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Estimating the potential impact of climate change on energy crop productivity in 

Thailand: An empirical study of sugarcane, cassava, and oil palm using panel data 

analysis 

 

Abstract 

In recent years, biofuels have played an important role in the economic development of Thailand as a clean and 

environmentally-friendly source of energy that can be produced in the agricultural sector. Thailand has particularly 

high efficiency in energy crop production, making the country a valuable reserve energy source. The main purpose 

of this study is to examine the potential impact of climate change on energy crop productivity in Thailand, 

specifically for sugarcane, cassava, and oil palm, using panel data analysis from 1995 to 2020 at the provincial 

level throughout the country. The expected yield and variance of the yield are estimated using Just and Pope’s 

procedure. The empirical results reveal that temperature and rainfall have different effects on the efficiency of 

energy crop production. The estimated potential impact indicates that higher temperatures above the average level 

affect energy crop productivity more than rainfall changes in different directions. The findings conclude that in 
order to maximize domestic energy crop productivity, it is necessary to prepare the cultivation areas to suit the 

local climate and weather conditions. 
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2 

 

1 Introduction 

Climate change is a global challenge that has been discussed continuously in communities around the world as it 

causes numerous environmental and ecological problems such as heavy rain and severe storms, weather 

fluctuations, El Niño and La Niña phenomena, droughts, wildfires, floods, and landslides. There may also be 
habitat loss for various species, extinction of wildlife, and biodiversity loss, as well as the degradation of natural 

resources and the environment (e.g., forests, soils, water, air, seas, etc.). The severity of climate change may affect 

the economic and social systems of many nations globally. For example, production, especially in the agricultural 

sector, may be damaged by droughts and floods, which results in industrial sectors lacking the necessary raw 

materials to produce goods and services, as well as negative effects on farmers and other related stakeholders in 

the agricultural supply chain system. The export of agricultural products will be disrupted, and its volume will be 

declined accordingly. Therefore, the revenue of a country like Thailand will be decreased by the impact of climate 

change, which will eventually result in an economic slowdown and the loss of social welfare. 

Climate change is mainly caused by the greenhouse effect, in which the Earth’s atmosphere absorbs some of 

the Sun’s heat, resulting in global warming and many negative consequences on economic, social, and 

environmental systems. The Intergovernmental Panel on Climate Change (IPCC) reports that climate change 

refers to the changes in the planet’s temperature, precipitation (e.g., drizzle, rain, sleet, snow, hail, etc.), sea level, 

wind pattern, solar radiation, heatwave, and other measures of climatic indicators occurring over several decades 

or longer. Such measures can be identified based on statistical approaches generally used through the mean and 

variability of climate properties (UNFCCC, 2011; Hertel & Rosch, 2010; Sinnarong, 2017).  

Greenhouse gases have major influences on climate change and are mainly from human activities, economic 

development, and changing social conditions. Agriculture is considered the most vulnerable sector to the impacts 

of climate change compared to other economic sectors, as it heavily relies on weather patterns for agricultural 

activities such as crop cultivation, livestock rearing, and fishery. These weather patterns are predicted to become 
increasingly extreme in the future (Mendelsohn, 2008). Agriculture has played an important role in Thailand’s 

economic and social development throughout history because it is respected as a source of food supply, 

occupations for many Thai people, national revenue, and basic needs for human life. Most of the country’s 

population relies on the agricultural sector, 47.38 percent, which can generate value-added to the overall economy 

by more than 43,575 million USD. According to statistical information, in 2020, Thailand received revenue from 

the exports of agricultural commodities equal to 38,344 million USD, which can be calculated as a proportion of 

12.56 percent when comparing the gross domestic product (GDP). Thailand is a medium-sized country in 

Southeast Asia comprising 513,115 square kilometers, 46.54 percent or 23.88 million hectares, of which is 

devoted to agricultural concerns. Thailand is a leader in producing and exporting agricultural commodities to the 

world market, such as rice, cassava, natural rubber, oil palm, sugarcane, tropical fruits, vegetables, poultry, and 

fishery products (Office of Agricultural Economics, 2021a, 2021b, 2021c). 

In recent years, Thailand has been influenced by weather variabilities, such as changes in the structure of daily 

rainfall and temperature patterns. For example, changes in the number of rainy days will influence the intensity 

of extreme events as well as changes in maximum, minimum, and average temperatures each year, which will 

influence and threaten the living conditions of humans and other species as a consequence. A report by the Thai 

Meteorological Department (2014) and Office of Agricultural Economics (2021d) revealed the changes in mean 
average temperature (averT), mean minimum temperature (minT), and mean maximum temperature (maxT) in 

Thailand. The mean temperature of the three series during the period from 1995 to 2020 at the provincial level is 

displayed in Figure 1. There are indications that all three series have had moderate fluctuations in each province 

for almost 26 years, which tended to change in a higher direction explicitly, especially for the maxT series. The 

annual total rainfall and number of rainy days by region in Thailand from 2011 to 2020 are shown in Table 1. 

There are also changes in the structure of daily rainfall in all regions, which have occurred over the past ten years, 

especially in terms of fewer rainy days and the greater intensity of daily rainfall. 

