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ABSTRACT
Advanced nuclear fuels are designed to offer improved performance and accident tol-
erance, with an emphasis on achieving higher thermal conductivity. While promising
fuel candidates like uranium nitrides, carbides, and silicides have been widely stud-
ied, the majority of uranium compounds remain unexplored. To search for potential
candidates among these unexplored uranium compounds, we incorporated machine
learning to accelerate the material discovery process. In this study, we trained a
multiclass classification model to predict a compound’s thermal conductivity based
on 133 input features derived from element properties and temperature. The initial
training data consists of over 160,000 processed thermal conductivity records from
the Starrydata2 database, but a skewed data class distribution led the trained model
to underestimate compound’s thermal conductivity. Consequently, we addressed the
issue of class imbalance by applying Synthetic Minority Oversampling TEchnique
and Random UnderSampling, improving the recall for materials with thermal con-
ductivity higher than 15 W/mK from 0.64 to 0.71. Finally, our best model is used
to identify 119 potential advanced fuel candidates with high thermal conductivity
among 774 stable uranium compounds. Our results underscore the potential of ma-
chine learning in the field of nuclear science, accelerating the discovery of advanced
nuclear materials.
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1. Introduction

After the Fukushima Daiichi nuclear power plant accident in March 2011, considerable
attention has been focused on the development of accident-tolerant fuels and claddings
that have greater accident tolerance and improved performance compared to the tra-
ditional UO2-Zircaloy system[1–3] to promote safer nuclear power. Among the various
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categories of advanced accident-tolerant fuels, high-density fuels such as uranium sili-
cides, uranium carbides, and uranium nitrides show significant promise. Their high
uranium density can offset the neutron penalties associated with the use of advanced
cladding materials like FeCrAl or coated Zr-claddings[4,5]. Moreover, these uranium
compounds exhibit excellent thermal conductivity, which is critical in enhancing reac-
tor safety by reducing the centerline temperature of the fuel pellet and its temperature
gradient[6–8].

Despite the promising properties and compatibility with advanced claddings, each
of these high-density fuels has issues that must be addressed before their use in com-
mercial light water reactors[4,9,10]. For instance, both UN[11,12] and UC[13,14] are
known to react with water, forming hydrogen gases, while U3Si2[15–18] rapidly pulver-
izes in H2O-environments at elevated temperatures. These reactions pose significant
safety concerns in the event of a cladding breach. Additionally, UN and UC exhibit
higher swelling rates, necessitating further consideration to prevent pellet-cladding
mechanical interactions[4]. Although it is crucial to continue improving the properties
of these well-established advanced fuel candidates, the pursuit of new advanced fuels
with high uranium density and thermal conductivity should not be overlooked. This
is particularly relevant given that the vast majority of uranium compounds remain
unexplored. However, it would be both time-consuming and impractical to employ the
conventional trial-and-error approach to investigate the thermal conductivity of over
2000 unique uranium compounds[19].

Over the past few years, the incorporation of machine learning (ML) in materi-
als science has revolutionized the material discovery process[20–22]. Instead of rely-
ing on human intuition and experiences, ML models, trained on extensive datasets,
can efficiently predict material properties such as crystal structure[23–26], elastic
properties[27–30], and thermal conductivity[31–34], contributing to the design and
accelerated discovery of new materials. However, ML has seen little use in predicting
the thermophysical properties of nuclear materials, likely due to the lack of a compre-
hensive nuclear-focused database to use as training data. To the best of our knowledge,
only Kautz et al.[35] have introduced a deep learning model to predict the thermal
conductivity of the U-Mo system after irradiation and Lu et al.[36] constructed a
model to predict the thermal conductivity of metallic nuclear fuels limited to those
with BCC structures.

To expedite the discovery of advanced fuels, this study employs an ML-based ap-
proach to efficiently identify potential fuel candidates among the vast unexplored ura-
nium compounds. Specifically, our objective is to develop a multiclass random forest
model for predicting the thermal conductivity of these compounds. In contrast to the
regression model proposed by Lu et al.[36] for U-Mo-Nb-Zr-Pu alloys, which uses a lim-
ited feature set of 6 and was trained on a small dataset of 801 data points, our model
leverages 133 input features, consisting of 132 Magpie descriptors[37] and temperature.
Furthermore, our model was trained on a substantially larger dataset, comprised of
168,918 entries from the Starrydata2 database[38]. The availability of a comprehen-
sive thermal conductivity database in Starrydata2 is also a factor in our decision to
focus on predicting thermal conductivity, despite the importance of other properties
relevant during advanced fuels’ fabrication, operation, and reprocessing.

