2

𝜕Φ

𝜕𝑥2
= 𝑐T

{
𝑥2𝜁1𝐸 (𝜁)

[
d𝜔̂T(𝑥1)

d𝑥1
+ (𝜁2 − 3

2
) d𝜌̂𝑀 (𝑥1)

d𝑥1

]
+𝜁1

𝜕ΨT

𝜕𝑥1
(𝑥1, 𝜻) + 𝜁2𝐸 (𝜁)

[
𝜔̂T(𝑥1) + (𝜁2 − 3

2
) 𝜌̂𝑀 (𝑥1)

] }
528

+𝑐P

{
𝑥2𝜁1𝐸 (𝜁)

d𝜔̂P(𝑥1)
d𝑥1

+ 𝜁1
𝜕ΨP

𝜕𝑥1
(𝑥1, 𝜻) + 𝜁2𝐸 (𝜁)𝜔̂P(𝑥1)

}
. (A 8)529

We see that the terms in (A 8) can be classified into three different kinds of terms according530
to their functional form with respect to 𝑥2 and 𝜻 : (1) 𝑐T𝑥2𝜁1𝐸 (𝜁) (𝜁2 − 3/2)d𝜌̂𝑀 (𝑥1)/d𝑥1,531
(2) 𝑐T,P𝑥2𝜁1𝐸 (𝜁)d𝜔̂T,P(𝑥1)/d𝑥1, (3) 𝑐T

{
𝜁1𝜕ΨT(𝑥1, 𝜻)/𝜕𝑥1 + 𝜁2𝐸 (𝜁)

[
𝜔̂T(𝑥1) + (𝜁2 − 3

2 ) 𝜌̂𝑀 (𝑥1)
]}

532
and 𝑐P {𝜁1𝜕ΨP(𝑥1, 𝜻)/𝜕𝑥1 + 𝜁2𝐸 (𝜁)𝜔̂P(𝑥1)}. The terms of third kind are odd in 𝜁2 and do533
not depend on 𝑥2.534
For RHS of (A 3), first let us rewrite the form (2.4c) as Φ = (𝑐TΨT + 𝑐PΨP) + 𝑐T𝑥2𝐸 (𝜁2 −

3
2 ) 𝜌̂𝑀 + 𝑥2𝐸 (𝑐T𝜔̂T + 𝑐P𝜔̂P). Then substituting it into the RHS of (A 3) and making use of
the linearity of the collision operator 𝐿, we have

1
𝑘
𝐿 (Φ) = 1

𝑘
𝐿 (𝑐TΨT + 𝑐PΨP)

+1
𝑘
𝐿 (𝑐T𝑥2𝐸 (𝜁2 − 3

2
) 𝜌̂𝑀 ) + 1

𝑘
𝐿 (𝑥2𝐸 (𝑐T𝜔̂T + 𝑐P𝜔̂P)), (A 9a)

where
1
𝑘
𝐿 (𝑐TΨT + 𝑐PΨP) = 𝑐T

1
𝑘
𝐿 (ΨT) + 𝑐P

1
𝑘
𝐿 (ΨP), (A 9b)
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1
𝑘
𝐿 (𝑐T𝑥2𝐸 (𝜁2 − 3

2
) 𝜌̂𝑀 )

= 𝑐T𝑥2𝜁1𝐸 (𝜁) (𝜁2 − 3
2
)𝐽1 [ 𝜌̂𝑀 ] (𝑥1) − 𝑐T

𝜎̂𝐸 (𝜁)
𝑘2

√
2𝜋
𝐽3 [ 𝜌̂𝑀 ] (𝑥1, 𝜻), (A 9c)

1
𝑘
𝐿 (𝑥2𝐸 (𝑐T𝜔̂T + 𝑐P𝜔̂P))

= 𝑐T𝑥2𝜁1𝐸 (𝜁)𝐾1 [𝜔̂T, 𝜌̂𝑀 ] (𝑥1) − 𝑐T
𝜎̂𝐸 (𝜁)
𝑘2

√
2𝜋
𝜁2𝐾3 [𝜔̂T, 𝜌̂𝑀 ] (𝑥1)