<<<Insert Figure 1>>> 

<<<Insert Table 1>>> 

As mentioned previously, the climate in Thailand has been volatile and seems to be intensifying, thus affecting 

the productivity of Thailand’s economy, especially agricultural production, which is highly vulnerable to climate 
change. Importantly, agriculture has long played a vital role in the economic and social development of Thailand 

as it is a major source of food production and basic human needs for living. Farmers and farming occupations are 

regarded as the backbone of the nation. Most of the population has been engaged in farming since their ancestors, 

with local agricultural wisdom passed down from generation to generation. In Thailand, agricultural commodities 

are used as a food source for direct consumption in the vast majority of households (e.g., rice, vegetables, fruits, 
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seafood, chicken, pork, etc.) or used as raw materials for processing into commodities and products (e.g., rubber, 

cassava, sugarcane, oil palm, etc.). Besides, the agricultural sector can generate income and bring hundreds of 

billions of baht into the country annually, making Thailand one of the world’s top producers and exporters of 

agricultural commodities (e.g., rice, rubber, cassava, sugarcane, tropical fruit, etc.). For these reasons, the 

government and private sectors have promoted Thailand as the “kitchen of the world”, using the phrase in a 
national development strategy by pushing such policies into sector-by-sector economies, especially the 

agricultural sector, which is a production sector in the upstream level of the country (FAO, 2011; Ministry of 

Agriculture and Cooperatives, 2011).  

In the past, it could be seen that the main purposes of agriculture in growing crops were for direct consumption 
as food, raw materials for the production of animal feed, raw materials to feed into the industrial sector, etc. At 

present, the agricultural sector has increasingly focused on growing crops for use in the energy sector due to the 

increasing demand for energy crops to produce biofuels. Using biofuels generates less carbon dioxide and air 

pollution compared to fossil fuels. The governments and private sectors in many countries are concerned with 

environmental and global warming issues. Therefore, promoting and supporting the use of renewable energy (e.g., 

wind energy, hydropower, solar energy, geothermal energy, biofuels, etc.) has been considered to replace fossil 

fuel energy (e.g., coal, petroleum, natural gas, etc.). Particularly, the use of crops to produce renewable energy 

has been considered a clean energy option. It can be used as a source of renewable fuel at all times. The use of 

crops to produce this alternative energy, also called “biofuel or bioenergy”, is mostly derived from agricultural 

commodities such as oil palm, sugarcane, cassava, corn, soybeans, etc. Biofuels in Thailand derived from 

agricultural production can be classified into two main categories: (1) ethanol is used as a mixture with benzyl oil 
for gasohol. Domestically, most ethanol is produced from sugarcane and cassava. (2) biodiesel is used in 

combination with kerosene or diesel for palm-diesel production. Most of the biodiesel produced domestically 

comes from oil palm. However, the use of ethanol and biodiesel to replace gasoline and diesel in the transport 

sector currently accounts for only ten percent of the country’s total demand (Department of Alternative Energy 

Development and Efficiency, 2021). 

In recent years, the demand for agricultural raw materials to produce alternative biofuel energy is likely to 

increase because the use of biofuels reduces pollution problems and is environmentally friendly. It is also an 

alternative energy source that will help solve the problem of fossil fuel shortage in the near future. It can be used 

as an unlimited replacement for traditional energy that human beings can produce naturally. This is especially 

important for Thailand, which is known as a country that has a high potential to grow energy crops for the 

production of biofuels (i.e., ethanol and biodiesel), namely sugarcane, cassava, and oil palm. A report of 

agricultural statistics in Thailand by the Office of Agricultural Economics (2021b) indicated that sugarcane 

production amounted to 76 million tons from 1.71 million hectares of harvested area, accounting for 13.14 percent 

of the world market share. Based on this amount, a certain amount of sugarcane and molasses was used as raw 

materials, 3.56 million tons and 0.85 million tons, respectively, to produce ethanol equal to 924.63 million liters. 

During the same period, the production of cassava in Thailand amounted to 30 million tons from 1.43 million 
hectares of harvested area, accounting for 76.34 percent of the world market share. Based on this amount, cassava 

was used as raw materials in the amount of 3.46 million tons to produce ethanol, equal to 553.04 million liters. 

Meanwhile, the production of oil palm was 15.66 million tons, accounting for 2.65 million tons of crude palm oil, 

from 0.94 million hectares of harvested area, accounting for only 0.45 percent of the world market share since it 

was produced primarily for domestic use. Based on this amount, crude palm oil was used as raw materials in a 

certain amount of 1.36 million tons or equivalent to 7.70 million tons of oil palm to produce biodiesel, equal to 

1,843.19 million liters (Department of Alternative Energy Development and Efficiency, 2021). 

Climate change is a factor that influences Thailand’s energy crop productivity, including sugarcane, cassava, 

and oil palm. More severe global warming will result in the increased frequency and intensity of extreme weather 

events, which will affect the efficiency of energy crop production as well. For example, studies by Knox et al. 

(2010), Baez-Gonzalez et al. (2018), Sonkar et al. (2020), and Vera et al. (2020) estimated the impact of climate 

change on sugarcane production in Swaziland, Mexico, India, and Brazil, respectively. The results confirmed that 

climate variability had influenced sugarcane productivity in the countries used in the studies. In addition, studies 

by Okoro et al. (2017), Chankong et al. (2019), and Sarkar et al. (2020) found that climate change affected the 

efficiency of oil palm production in Nigeria, Thailand, and Malaysia, respectively. Nonetheless, Jarvis et al. (2012) 
found that climate conditions had a positive effect on cassava production in the case of Nigeria. On the other hand, 

Pipitpukdee et al. (2020) concluded that the changes in climate factors would have a negative impact on harvested 

areas and the yield of cassava in Thailand. For these reasons, the main purpose of this study is to analyze the 

potential impact of climate change on energy crop productivity in Thailand, particularly for sugarcane, cassava, 

and oil palm. In order to assess the capacity to produce sufficient energy crops to replace fossil fuels and meet the 

demand for household consumption, animal feed, raw materials for various industrial sectors, and energy 

production, it is important to formulate policy implications for the appropriate use of renewable energy. The 



4 

 

study’s outcomes will help raise awareness among the Thai government and other stakeholders, as well as create 

adaptation guidelines and policies for Thailand’s agriculture and energy consumption sectors to address climate 

change issues in the future.  