However, it is worth noting that as the Starrydata2 database predominantly consists
of materials with low thermal conductivity, it created an imbalanced training dataset,
potentially affecting the accuracy of the ML model’s predictions. To address this, we
employed the Synthetic Minority Oversampling Technique (SMOTE)[39] and Random
Undersampling (RUS) to balance the classes in the dataset. Utilizing our classification
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model, trained on a SMOTE-balanced dataset, we predicted the thermal conductivity
of 774 stable uranium compounds listed on the Materials Project database[19], which
provides the chemical formulas for various inorganic crystalline materials. Out of these,
119 were selected as potential advanced fuel candidates due to their high thermal
conductivity, defined as exceeding 15 W/mK at temperatures between 300 and 1000
K.

2. Methods

2.1. Data filtering, featurization, and binning

The Starrydata2 database was initially established to promote material discovery in
the field of thermoelectric materials. It contains various thermophysical properties
extracted from peer-reviewed articles, such as composition, temperature, Seebeck co-
efficient, thermal conductivity, electrical resistivity, etc. We processed all 372,480 data
points from the Starrydata2 database (as of 2023/01/12) for ML training.

From these 372,480 data points, we retained only those with measurement temper-
atures between 300 and 1000 K. The lower limit of 300 K was chosen because nuclear
fuels will not experience lower temperatures during operation, and the upper limit
of 1000 K was selected due to the scarcity of data at higher temperatures. Addition-
ally, we filtered out thermal conductivities below 0 or above 500 W/mK. The upper
thermal conductivity limit was set to eliminate outliers that are not polycrystals, con-
sidering even the best heat-conducting metals have thermal conductivities lower than
500 W/mK[40].

Among the Starrydata2 entries with available sample information, we excluded those
labeled as single crystals, powders, films, etc. The thermophysical properties of these
sample forms can significantly differ from those of their bulk counterparts, and our
primary interest lies in the thermal conductivity of polycrystalline bulk samples in
the context of nuclear fuels. Lastly, we removed entries with human errors, such as
invalid elements and floats, resulting in a filtered dataset of 168,918 entries for training.
Figure 1 offers a visual presentation of the thermal conductivity data removed during
the data processing step.

We utilized a total of 133 features (132 Magpie descriptors[37] and temperature) for
machine learning. The Magpie descriptors from the matminer[41] featurizers module
provide extensive information on the elements’ properties, such as their positions on
the periodic table, electronic structures, and ionic characteristics, including mean,
mode, average deviation, maximum, minimum, and range. The target variable, thermal
conductivity, was categorized into three classes (0–5, 5–15, and 15+W/mK), with class
2 (15+ W/mK) representing high thermal conductivity, and class 0 (0–5 W/mK)
denoting thermal conductivity similar to that of UO2 at elevated temperatures[42].
We opted for a classification study over a regression model because our primary goal
is to discover uranium compounds with thermal conductivities comparable to those
of uranium carbide (UC)[6] and uranium nitride (UN)[7], acknowledging that exact
values can be more precisely determined via experiments. Diagrams depicting the data
preparation and model training process are provided in Figure 2.
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Figure 1. Distribution of thermal conductivity data before (red) and after (green) filtering. The y-axis limit

is set at 4000 W/mK.

Table 1. Various class distribution and size of the training
data obtained using SMOTE and RUS.

Class 0 Class 1 Class 2 Ratio

Imbalance 139,402 21,703 7,813 18:3:1
SMOTE 139,402 139,402 139,402 1:1:1
SMOTE/RUS 69,701 69,701 69,701 1:1:1

2.2. Data balancing

Since the Starrydata2 database primarily focuses on thermoelectric materials, which
typically have low thermal conductivity, its data distribution is significantly biased
towards lower values, as shown in Figure 3. Without balancing the dataset, the trained
model may be inclined to predict a ‘0’ value, thereby underestimating a material’s
thermal conductivity.