+𝑐P𝑥2𝜁1𝐸 (𝜁)𝐾1 [𝜔̂P, 𝜌̂𝑀 ] (𝑥1) − 𝑐P
𝜎̂𝐸 (𝜁)
𝑘2

√
2𝜋
𝜁2𝐾3 [𝜔̂P, 𝜌̂𝑀 ] (𝑥1) (A 9d)

and the integrals 𝐽1, 𝐽3, 𝐾1 and 𝐾3 are given in Appendix B. Derivation of (A 9c) and (A 9d)535
can be done straightforwardly in the similar way as (A 2), where the same kind of operations536
[see the items (1)–(3) after (A 2)] can be used again. When the arguments proportional to537
𝑥2 are substituted into the collision operator 𝐿 (𝜓) [(A 9c) and (A 9d)], due to the position538
displacements 𝒙± 𝜎̂𝒌 for 𝜓 and 𝒙± (𝜎̂/2)𝒌 for ⟨𝜓⟩ [see also (2.8)], factors with 𝑥2± 𝜎̂𝑘2 and539
𝑥2 ± (𝜎̂/2)𝑘2 occur in the integrand of 𝐿 (𝜓). Then, the contribution from parts proportional540
to 𝑥2 gives the first term of RHS of (A 9c) and the first and third terms of RHS of (A 9d),541
and that from parts proportional to ±𝜎̂𝑘2 and ±(𝜎̂/2)𝑘2 gives the second term of RHS of542
(A 9c) and the second and fourth terms of RHS of (A 9d), respectively.543
Corresponding to the classification after (A 8), the terms in RHS of (A 3), 1

𝑘
𝐿 (Φ)544

given in (A 9), can also be classified into: (1) 𝑐T𝑥2𝜁1𝐸 (𝜁) (𝜁2 − 3
2 )𝐽1 [ 𝜌̂𝑀 ] (𝑥1),545

(2) 𝑐T,P𝑥2𝜁1𝐸 (𝜁)𝐾1 [𝜔̂T,P, 𝜌̂𝑀 ] (𝑥1) and (3) 𝑐T,P(1/𝑘)𝐿 (ΨT,P),−𝑐T(𝜎̂𝐸 (𝜁)/𝑘2
√

2𝜋)𝐽3 [ 𝜌̂𝑀 ] (𝑥1, 𝜻)546

and −𝑐T,P(𝜎̂𝐸 (𝜁)/𝑘2
√

2𝜋)𝜁2𝐾3 [𝜔̂T,P, 𝜌̂𝑀 ] (𝑥1). The terms of third kind can be confirmed547
to be actually odd in 𝜁2.548
Finally, we equate (A 8) and (A 9a) by taking into account the classification (1)–(3) of the549

terms. For the first kind of terms, because the equation for 𝜌̂𝑀 , d𝜌̂𝑀 (𝑥1)/d𝑥1 = 𝐽1 [ 𝜌̂𝑀 ] (𝑥1),550
holds, we find that they nicely cancel out. Equating the second kind of terms, we obtain the551
equation (2.6) for 𝜔̂T,P. Equating the third kind of terms, the equation (2.7) for ΨT,P with the552
source term (2.11) is obtained.553

Appendix B. Definitions of 𝐽𝑖 and 𝐾𝑖554

The integrals 𝐽1, 𝐽2 and 𝐽3 in (2.5a), (2.6b) and (2.11a) are given by

𝐽1 [ 𝜌̂𝑀 ] (𝑥1) =
1
𝑘

√︂
𝜋

2
𝜌̂𝑀 (𝑥1)

∫ 1

−1
𝑌 ( 𝜌̂𝑀 (𝑟𝑚) ; 𝜂0) 𝜌̂𝑀 (𝑟𝑜)𝑧d𝑧, (B 1a)

𝐽2 [ 𝜌̂𝑀 ] = −
√
𝜋

4
√

2𝑘 (1 − 𝜎̂)

∫ (1− 𝜎̂)/2

−(1− 𝜎̂)/2

∫ 𝜎̂

0

∫ 1

−1
(1 − 𝑧2)𝑌 ( 𝜌̂𝑀 (𝑟𝑐) ; 𝜂0)

×𝜌̂𝑀 (𝑟𝑎) 𝜌̂𝑀 (𝑟𝑏)d𝑧d𝛼̂d𝑠, (B 1b)