2 Methodology 

2.1 Model specification 

This study applies Just and Pope’s (1978, 1979) stochastic production function (SPF) based on panel data analysis 

for detecting the impact of climate and weather variability on energy crop productivity in Thailand, specifically 

for sugarcane, cassava, and oil palm. Just and Pope’s procedure assumes that the expected mean yield and variance 

of the yield can be expressed in equation (1).  

Yit = f(Xit,k, βk) + uit = f(Xit,k, βk) + h(Xit,k, αk)0.5.εit                        (1) 

where Yit is the energy crops produced in the agricultural sector of Thailand, namely, sugarcane, cassava, and oil 

palm, f(.) is the mean yield function, Xit is the vector kth explanatory variables, βk and αk are the vectors of 

estimated parameters, uit is the heteroskedastic disturbance term, h(.) is the yield variance function, ε it is the 

random error term with zero mean and variance of σ2. The subscript (it) represents a panel dataset that consists of 

province i at time period t. Based on equation (1), the expected mean yield [E(Yit) = f(Xit,k, βk)], and variance of 

the yield [Var(Yit) = Var(uit) = h(Xit,k, αk).σ2] can be independently influenced by climatic and non-climatic 

variables.  

To estimate the SPF in equation (1), Just and Pope (1978, 1979) proposed the feasible generalized least squares 

(FGLS) and maximum likelihood estimator (MLE). The MLE is a consistent and more efficient estimator than 

FGLS, particularly for a small sample size (Saha et al., 1997). However, this study provides a large sample size 

for all provinces that produce each energy crop over a period from 1995 to 2020. Therefore, FGLS and MLE are 

used to estimate equation (1).  

The analysis of this study starts with a three-stage estimation of the FGLS. In the first stage, the ordinary least 

squares (OLS) technique is utilized to capture the residual from the expected mean yield equation to produce the 

variance of the yield because the σ2 is an unobserved variable. The formulation of the expected mean yield can be 

expressed in equation (2).  

Yit = β0 + β1Ait + β2averTit + β3minTit + β4maxTit + β5Rfit + β6Rfdit  

+ β7averVTit + β8minVTit + β9maxVTit + β10Trend + uit      (2) 

where Y is the output of crop yield (kilogram/hectare: kg/ha) for sugarcane, cassava, and oil palm, A is the 

harvested area (hectares: ha), averT is the annual mean average temperature (degree Celsius: °C), minT is the 

annual mean minimum temperature (degree Celsius: °C), maxT is the annual mean maximum temperature (degree 

Celsius: °C), Rf is the annual total rainfall (millimeter: mm.), Rfd is the average rainfall intensity (millimeters/day: 

mm./d), and Trend is the time trend representing the effect of technology improvement during the period of study, 

and averVT, minVT, and maxVT are the variations of averT, minT, and maxT, respectively. For the mean yield 

equation based on the Cobb-Douglas function, all variables, therefore, have transformed into logarithm form to 

explain marginal effects (it is commonly called the elasticity between the variables) of climatic and non-climatic 

variables to the expected crop yield.  

The expected variance is assumed to be the exponential function as E(σit
2 ) = exp(Zit

′ α). In the second stage, the 

OLS squared residual as the representative of variance yield is performed in natural logarithmic form, ln(ûit
2 ) to 

be regressed by the explanatory variables, as expressed in equation (3).  

ln(ûit
2 ) = α0 + α1Ait + α2averTit + α3minTit + α4maxTit + α5Rfit + α6Rfdit  

+ α7averVTit + α8minVTit + α9maxVTit + α10Trend + vit (3) 

In the third stage, the expected crop yield based on equation (2) is re-estimated using the predicted error (v̂it) 

from the second step to weigh for generating the FGLS estimation. The advantage of this stage is beneficial for 

projecting the potential impact of changes in crop productivity for the future using the conditions of climate and 

weather information. To compare the estimation of the FGLS, however, the limited information maximum 
likelihood (LIML) estimation (commonly called the MLE method) is considered to analyze the expected crop 

yield. The log-likelihood function can be expressed in equation (4). 



5 

 

lnL = −
1

2
[n. ln(2π) ∑ ln(h(Xi , α)2)

n

i=1

+ ∑
(Yi − f(Xi , β))

2

h(Xi , α)2

n

i=1

].                                                                              (4) 

where α and β are the estimated parameters in a single-stage maximization under the assumptions of Yi ⁓ 

N(f(Xi,β)), h(Xi,α)2, and εi ⁓ N(0,1). The log-likelihood function is utilized: (1) to compare expected mean yield 

with the FGLS estimation and (2) to find out the most appropriate projection model for the potential impacts of 

climatic and non-climatic factors on energy crop productivity. The measures of root mean square error (RMSE) 

and mean absolute percentage error (MAPE), calculated using equation (5) and equation (6), respectively, are 

used to select the most appropriate projection model, as follows. 

RMSE = √
1

n
. ∑(yi − ŷi)

2

n

i=1

                                                                                                                                             (5) 

MAPE =
1

n
. ∑ |

yi − ŷi

yi

|

n

i=1

                                                                                                                                                   (6) 

where yi is the actual value, ŷi is the predicted value, i is the sequence of observed information, and n is the total 

number of observations.  