To investigate the effect of data imbalance and data volume on the model’s perfor-
mance, we utilized the Synthetic Minority Oversampling TEchnique (SMOTE)[39] and
Random UnderSampling (RUS) methods from scikit-learn[43] to obtain three types of
class distributions and dataset size, as shown in Table 1. SMOTE addresses imbalance
by synthesizing new minority class data points. It operates by randomly selecting a
data point from the minority class, finding its k-nearest neighbors in the feature space
(five neighbors in this work), and creating a new data point at a randomly chosen point
along the line connecting the selected data point and one of its neighbors. Conversely,
RUS mitigates imbalance by randomly removing data points from the majority class,
as its name suggests. Used in tandem, these techniques aim to attain various balances
of class distribution and dataset sizes in the originally biased training data. For ex-
ample, as shown in Table 1, in the case of SMOTE/RUS, SMOTE is used on the two
minority classes 1 and 2 to each reach 50% of the size of class 0, and RUS is then
applied on class 0 to randomly remove half of its data points.
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Figure 2. Schematic showing the data processing, featurizing, and model training/prediction processes.

2.3. Grouping, training, and evaluation

The Starrydata2 database, which inherently includes doped materials, is susceptible
to data leakage. This is a scenario where some information present in the training data
might also exist in the test data. This situation is illustrated in Figure 4, where, if no
grouping is applied, both the training and test data contain information on uranium
oxides. This arrangement enables a model to predict the properties of U0.8Zr0.2O2

accurately, as it is trained with similar compounds. However, such models, trained
with this form of data leakage, could underperform significantly when applied to truly
unseen data.

To mitigate data leakage, we grouped the data based on similar sample composi-
tions. This was achieved by first identifying the main elements (one or two elements
with the highest molar percentages) in the sample compositions. In cases where mul-
tiple elements have the same molar percentage, the selection is done in alphabetical
order. As provided in the examples in Figure 4, the main elements of UO2, U, U3O8,
U0.8Zr0.2O2, and FeCrO3 are (U, O), (U), (U, O), (U, O), and (Cr, O), respectively.
Consequently, samples with the same main elements are placed in the same group. In
this example, three groups with distinct main elements are formed. During machine
learning, data within a specific group is only present either in the training or valida-
tion sets. This strategy effectively minimizes data leakage that would be present prior
to grouping. After applying the grouping strategy, uranium oxides, the (U, O) group,
only appear in the training data, as shown in Figure 4.

As for the machine learning algorithm, we employed a random forest classifier
with cross-validation executed using the StratifiedGroupKFold technique, provided
by scikit-learn[43]. Data balancing with SMOTE and RUS was applied to the training
data within each cross-validation fold, leaving the validation data untouched. After 10
cross-validation folds, the performance of the models was evaluated per class based on
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Figure 3. Semilog plot showing the data number within each class. Class 0: 0–5 W/mK, Class 1: 5–15 W/mK,

Class 2: 15 + W/mK. The x-axis limit is set at 100 W/mK.

Figure 4. Data grouping by the main elements of each compound reduces data leakage during training.
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the aggregated precision, recall, and F1 scores, defined as follows:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1 score = 2× Precision× Recall

Precision + Recall
(3)

Where TP, FP, and FN represent true positives, false positives, and false negatives,
respectively. Precision measures the accuracy of the model’s positive predictions, re-
call assesses the model’s ability to find all positive instances, and the F1 score pro-
vides a balanced evaluation. To supplement these metrics, we employed the Matthew’s
correlation coefficient (MCC) to provide a comprehensive evaluation of each model’s
performance. Unlike the class-specific metrics such as precision, recall, and F1 score,
MCC incorporates all elements of the confusion matrix to determine the quality of the
classification model. For multiclass classification, MCC can be calculated using the
equation provided by Gorodkin[44]:

MCC =
c× s−

∑K
k pk × tk√

(s2 −
∑K

k p2k)× (s2 −
∑K

k t2k)
(4)

In this equation, c represents the number of correctly predicted samples, s is the
total number of samples, pk indicates the total number of times class k is predicted,
and tk is the number of samples actually in class k.