𝐽3 [ 𝜌̂𝑀 ] (𝑥1, 𝜻) =
1
√
𝜋

∫
𝑘2𝑌

(
𝜌̂𝑀

(
𝑥1 +

1
2
𝜎̂𝑘1

)
; 𝜂0

)
×𝜌̂𝑀 (𝑥1 + 𝜎̂𝑘1) 𝜌̂𝑀 (𝑥1)𝑍 (𝜻 · 𝒌)d𝒌, (B 1c)

where

𝑟𝑜 = 𝑥1 − 𝜎̂𝑧, 𝑟𝑚 = 𝑥1 −
1
2
𝜎̂𝑧, (B 2a)
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𝑟𝑎 = 𝑠 − 𝛼̂𝑧, 𝑟𝑏 = 𝑠 + (𝜎̂ − 𝛼̂)𝑧, 𝑟𝑐 = 𝑠 + ( 1
2
𝜎̂ − 𝛼̂)𝑧, (B 2b)

𝑍 (𝑡) = 1
2
(1 − 𝑡2)𝑒−𝑡2 +

√
𝜋

2
(𝑡3 − 1

2
𝑡)
(
1 − erf (𝑡)

)
, erf (𝑡) = 2

√
𝜋

∫ 𝑡

0
𝑒−𝜏

2
d𝜏. (B 2c)

The integrals 𝐾1, 𝐾2 and 𝐾3 in (2.6) and (2.11) are given as follows:

𝐾1 [𝜔̂𝛽 , 𝜌̂𝑀 ] (𝑥1) =
1
𝑘

√︂
𝜋

2

[ ∫ 1

−1
𝑌 ( 𝜌̂𝑀 (𝑟𝑚) ; 𝜂0) [ 𝜌̂𝑀 (𝑟𝑜)𝜔̂𝛽 (𝑥1) + 𝜔̂𝛽 (𝑟𝑜) 𝜌̂𝑀 (𝑥1)]𝑧d𝑧

+
∫ 1

−1
𝑌1 ( 𝜌̂𝑀 (𝑟𝑚) ; 𝜂0) 𝜔̂𝛽 (𝑟𝑚) 𝜌̂𝑀 (𝑟𝑜) 𝜌̂𝑀 (𝑥1)𝑧d𝑧

]
, (B 3a)

𝐾2 [𝜔̂𝛽 , 𝜌̂𝑀 ] =
√
𝜋

4
√

2𝑘 (1 − 𝜎̂)

∫ (1− 𝜎̂)/2

−(1− 𝜎̂)/2

∫ 𝜎̂

0

∫ 1

−1
(1 − 𝑧2)

×
{
𝑌 ( 𝜌̂𝑀 (𝑟𝑐) ; 𝜂0)

[
𝜌̂𝑀 (𝑟𝑎)𝜔̂𝛽 (𝑟𝑏) + 𝜔̂𝛽 (𝑟𝑎) 𝜌̂𝑀 (𝑟𝑏)

]
+𝑌1 ( 𝜌̂𝑀 (𝑟𝑐) ; 𝜂0) 𝜔̂𝛽 (𝑟𝑐) 𝜌̂𝑀 (𝑟𝑎) 𝜌̂𝑀 (𝑟𝑏)

}
d𝑧d𝛼̂d𝑠

+ 1
1 − 𝜎̂

∫ (1− 𝜎̂)/2

−(1− 𝜎̂)/2
𝜔̂𝛽 (𝑠)d𝑠, (B 3b)

𝐾3 [𝜔̂𝛽 , 𝜌̂𝑀 ] (𝑥1) = 𝜋
∫ 1

−1
(1 − 𝑧2)

[
𝑌 ( 𝜌̂𝑀 (𝑟𝑚) ; 𝜂0) 𝜔̂𝛽 (𝑟𝑜) 𝜌̂𝑀 (𝑥1)

+1
2
𝑌1 ( 𝜌̂𝑀 (𝑟𝑚) ; 𝜂0) 𝜔̂𝛽 (𝑟𝑚) 𝜌̂𝑀 (𝑟𝑜) 𝜌̂𝑀 (𝑥1)

]
d𝑧. (B 3c)