The scenarios for the climatic changes assume that temperature has increased by 1°C, 2°C, and 3°C in all three 

series simultaneously by increasing from the average level, together with the changes in total rainfall, to increase 

and decrease from the average level by 100 mm., 200 mm., and 300 mm., respectively. Moreover, the study sets 

the default to the yield projections based on temperature and rainfall at the average level, or it does not change in 

temperature (± 0°C) and total rainfall (± 0 mm.). Therefore, the projection consists of 28 scenarios in each case 

for three energy crops, with 84 scenarios in total. Further, this study assumes that other non-climatic factors do 

not change or remain constant over the projection scenarios, as well as other climatic factors equal to the mean 

value over the time projection. 

2.2 Data and variables 

The unbalanced panel datasets for climatic and non-climatic variables are considered from 1995 to 2020 at the 

provincial level of Thailand, obtained from the Office of Agricultural Economics in various forms. The study 

areas consist of 46 sugarcane-growing provinces, 49 cassava-growing provinces, and 66 oil palm-growing 

provinces, out of the total of 76 provinces in Thailand, excluding Bueng Kan because there is missing and 

unavailability of data as well as the fact it is recently established as a new province.  

<<<Insert Figure 2>>> 

Figure 2 displays an example picture of the distribution maps for energy crop production in Thailand, including 

sugarcane, cassava, and oil palm. It shows the distribution of energy crop production in 2020 at the provincial 

level, where the production areas with the most color concentrates are defined as a province with production 

higher than the average country’s production.  

<<<Insert Table 2>>> 

The summary statistics for the panel data series in Table 2 present descriptive statistics for the variables used, 

such as mean value (mean), minimum value (min), maximum value (max), and standard deviation (S.D.). The 

samples utilized for analysis of sugarcane, cassava, and oil palm contained 1162 observations, 1221 observations, 

and 985 observations, respectively. A brief description of crop yields and climatic features can be summarized as 

follows. The annual average yield of sugarcane is 61144.662 kg/ha under the climatic conditions for the mean 

average temperature of 27.529°C, mean minimum temperature of 22.790°C, mean maximum temperature of 

33.490°C, and total rainfall of 1135.653 mm. The annual average yield of cassava is 18652.500 kg/ha under the 

climatic conditions for the mean average temperature of 27.298°C, mean minimum temperature of 22.453°C, 

mean maximum temperature of 33.396°C, and total rainfall of 1151.245 mm. The annual average yield of oil palm 

is 11113.849 kg/ha under the climatic conditions for the mean average temperature of 27.518°C, mean minimum 

temperature of 23.008°C, mean maximum temperature of 33.232°C, and total rainfall of 1586.008 mm. 

2.3 Pre-estimation of panel unit root and specification tests 
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Before performing the panel data analysis, there has to be testing for stationarity to prevent spurious results, as the 

panel dataset consists of a time trend component (Granger & Newbold, 1974). The common unit root process of 

Levin, Lin, and Chu (LLC) has been considered for testing the properties of panel datasets (Levin et al., 2002), 

which can be expressed as equation (7). 

∆Zit = αi + ρZit−1 + ∑ βij∆Zit−j +

pi

j=1

δit + θt + eit                                                                                                    (7) 

where Z is the panel dataset, subscript i is the index for the provincial level, subscript t is the time period, ∆ is the 

order of integration, p is the lag length of the time series to be selected by the Schwartz information criterion, αi 

and θt are the unit-specific fixed effects and unit-specific time effects, respectively, and e is the disturbance term. 

If the null hypothesis (H0) of ρ equal to zero for all i is rejected, then the variable will contain stationary property.  

The results of panel unit root using the LLC procedure were presented in Table 3 based on the model, including 

the constant and time trend components in testing, as presented in equation (7).  However, all variables used in 

Table 3 were in a linear form, and it was adjusted to the logarithm function to present the nature of the panel 

datasets. 

<<<Insert Table 3>>> 

The results of the panel unit root tests in Table 3 showed that all variables of Y, A, averT, minT, maxT, Rf, 

Rfd, averVT, minVT, and maxVT for sugarcane, cassava, and oil palm equations, had statistical significance at 

the 0.01 level. This implied that all variables were stationary at the level stage with the contained unit root I(0) 

process. Hence, the variables could be used in this order to analyze the classical panel regression model. 

<<<Insert Table 4>>> 

The panel specification tests in Table 4 consisted of the White heteroskedasticity, Wooldridge test for 
autocorrelation, and normality of residuals based on equation (2) using the panel OLS estimation. The results of 

White’s test for heteroskedasticity using the LM statistic showed that the null hypothesis of “heteroskedasticity 

not present” was rejected with a statistical significance level of 0.01 for all three crop models. The Wooldridge 

test for autocorrelation in panel data also rejected the null hypothesis of “no first-order autocorrelation” with a 

statistical significance level of 0.01 for all three crop models. The χ2 statistic was utilized to test the normal 

distribution, and it was found that both models, sugarcane and oil palm, could reject the null hypothesis of “error 

was normally distributed” with a statistical significance level of 0.01, except in the case of cassava, which could 

not reject the null hypothesis considering the statistical significance of 0.05 level. From the specification tests 

presented in Table 4, it was confirmed that the classical panel OLS estimation was unsuitable for estimating the 

expected yield equation. Therefore, this study estimated the mean yield of sugarcane, cassava, and oil palm using 

the FGLS and MLE, as suggested by Just and Pope (1978, 1979). 