In this study, the goal in data balancing is to maximize the trained model’s recall
while maintaining a relatively constant F1 score, especially for class 2, which correlates
with the model’s proficiency at identifying all uranium compounds with potential high
thermal conductivity. This emphasis arises from our goal to discover as many such
compounds as possible for further experimental verification. Maximizing recall ensures
broad discovery, albeit at the risk of including some false positives. This approach
is sensible in scenarios like ours, where experimental verification is feasible, and its
difficulty is much less than the initial discovery. Any false positives can be eliminated
in the subsequent experimental verification phase. Prioritizing precision, on the other
hand, would result in fewer false positives but might lead to overlooked potential
positive cases that cannot be recovered later. Therefore, it is more beneficial to cast a
wider net in the prediction phase to identify as many potential candidates as possible.
On the other hand, less emphasis is placed on improving the recall of class 0 (0–5
W/mK) as it contains materials with thermal conductivity on par with that of UO2,
which are not the primary focus of this study. Finally, it is crucial that enhancing the
recall and F1 score for class 2 does not adversely affect the model’s overall performance,
as assessed by the MCC value. This is important because a model that excels in
predicting one specific class but performs poorly overall could indicate overfitting and
may be unreliable for predicting unseen data.

Three final random forest classification models are trained using the three different
data sets illustrated in Table 1. The reason why data on uranium compounds from
the Starrydata2 database are not removed from the final training set is that our goal
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Table 2. Aggregated (KFold = 10) classification reports

of the random forest models trained with various datasets.
The highest value of each metrics is highlighted in green.

Class Precision Recall F1 score

Imbalanced
0 0.898 0.935 0.916
1 0.513 0.333 0.376
2 0.746 0.642 0.647

SMOTE
0 0.924 0.889 0.905
1 0.459 0.489 0.445
2 0.699 0.709 0.680

SMOTE/RUS
0 0.920 0.897 0.907
1 0.459 0.457 0.434
2 0.660 0.684 0.649

Table 3. Aggregated (KFold = 10) Matthew’s cor-

relation coefficients (MCCs) of the random forest

models trained with various datasets.

Imbalanced SMOTE SMOTE/RUS

MCC 0.45 0.48 0.47

is to search for uranium compounds with excellent thermal conductivity with as much
knowledge as possible. However, the uranium compounds present in the training set
are not included in the final predictions when searching for uranium compounds with
high thermal conductivity.

3. Results

3.1. Effect of balancing and size on the model’s performance

The aggregated classification reports, which detail the precision, recall, and F1 score
of random forest classification models trained with three different data balances and
sizes, are presented in Table 2. The MCC values for the three models are provided in
Table 3. The tabulated values in both tables are the averages over 10 cross validation
folds.

A comparison of the performances of the three models reveals the typical trade-off
between precision and recall. Specifically, as a model becomes more precise with its
predictions, it is also less likely to discover all of the positive cases. For the baseline
model, trained on the original imbalanced dataset from the Starrydata2 database, the
recall for classes 1 and 2 are 0.333 and 0.642, respectively. These values improved
significantly to 0.489 and 0.709 after the application of SMOTE to the training data
for data balancing, as illustrated in Table 2. Furthermore, the model’s MCC value
in Table 3 also showed an improvement from 0.45 to 0.48 after the application of
SMOTE. When the size of the training data was reduced with random undersampling
in the SMOTE/RUS dataset, the model’s performance metrics either remained roughly
constant or declined. This trend highlights the importance of data size, even that of
the synthesized oversampling data, in improving the trained model’s performance.
Overall, compared to the baseline model trained on imbalanced data, the application
of SMOTE led to significant improvements in the recall and F1 score for class 2, along
with a higher MCC value. This validates the use of SMOTE in data balancing as it
led to the best-performing model for predicting the thermal conductivity of uranium
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Figure 5. Top 10 features of importance in the classification model trained using the SMOTE-balanced

dataset.

compounds.

3.2. Feature importance

While the complexity and non-linear nature of random forest models make fully un-
raveling their inner workings a challenging task, understanding feature importance
provides crucial insights into the model’s decision-making process. This evaluation al-
lows us to confirm whether the model’s prediction mechanism aligns with established
principles in materials science. Figure 5 displays the top 10 most important features of
the classification model, trained using the SMOTE-balanced dataset. These features
are derived from temperature and element properties of the compound’s constituent
atoms. These properties include ground state volume (GSvolume), number of valence
electrons in the p-orbital (NpValence), number of valence electrons (NValence), melt-
ing point, and the Mendeleev numbers. In the Magpie descriptors, valence electrons
are defined as those beyond the nearest noble gas configuration. For example, the
NValence values for Fe, Te, and Au are 8, 16 and 25, respectively.