Appendix C. Definitions of several moments555

The 𝑃 (v)
11,𝑀 , 𝑃

(v)
22,𝑀 , 𝐺

(v)
11,T, 𝐺

(v)
22,T, 𝑃

(v)
12,𝜔T

, 𝑃 (v)
12 [Ψ𝛽] and 𝑄 (v) [Ψ𝛽] in (2.14) and (2.15) are

given by[
𝑃
(v)
11,𝑀

𝑃
(v)
22,𝑀

]
=

√
𝜋

4
√

2𝑘

∫ 1

−1

∫ 𝜎̂

0

[
2𝑧2

1 − 𝑧2

]
𝑌 ( 𝜌̂𝑀 (𝑟𝐶) ; 𝜂0) 𝜌̂𝑀 (𝑟𝐴) 𝜌̂𝑀 (𝑟𝐵)d𝛼̂d𝑧, (C 1a)[

𝐺
(v)
11,T

𝐺
(v)
22,T

]
=

√
𝜋

4
√

2𝑘

∫ 1

−1

∫ 𝜎̂

0

[
2𝑧2

1 − 𝑧2

]
×
{
𝑌 ( 𝜌̂𝑀 (𝑟𝐶) ; 𝜂0)

[
𝜌̂𝑀 (𝑟𝐴)𝜔̂T(𝑟𝐵) + 𝜔̂T(𝑟𝐴) 𝜌̂𝑀 (𝑟𝐵)

]
+𝑌1 ( 𝜌̂𝑀 (𝑟𝐶) ; 𝜂0) 𝜔̂T (𝑟𝐶) 𝜌̂𝑀 (𝑟𝐴) 𝜌̂𝑀 (𝑟𝐵)

+𝑌 ( 𝜌̂𝑀 (𝑟𝐶) ; 𝜂0) 𝜌̂𝑀 (𝑟𝐴) 𝜌̂𝑀 (𝑟𝐵)
}
d𝛼̂d𝑧, (C 1b)

𝑃
(v)
12,𝜔T

=

√
𝜋

4
√

2𝑘

∫ 1

−1

∫ 𝜎̂

0
𝑧(1 − 𝑧2)

×
{
𝑌 ( 𝜌̂𝑀 (𝑟𝐶) ; 𝜂0)

[
(𝜎̂ − 𝛼̂) 𝜌̂𝑀 (𝑟𝐴)𝜔̂T(𝑟𝐵) − 𝛼̂𝜔̂T(𝑟𝐴) 𝜌̂𝑀 (𝑟𝐵)

]
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+( 1
2
𝜎̂ − 𝛼̂)𝑌1 ( 𝜌̂𝑀 (𝑟𝐶) ; 𝜂0) 𝜔̂T (𝑟𝐶) 𝜌̂𝑀 (𝑟𝐴) 𝜌̂𝑀 (𝑟𝐵)

+( 1
2
𝜎̂ − 𝛼̂)𝑌 ( 𝜌̂𝑀 (𝑟𝐶) ; 𝜂0) 𝜌̂𝑀 (𝑟𝐴) 𝜌̂𝑀 (𝑟𝐵)

}
d𝛼̂d𝑧, (C 1c)

𝑃
(v)
12 [Ψ𝛽] =

1
2
√

2𝜋𝑘

∫ 𝜎̂

0

∫ ∫
𝑘1𝑘2𝑌

(
𝜌̂𝑀

(
𝑥1 + ( 1

2
𝜎̂ − 𝛼̂)𝑘1

)
; 𝜂0

)
×
[
𝐼
(+)
𝑃

(𝜻 · 𝒌) 𝜌̂𝑀 (𝑥1 − 𝛼̂𝑘1)Ψ𝛽 (𝑥1 + (𝜎̂ − 𝛼̂)𝑘1, 𝜻)

+𝐼 (−)
𝑃

(𝜻 · 𝒌) 𝜌̂𝑀 (𝑥1 + (𝜎̂ − 𝛼̂)𝑘1)Ψ𝛽 (𝑥1 − 𝛼̂𝑘1, 𝜻)
]
d𝜻d𝒌d𝛼̂,(C 1d)