3 Empirical results  

3.1 Impact of climate change on mean yield and variance of the yield  

The coefficients were evaluated for statistical significance at the 0.05 and 0.01 levels to characterize the 

relationship between the variables. Since the yields of the mean equation were based on the Cobb-Douglas 

function, it described the relationship as a percentage change or elasticity between variables. The estimated 

coefficients using the FGLS estimation of the mean yield equations for sugarcane, cassava, and oil palm were 

presented in Table 4. The non-climatic variables displayed that the harvested areas for sugarcane, cassava, and oil 
palm had a positive association with the mean yields with elasticities of 0.011, 0.016, and 0.162, respectively. 

Furthermore, technology improvement in the sugarcane, cassava, and oil palm equations had a positive association 

to mean yields with elasticities of 0.008, 0.018, and 0.094, respectively.    

<<<Insert Table 5>>> 

The results of climatic variables affecting the mean yields in Table 5 showed that mean average temperature 

was negatively associated with the yield of sugarcane, but it seemed to be positively associated with the yield of 

oil palm. When the mean average temperature increased by one percent, the yield of sugarcane reduced by 1.190 
percent, but the yield of oil palm increased by 17.987 percent. However, if one percent of the mean minimum 

temperature increased, it reduced the yield of oil palm by 8.707 percent. An increase in mean maximum 

temperature by one percent led to an increase in the yield of cassava by 0.439 percent. The effect of total rainfall 

was found to be associated with crop yields in a positive relationship for the yield of cassava, but it seemed to be 

associated with a negative relationship for the yield of oil palm. If one percent of total rainfall increased, then it 
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led to an increase in the yield of cassava by 0.040 percent, and it reduced the yield of oil palm by 1.614 percent. 

However, rainfall intensification showed a positive impact on only the yield of oil palm. If the average rainfall 

per time increased by one percent, it increased the yield of oil palm by 0.345 percent. The variability of mean 

average temperature was positively associated with the yield of sugarcane, but it was negatively associated with 

the yield of oil palm. The variability of mean minimum temperature was negatively associated with the yield of 
oil palm. In addition, the variability of mean maximum temperature was negatively associated with the yields of 

sugarcane and cassava. 

The estimated coefficients using the LIML estimation of the mean yield equations for sugarcane, cassava, and 

oil palm were presented in Table 6. The non-climatic variables displayed that the harvested areas for sugarcane, 
cassava, and oil palm had a positive association with the mean yields with elasticities of 0.011, 0.016, and 0.124, 

respectively. Besides, technology improvement in the sugarcane and cassava equations had a positive association 

to mean yields with elasticities of 0.008 and 0.018, respectively. 

<<<Insert Table 6>>> 

The results of climatic variables affecting the mean yields in Table 6 showed that mean average temperature 

had a negative effect only on the yield of sugarcane. An increase of one percent in the mean average temperature 

reduced the yield of sugarcane by 1.131 percent. There was no association between the mean minimum 

temperature and the yields of all three crops. For mean maximum temperature, there was a positive association 
only with the yield of cassava. An increase of one percent in the mean maximum temperature also increased the 

yield of cassava by 0.439 percent. The effect of total rainfall showed that an increase of one percent in total rainfall 

reduced the yield of sugarcane by 0.035 percent and increased the yield of cassava by 0.040 percent. There was 

no association between rainfall intensification and the yields of all three crops. The variability of mean average 

temperature was associated with the yields of sugarcane in a positive direction and oil palm in a negative direction. 

The variability of mean minimum temperature was negatively associated with the yield of oil palm. Moreover, 

the variability of mean maximum temperature was negatively associated with the yields of sugarcane and cassava. 

Based on the results in Table 5 and Table 6, the appropriate prediction method to estimate the potential impact 

of climate change on sugarcane, cassava, and oil palm productivity was the LIML estimation because it gave the 

lowest value for the RMSE and MAPE in all crop yield equations.  

<<<Insert Table 7>>> 

The estimated variance equations for sugarcane, cassava, and oil palm were presented in Table 7. It was found 

that the non-climatic variable of the harvested area was negatively associated with the variance of oil palm yield. 

Technology improvement was positively associated with the variance of sugarcane yield but negatively associated 

with the variance of oil palm yield. There were only two relationships between the climatic variables and variances 

in crop yields. Firstly, total rainfall was positively associated with the variance of oil palm yield. Secondly, the 

variability of mean maximum temperature was positively associated with the variance of sugarcane yield. The 

fact that the adjusted R-squared statistic is very small is not surprising because the variances of the crop yields 

might be due to other factors not included in the expected yield or the variance of the yield. The output of the 

adjusted R-squared statistic is consistent with previous studies, including Cabas et al. (2010), Weersink et al. 

(2010), Poudel and Kotani (2013), Sinnarong et al. (2019), and Shayanmehr et al. (2020). 

3.2 Potential impact of climate change on energy crop productivity 

The estimated potential impacts of temperature and rainfall on energy crop productivity in Table 8 showed that 

sugarcane was expected to increase productivity at the average temperature level (± 0°C), while total rainfall 

tendencies were lower than the average level (-100 mm. to -300 mm.). The results also indicated that increased 

temperature change had a negative effect on sugarcane productivity at higher levels. Additionally, changes in total 

rainfall within the range of +300 mm. to -300 mm. had little effect on yield fluctuations compared to temperature 

changes. When the temperature increased by 3°C and the total rainfall increased by 300 mm., the productivity of 

sugarcane was predicted to be reduced by a maximum of 11.073 percent. On the other hand, if the temperature 

remained at the average level (± 0°C) and the total rainfall decreased by 300 mm., the productivity of sugarcane 

was expected to increase slightly by about 1.142 percent. 