Temperature, as expected, emerges as the most influential feature. It governs
phonon-phonon and phonon-electron scattering processes, thereby impacting a com-
pound’s lattice and electronic thermal conductivity. GSvolume, which represents the
volume per atom at its ground state (0K) as determined by Density-functional theory
(DFT) calculations, offers insight into the compound’s lattice volume. This is an im-
portant factor in the phonon dispersion relations and, subsequently, the lattice thermal
conductivity of the compound.

We believe that the mean and average deviation of NpValence are used by the
model to distinguish between compounds with and without metallic bonds. Metallic
compounds, with a significant number of free electrons participating in heat transport,
exhibit superior electronic thermal conductivity. Most metal elements, with their va-
lence electrons located in the s and d orbitals, do not have valence electrons in the p
orbitals (NpValence = 0). Some minor exceptions include post-transition metals such
as aluminum. Consequently, both the mean and average deviation of NpValence are
generally zero for metal alloys. In addition, the mean melting point of the constituent
atoms can also provide insights into the nature of the compound’s bonds. Ionic com-
pounds, usually containing chalcogen and halogen elements, tend to have lower mean
melting points compared to metal alloys. While it’s not immediately obvious how the
model uses the NValence features, we speculate that they also help differentiate among
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Table 4. Top 50 out of 119 predicted uranium compounds with thermal conductivity higher than 15 W/mK

between 300 and 1000 K, ranked in descending uranium density order.

Rank Compound Rank Compound Rank Compound Rank Compound Rank Compound

1 U3Si 11 U2RuC2 21 U2PtC2 31 UFeC2 41 U3Co7B2

2 U2Ti 12 U3(SiC)2 22 UCo2 32 UCrC2 42 U2B6Mo
3 U2CN 13 U2OsC2 23 U2PN2 33 UVN2 43 U2B6W
4 UCo 14 U2NiC3 24 UIr 34 U2SbN2 44 UTcC2

5 U2C3 15 U4N7 25 U5Re3C8 35 U2Mn3Si 45 UReC2

6 UBN 16 UC2 26 U2Co3Si 36 UMnFe 46 UMoC2

7 UBC 17 U2RhC2 27 UMn2 37 UMnC2 47 UWC2

8 UN2 18 U2IrC2 28 U2AsN2 38 UVC2 48 USiRh
9 U11Ni16 19 U2MnN3 29 UCoC2 39 U2ReB6 49 UTaN2

10 UH3 20 U2CrN3 30 UFe2 40 U2Re2C3 50 UTaC2

various types of compounds.
Lastly, the Mendeleev numbers, while not being thermophysical parameters, corre-

spond to an element’s position on the periodic table, indirectly reflecting its physical
and chemical properties. In this context, the maximum Mendeleev number could be
leveraged by the model to differentiate between various types of materials, such as
metallics and oxides. The mean Mendeleev number may indicate the dominant el-
ements in the material, enabling the model to infer combinations of elements with
characteristic thermal conductivities.

In conclusion, the top ten features employed in the random forest classification
model are variables that are closely connected to a material’s thermal conductivity.
This validates the model’s decision-making process and its alignment with established
materials science principles, thereby ensuring robust and accurate predictions of the
thermal conductivity of unseen uranium compounds.

3.3. Predicted uranium compounds with high thermal conductivity

A list of 783 stable uranium compounds for prediction is extracted from the Materials
Project database, and 9 duplicate formulas that are already present in the training
data are removed to prevent data leakage. The classification model trained with a
SMOTE-balanced dataset is used for the prediction, and only the 146 stable uranium
compounds predicted to belong in class 2 (15+ W/mK) at some point between 300
and 1000 K are further processed. To narrow down the search for potential fuel can-
didates, we remove compounds containing non-uranium metal elements with melting
temperature lower than 1500 K. After sorting by the compound’s uranium density in
a descending order, the top 50 fuel candidates are listed in Table 4, and a full list of
the 119 predicted potential fuel candidates is provided in Table A1 in Appendix A.