𝑄 (v) [Ψ𝛽] =
1

4
√

2𝜋𝑘

∫ 𝜎̂

0

∫ ∫
𝑘2𝑌

(
𝜌̂𝑀

(
𝑥1 + ( 1

2
𝜎̂ − 𝛼̂)𝑘1

)
; 𝜂0

)
×
[
𝐼
(+)
𝑄

(𝜻 · 𝒌) 𝜌̂𝑀 (𝑥1 − 𝛼̂𝑘1)Ψ𝛽 (𝑥1 + (𝜎̂ − 𝛼̂)𝑘1, 𝜻)

+𝐼 (−)
𝑄

(𝜻 · 𝒌) 𝜌̂𝑀 (𝑥1 + (𝜎̂ − 𝛼̂)𝑘1)Ψ𝛽 (𝑥1 − 𝛼̂𝑘1, 𝜻)
]
d𝜻d𝒌d𝛼̂, (C 1e)

where

𝑟𝐴 = 𝑥1 − 𝛼̂𝑧, 𝑟𝐵 = 𝑥1 + (𝜎̂ − 𝛼̂)𝑧, 𝑟𝐶 = 𝑥1 + ( 1
2
𝜎̂ − 𝛼̂)𝑧, (C 2a)

𝐼
(±)
𝑃

(𝑡) = 𝜋−1/2
∫ ∞

±𝑡
(𝜏 ∓ 𝑡)2𝑒−𝜏

2
d𝜏, (C 2b)

𝐼
(±)
𝑄

(𝑡) = ±𝜋−1/2
∫ ∞

±𝑡
(𝜏 ∓ 𝑡)2(𝜏 ± 𝑡)𝑒−𝜏2

d𝜏. (C 2c)

The (𝐺 (v)
11,P, 𝐺

(v)
22,P) and 𝑃

(v)
12,𝜔P

are respectively given by the definitions of (𝐺 (v)
11,T, 𝐺

(v)
22,T)556

and 𝑃 (v)
12,𝜔T

with their respective last terms 𝑌 ( 𝜌̂𝑀 (𝑟𝐶); 𝜂0) 𝜌̂𝑀 (𝑟𝐴) 𝜌̂𝑀 (𝑟𝐵) and ( 1
2 𝜎̂ −557

𝛼̂)𝑌 ( 𝜌̂𝑀 (𝑟𝐶); 𝜂0) 𝜌̂𝑀 (𝑟𝐴) 𝜌̂𝑀 (𝑟𝐵) in the curly brackets being dropped and 𝜔̂T being replaced558
by 𝜔̂P.559

Appendix D. Information of computations560

In this Appendix, the information of computations is briefly described. The results shown561
in Section 4 are those obtained with the molecular-velocity lattice system consisting of562
336 × 64 × 64 points in 𝜁1𝜁2𝜁3-space and the spatial lattice system consisting of 181 points.563
For 𝜁1, the minimum lattice interval is 1.243 × 10−5 around 𝜁1 = 0, while the maximum564
interval is 0.0931 around 𝜁1 = ±4.5. For 𝜁2 and 𝜁3, the lattice interval is uniformly 0.369.565
For 𝑥1, the minimum lattice interval is 5.242 × 10−5 around 𝑥1 = −1/2, while the maximum566
interval is 6.944 × 10−3 around 𝑥1 = 0 in the case of 𝜎̂ = 0. In the case of 𝜎̂ ≠ 0, this567
arrangement is shrunk to the interval [−(1 − 𝜎̂)/2, 0]. In the computation of the collision568
integral, 192 × 64 × 64 modes in the frequency domain for 𝜁1𝜁2𝜁3-space and 32 and 16569
Gauss–Legendre quadrature points for the polar and azimuthal angles of vector 𝒌 (with the570
𝑥1 direction as the polar direction) are used. The results shown in figures 2–14 are those571
for which numerical convergence has been judged within the error invisible in the figures572
through the comparison with the results obtained with other lattice systems and parameters.573
The momentum conservation law (2.19) provides another measure of accuracy. The values574
of |𝑆T | and |𝑆P |, which should theoretically be zero within the linearized regime, are bounded575
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respectively by 6.0×10−6 and 3.0×10−5 for all values of 𝑘 and 𝜎̂ chosen. This also supports576
the accuracy of the present computation.577
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