<<<Insert Table 8>>> 

In contrast, cassava was expected to decrease productivity at the average level of temperature, and total rainfall 

tendencies were lower than the average level (-100 mm. to -300 mm.). The results in Table 8 indicated that 

increased temperature change resulted in higher cassava productivity. It was concluded that higher temperatures 

and increased total rainfall exposure significantly increased the productivity of cassava. When the temperature 
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increased by 3°C and the total rainfall increased by 300 mm., the productivity of cassava was predicted to increase 

by a maximum of 5.795 percent. If the temperature remained at the average level (± 0°C) and the total rainfall 

decreased by 300 mm., the productivity of cassava was slightly reduced by about 1.335 percent. Regarding oil 

palm productivity, it was found that an increase of 3°C from the average level of temperature resulted in a very 

high yield increase. With changes in total rainfall in the range of +300 mm. to -300 mm., there was little effect on 
yield fluctuations compared to temperature changes. When the temperature increased by 3°C and the total rainfall 

decreased by 300 mm., the productivity of oil palm was predicted to increase by a maximum of 11.038 percent. 

If the temperature remained at the average level (± 0°C) and the total rainfall increased by 300 mm., the 

productivity of oil palm was slightly reduced by about 0.176 percent.    

4 Conclusion and policy implications 

Nowadays, climate and weather fluctuations affect the productivity of Thailand’s agricultural sector, especially 

in terms of energy crop production, which will impact the stability of alternative energy in the future. Sugarcane, 

cassava, and oil palm are energy crops that play an important role in the development of agricultural economies 

and renewable energy sources, being the main biofuels of Thailand. The purposes of this study are to (1) estimate 

the impact of climate change on the efficiency of energy crop production in Thailand and (2) project the potential 

impact of climate change on energy crop productivity in Thailand, specifically sugarcane, cassava, and oil palm. 

Unbalanced panel datasets from 1995 to 2020 at the provincial level of Thailand are utilized to satisfy the purposes 

using Just and Pope’s procedure. The FGLS and MLE are considered to detect the expected crop yields and 

variances of the crop yields. The empirical results indicate that the MLE is appropriate for estimating mean yields 

because it gives the lowest values for the RMSE and MAPE statistics. The selected models are also used to 

estimate the potential impacts of climate factors on energy crop productivity under specific scenarios.  

The estimated impact of climate change on mean yield shows that mean temperature series and total rainfall 

are negatively associated with the yield of sugarcane but positively associated with the yield of cassava. Moreover, 
this study confirms that the variability of temperature series affects the yields of the energy crops in a negative 

direction, except for the variability of mean average temperature in sugarcane yield, which is found to have a 

positive relationship. Besides, variances of the crop yields show that total rainfall has a positive association with 

the variance of oil palm yield, and variability of mean maximum temperature has a positive association with the 

variance of sugarcane yield. The findings of the study conclude that changes in climate variables affect the 

productivity of energy crops differently, which is consistent with previous studies on seasonal crops. For example, 

Guntukula and Goyari (2020) have found that maximum temperature adversely affects the yields of rice, cotton, 

and groundnut, while minimum temperature positively affects the yields of these crops. The study has also found 

that rainfall has been unfavorable to the yields of cotton and groundnut. Hence, Guntukula and Goyari’s (2020) 

findings confirm that climate variability affects the yields of seasonal crops differently. In addition, Poudel and 

Kotani’s (2013) results have supported that changes in temperature and rainfall affect crop productivity differently 

depending on the crop species and cultivated areas. Based on the analysis of temperature and total rainfall changes, 
the projection of energy crop productivity reveals that the greatest positive effect will be on oil palm productivity, 

followed by cassava, when the temperature rises above the average level. It can be assumed that the efficiency of 

oil palm and cassava production will be more suitable for those areas in Thailand with higher temperatures than 

the average level. On the other hand, it is found that a higher temperature level will significantly reduce sugarcane 

productivity. However, the changes in total rainfall volume in the range of +300 mm. to -300 mm. have little 

effect on production efficiency in terms of energy crops. When the volume of total rainfall changes, whether an 

increase or decrease from the average level, it will have only a slight impact on cassava productivity, followed by 

sugarcane and oil palm, respectively. The study has found that sugarcane and cassava cultivations are planted in 

the same area, as shown in Figure 2. In the event that higher temperatures will affect sugarcane production, cassava 

should be promoted instead of sugarcane as it is a crop that responds better to temperature increases. This 

replacement may be the result of the substitution of crop rotations in case of higher temperature, which results in 
a higher yield of cassava. Therefore, the findings of the potential impact analysis confirm that changes in 

temperature series and total rainfall will affect Thailand’s crop patterns, especially energy crop production. For 

these reasons, the agricultural sector and farmers should formulate policy implications to support Thailand’s 

adaptation to climate change in order to maintain a balance of sufficient renewable energy to meet sustainable 

consumption in the country. 

In the past decade, Thailand has designated suitable areas for growing major economic crops, including 

sugarcane, cassava, oil palm, and others, which are classified by region, province, district, and sub-district. The 

most suitable areas for certain crops will emphasize the suitability of land use, the production inputs according to 

the crop conditions, and other relevant factors such as the legal forest area, the irrigated area, and so forth (Land 

Development Department, 2013). Determining suitable cropping areas for the cultivation of energy crops does 

not take into account the climate and weather factors, which are highly important for crop productivity. Based on 
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the findings of this study, determining the most suitable areas for growing crops, especially energy crops, must 

include the climatic variables in the conditions when determining potential areas for energy crop production. 