4. Discussion

4.1. Evaluation of model performance and prediction trends

The recall, F1 score, and MCC value of the models, as shown previously in Tables 2
and 3, all confirm improved model performance after data balancing. However, these
metrics do not fully illustrate the shifts in the model’s prediction trend. The confusion
matrices of both models, displayed in Figure 6, indicate a decrease in the model’s
tendency to underestimate thermal conductivity following data balancing. After data
balancing with SMOTE, the probability of the model incorrectly classifying materials
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Figure 6. Confusion matrices of the models trained with the imbalanced dataset (left) and the SMOTE-

balanced dataset (right).

from classes 1 and 2 as class 0 decreased from 60% to 42% and from 24% to 14%,
respectively. Moreover, the model trained with a SMOTE-balanced dataset now shows
a higher tendency to assign larger thermal conductivity values, which contributes to
the increased recall of classes 1 and 2. As demonstrated in Figure 6, the number of
data points predicted to be in classes 1 and 2 increased from 16025 and 7612 to 25750
and 8951, respectively. This increase led to the correct identification of an additional
3360 and 530 data points in classes 1 and 2, respectively.

Both the recall values and the confusion metrics point to the same conclusion: with
the proper class balancing, we are able to address the bias towards predicting lower
thermal conductivity, which was prevalent with data sourced from the Starrydata2
database. While the field of nuclear materials lacks a comprehensive thermophysical
properties database, our study illustrates an effective method for transforming non-
nuclear focused databases for machine learning applications. However, there is signif-
icant potential for enhancing the performance of the proposed classification model,
especially considering that the recall for class 2 (15+ W/mK) is currently only at
0.71. The model presently incorporates temperature and various elemental properties
as features, yet thermal conductivity is intrinsically related to the crystal and elec-
tronic structure of a material. Therefore, introducing crystal structure features such
as lattice parameters, angles, and site numbers, or electronic information such as band
information and density of states could potentially improve the model’s recall. Tools
like the Materials Project API allow for the extraction of these crystal structure and
electronic structure features for compounds. However, the prevalence of doped mate-
rials in the Starrydata2 database imposes substantial challenges to the incorporation
of these features in this work. Moreover, determining how to effectively featurize the
electronic structure information is another crucial issue.

4.2. Analysis of predicted uranium compounds

The thermal conductivity of most materials presented in Table 4 has not been pre-
viously reported. Among the materials with known high thermal conductivity, the
model accurately identified U3Si[45], U2RuC2[46], and U2RhC2[46]. However, it over-
estimated the thermal conductivity of UC2[47], U2C3[48], and UMoC2[46], even though
their thermal conductivity ultimately surpasses 15 W/mK at temperatures higher than
1000 K.

Among the 119 selected candidates, only UN2 has a calculated non-zero band
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gap[49]. This suggests that these uranium compounds display metallic-like electri-
cal conductivity where delocalized free electrons can contribute to a high electronic
thermal conductivity. For example, the calculated electronic thermal conductivity of
UMn2 and UFe2 from their reported electrical resistivity[50] both exceed 15 W/mK
below 1000 K. For U2PtC2[51], while its electrical resistivity is reported, it is only
reported for room temperature, providing insufficient information to estimate its elec-
tronic thermal conductivity at higher temperatures.

Overall, the concurrence between the predicted thermal conductivity and existing
literature underscores the predictive capability of the classification model trained with
the SMOTE-balanced dataset. However, it should be noted that, despite these promis-
ing candidates featuring an energy above hull of zero, it does not necessarily ensure
the synthesizability of single-phase materials or their stability at high temperatures,
warranting further experimental validation. For instance, the fabrication of U2C3 re-
sults in UC2-x impurities[48,52], and UN2 has been shown to convert to U2N3 and UN
at temperatures higher than 948 K under an inert argon atmosphere[53].

5. Conclusion

To accelerate the discovery of advanced nuclear fuels with high thermal conductivity,
we introduced a multiclass random forest classification model to predict the thermal
conductivity of uranium compounds. The model, trained on a dataset of 168,918 ther-
mal conductivity records from the Starrydata2 database and Magpie + temperature
features, successfully improved the recall from 0.33 and 0.64 to 0.49 and 0.71 for classes
1 (5–15 W/mK) and 2 (15+ W/mK), respectively, after applying SMOTE for data
balancing. The results offer valuable insights for the application of machine learn-
ing in nuclear materials research, particularly where comprehensive nuclear-specific
databases are lacking.