Therefore, the recommendations suggest that the government and related stakeholders should allocate the planted 

areas of energy crops suitable for climate and weather conditions, considered in conjunction with Thailand’s 

biofuel and renewable energy policy formulations. In addition, alternative energy processing industries should be 
promoted along with energy crop cultivation sources. Renewable energy crops should be promoted and 

encouraged more to replace fossil energy soon, reduce airborne pollution, and better protect the environment, as 

well as reduce the import of fuel from foreign countries. However, food security in the country should be highly 

considered along with promoting the use of biofuels; if agricultural production potential is used too much for 

alternative energy production, biofuel crops may upset the balance in crop production for human consumption 

and use in other industrial sectors.   
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Fig. 1 Mean temperature for averT (a), minT (b), and maxT (c) 
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Fig. 2 Production maps of sugarcane (a), cassava (b), and oil palm (c) in 2020  
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Table 1  Annual total rainfall and the number of rainy days by region from 2011 to 2020 

Year Whole Kingdom Northern Northeastern Central Southern 

2011 1,731 (174) 1,504 (173) 1,627 (160) 1,574 (159) 2,670 (229) 

2012 1,365 (172) 1,202 (162) 1,048 (158) 1,559 (165) 2,230 (220) 

2013 1,443 (162) 1,181 (150) 1,239 (161) 1,648 (150) 2,249 (200) 

2014 1,260 (153) 1,052 (148) 1,095 (151) 1,301 (132) 2,091 (201) 

2015 1,333 (157) 929 (144) 1,052 (148) 1,285 (137) 2,068 (199) 

2016 1,530 (164) 1,211 (155) 1,129 (154) 1,330 (145) 2,451 (202) 

2017 2,092 (146) 1,558 (134) 1,753 (127) 1,661 (131) 3,395 (193) 

2018 1,596 (131) 1,221 (124) 1,190 (101) 1,559 (131) 2,412 (167) 

2019 1,341 (110) 956 (97) 1,064 (82) 1,288 (106) 2,057 (157) 

2020 1,639 (123) 991 (97) 1,424 (110) 1,614 (116) 2,526 (170) 

Note: The numbers in parentheses ( ) are the average number of rainy days. A unit of rainfall is in millimeters. 

Source: Office of Agricultural Economics (2021c)  
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Table 2  A summary of statistics for the variables 

Variable Mean Min Max S.D. 

Sugarcane equation     

  Y (kg/ha) 61144.662 34035.071 92462.250 10014.093 

  A (ha) 26798.765 153.280 132879.840 31408.388 

  averT (°C) 27.529 24.692 29.296 0.824 

  minT (°C) 22.790 16.658 25.625 1.273 

  maxT (°C) 33.490 30.917 35.900 0.917 

  Rf (mn.) 1135.653 281.620 3434.400 418.888 

  Rfd (mm./d) 7.961 2.570 24.018 2.725 

  averVT 3.827 0.350 10.857 1.925 

  minVT  6.901 0.815 20.294 3.520 

  maxVT 4.041 0.338 11.504 2.081 

Cassava equation     

  Y (kg/ha) 18652.500 10443.718 29873.140 3320.741 

  A (ha) 25887.540 37.120 317396.000 39391.145 

  averT (°C) 27.298 22.769 29.296 1.015 

  minT (°C) 22.453 16.275 25.625 1.470 

  maxT (°C) 33.396 30.433 35.900 0.973 

  Rf (mn.) 1151.245 210.560 3434.400 412.318 

  Rfd (mm./d) 7.984 2.570 22.979 2.683 

  averVT 4.229 0.350 11.323 2.181 

  minVT  7.757 0.815 24.798 4.052 

  maxVT 4.219 0.338 12.681 2.165 

Oil palm equation     

  Y (kg/ha) 11113.849 180.688 29000.000 5166.539 

  A (ha) 12393.402 1.440 208188.160 32419.810 

  averT (°C) 27.518 22.769 29.708 0.864 

  minT (°C) 23.008 16.275 31.950 1.359 

  maxT (°C) 33.232 30.433 35.750 0.987 

  Rf (mn.) 1586.008 434.260 5883.500 778.116 

  Rfd (mm./d) 9.349 2.883 30.886 3.877 

  avert 2.734 0.084 11.229 2.473 

  minT  5.875 0.064 1230.394 39.299 

  maxT 3.438 0.246 12.681 2.346 

Source: Office of Agricultural Economics 
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Table 3  Panel unit root tests 

Variable 
Sugarcane  Cassava  Oil Palm 

LLC Prob.  LLC Prob.  LLC Prob. 

Y    -7.788 <0.001    -7.788 <0.001    -9.366 <0.001 

A    -3.183 <0.001    -3.183 <0.001    -3.633 <0.001 

averT  -14.642 <0.001  -14.642 <0.001  -21.852 <0.001 

minT  -11.007 <0.001  -11.007 <0.001  -12.509 <0.001 

maxT -15.633 <0.001  -15.633 <0.001  -16.988 <0.001 

Rf    -3.759 <0.001    -3.759 <0.001    -9.478 <0.001 

Rfd   -6.162 <0.001    -6.162 <0.001  -10.765 <0.001 

averVT -18.004 <0.001  -18.004 <0.001  -17.712 <0.001 

minVT  -10.978 <0.001  -10.978 <0.001  -12.014 <0.001 

maxVT -21.865 <0.001  -21.865 <0.001  -43.744 <0.001 

Note: The panel datasets are tested for the unit root in the linear form of the variables. 

 

Table 4  Panel specification tests 

Specification test Sugarcane Cassava Oil Palm 

Heteroskedasticity 233.956 (<0.001) 106.298 (<0.001) 188.908 (<0.001) 

Autocorrelation   23.590 (<0.001)   31.925 (<0.001)     8.788 (<0.001) 

Normality   52.907 (<0.001)     3.429   (0.180) 272.555 (<0.001) 

Note: The numbers in parentheses ( ) are the p-value.  