Our classification model predicted that 146 out of 774 stable uranium compounds
would exhibit a thermal conductivity of 15 W/mK or higher within the temperature
range of 300 to 1000 K. From this subset, we further narrowed down to 119 potential
advanced fuel candidates by filtering based on the elements’ melting points and ar-
ranging them by their uranium density. Our classification model, which can be trained
in just a few minutes, offers a far more efficient and feasible technique for searching
advanced nuclear fuels among the unexplored uranium compounds, compared to the
traditional trial-and-error approach. While our ML-assisted approach still necessitates
follow-up experiments to verify the thermal conductivity, high-temperature stability,
and synthesizability of the selected candidates, it significantly reduces the number of
samples requiring fabrication and measurements.

Finally, it should be emphasized that the development of advanced nuclear fuels is
influenced by a multitude of factors, ranging from manufacturing and operation to re-
processing. While our model is specifically focused on thermal conductivity predictions,
it serves as a significant stepping stone for the development of more comprehensive
ML frameworks. These advanced models could enable a wider range of thermophysi-
cal and mechanical properties predictions and significantly accelerate the discovery of
well-rounded advanced nuclear fuels.
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Appendix A. List of predicted advanced fuel candidates with high
thermal conductivity.
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Table A1. 119 predicted uranium compounds with thermal conductivity higher than 15 W/mK between 300 and 1000
K, ranked in descending uranium density order.

Rank Compound Rank Compound Rank Compound Rank Compound Rank Compound

1 U3Si 25 U5Re3C8 49 UTaN2 73 UFe3B2 97 U5(B12Mo5)2
2 U2Ti 26 U2Co3Si 50 UTaC2 74 URu3 98 U(SiRh)2
3 U2CN 27 UMn2 51 UNbN2 75 URu2Rh 99 U(SiRu)2
4 UCo 28 U2AsN2 52 USiRu 76 UB4W 100 USi2RuRh
5 U2C3 29 UCoC2 53 UNbC2 77 URh3 101 U(SiPd)2
6 UBN 30 UFe2 54 HfUN2 78 UCo3B2 102 U(SiPt)2
7 UBC 31 UFeC2 55 URe2 79 UNi2B2C 103 U(CrC)4
8 UN2 32 UCrC2 56 ZrUN2 80 USi3 104 U6P13Rh20
9 U11Ni16 33 UVN2 57 UOs2 81 UFe2SiC 105 UB12

10 UH3 34 U2SbN2 58 U6Co12Ge4C 82 U6Fe16Si7C 106 UPt5
11 U2RuC2 35 U2Mn3Si 59 HfUC2 83 U3Fe2Si7 107 U(BRu)4
12 U3(SiC)2 36 UMnFe 60 ZrUC2 84 UIr3 108 UPdPt4
13 U2OsC2 37 UMnC2 61 UFeB4 85 UMn2SiC 109 U(Mn2P)2
14 U2NiC3 38 UVC2 62 UCoB4 86 U2(PdRh)3 110 UMn5P3

15 U4N7 39 U2ReB6 63 UReB3 87 ThUC2 111 UCr5P3

16 UC2 40 U2Re2C3 64 UGeRh 88 U4Si6Tc7 112 UV5P3

17 U2RhC2 41 U3Co7B2 65 UMnB4 89 U4Tc7Ge6 113 U4Be51B
18 U2IrC2 42 U2B6Mo 66 UCrB4 90 UNi5 114 UBe13
19 U2MnN3 43 U2B6W 67 UGePd 91 U2Mn3Si5 115 U(Cr3P2)2
20 U2CrN3 44 UTcC2 68 UNiB4 92 UB2Ru3 116 U2(Co7B2)3
21 U2PtC2 45 UReC2 69 GdUN2 93 U(FeB3)2 117 U2Si7Ru12
22 UCo2 46 UMoC2 70 UB4Ru 94 UB2Os3 118 U2(Ni7B2)3
23 U2PN2 47 UWC2 71 UReB4 95 U2Nb3Si4 119 YUCo10
24 UIr 48 USiRh 72 UB4Os 96 UB2Ir3
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