16 

 

Table 5  FGLS estimation of the mean yield equation 

Variable 
Sugarcane  Cassava  Oil Palm 

Coefficient S.E.  Coefficient S.E.  Coefficient S.E 

constant 14.806** 0.884   7.169**   0.529  -22.669** 6.104 

A    0.011** 0.003   0.016**   0.002     0.162** 0.016 

averT   -1.190** 0.441   0.330   0.255   17.984** 3.036 

minT    0.213 0.175  -0.200   0.116    -8.707** 1.364 

maxT  -0.126 0.330   0.439*   0.202     2.257 2.564 

Rf   -0.032 0.018   0.040**   0.012    -1.614** 0.141 

Rfd  -0.006 0.019   0.009   0.013     0.345* 0.149 

averVT   0.054* 0.026  -0.018   0.017    -0.657** 0.120 

minVT   -0.030 0.022   0.025   0.013    -0.396** 0.068 

maxVT  -0.054** 0.017  -0.062**   0.011    -0.025 0.107 

Trend   0.008** 0.001   0.018** <0.001     0.094** 0.007 

Adjusted R-squared 0.122  0.660  0.900 

S.E. of Regression 0.160  0.109  1.293 

RMSE 9227.340  2027.331  13056.556 

MAPE 12.164  8.735  72.716 

* and ** are the statistical significance levels of 0.05 and 0.01, respectively.  

 

Table 6  LIML estimation of the mean yield equation 

Variable 
Sugarcane  Cassava  Oil Palm 

Coefficient S.E.  Coefficient S.E.  Coefficient S.E 

constant 14.874** 0.853   7.201**  0.523   6.439** 2.218 

A    0.011** 0.003   0.016**  0.002   0.124** 0.007 

averT   -1.131** 0.427   0.324  0.253   1.159 1.061 

minT    0.182 0.170  -0.198  0.115   0.621 0.478 

maxT  -0.168 0.320   0.439*  0.200  -1.081 0.839 

Rf   -0.035* 0.017   0.040**  0.012  -0.010 0.055 

Rfd  -0.004 0.019   0.009  0.013  -0.001 0.055 

averVT   0.056* 0.025  -0.016  0.017  -0.123** 0.044 

minVT   -0.032 0.022   0.024  0.013  -0.054* 0.023 

maxVT  -0.054** 0.016  -0.063**  0.011  -0.045 0.036 

Trend   0.008** 0.001   0.018** <0.001   0.005 0.003 

Adjusted R-squared 0.141  0.664  0.544 

S.E. of Regression 0.155  0.108  0.421 

RMSE 9208.727  2027.018  3441.499 

MAPE 12.119  8.733  36.470 

* and ** are the statistical significance levels of 0.05 and 0.01, respectively.   
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Table 7  The estimated variance of the yield equation 

Variable 
Sugarcane  Cassava  Oil Palm 

Coefficient S.E.  Coefficient S.E.  Coefficient S.E 

constant -0.541* 0.219   -0.043  0.075  -3.254 3.016 

A   0.000 0.001  <0.001 <0.001  -0.046** 0.010 

averT   0.163 0.110    0.070  0.036   0.821 1.444 

minT   0.011 0.044   -0.018  0.017  -0.187 0.651 

maxT -0.008 0.082   -0.037  0.029   0.203 1.142 

Rf   0.004 0.004    0.001  0.002   0.148* 0.075 

Rfd -0.009 0.005    0.003  0.002  -0.007 0.075 

averVT -0.004 0.007    0.002  0.002   0.041 0.059 

minVT  -0.004 0.006    0.001  0.002   0.038 0.031 

maxVT  0.012** 0.004   -0.002  0.002   0.023 0.049 

Trend  0.001** <0.001  <0.001 <0.001  -0.013** 0.003 

Adjusted R-squared  0.071    0.003   0.064 

S.E. of Regression  0.040    0.016   0.572 

* and ** are the statistical significance levels of 0.05 and 0.01, respectively.  

 

Table 8  The estimated potential impacts of climatic variables on energy crop productivity 

Temperature 
Rainfall  

300 mm. 200 mm. 100 mm. 0 mm. -100 mm. -200 mm. -300 mm. 

Sugarcane        

  0°C -0.842 -0.585 -0.305 0.000 0.337 0.715 1.142 

  1°C -4.490 -4.242 -3.973 -3.679 -3.354 -2.991 -2.579 

  2°C -7.892 -7.654 -7.394 -7.111 -6.797 -6.447 -6.049 

  3°C -11.073 -10.842 -10.592 -10.318 -10.015 -9.677 -9.293 

Cassava        

  0°C 0.973 0.673 0.350 0.000 -0.384 -0.808 -1.335 

  1°C 2.597 2.293 1.965 1.609 1.219 0.787 0.252 

  2°C 4.204 3.895 3.562 3.201 2.805 2.367 1.823 

  3°C 5.795 5.482 5.143 4.776 4.374 3.930 3.378 

Oil Palm        

  0°C -0.176 -0.121 -0.063 0.000 0.068 0.141 0.222 

  1°C 3.452 3.508 3.569 3.634 3.704 3.780 3.864 

  2°C 7.042 7.101 7.164 7.231 7.304 7.383 7.469 

  3°C 10.597 10.658 10.723 10.792 10.867 10.949 11.038 

Note: The climatic scenarios are based on the changes in temperature and total rainfall from the average level. 


