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Indonesia is an archipelagic country that provides important nesting and foraging

habitats for the critically endangered hawksbill turtle (Eretmochelys imbricata).

Although many studies have investigated this migratory species globally, there is

a lack of information on the population structure and geographic boundary of

this species in Indonesia. This study aims to investigate the genetic diversity and

population structure of six nesting sites in the Java Sea region of Indonesia. The

control region (d-loop) sequence (818 bp) was obtained from 152 individuals,

resulting in 20 haplotypes. This study revealed 13 new haplotypes, 12 of which

were rare and observed only in a single sampling location. Results showed that

the Indonesian population shares haplotypes with rookeries from Peninsular

Malaysia and Australia, as indicated by EiIP08 and EiIP49. The haplotype diversity

(h) was highest at the more northern rookery sites (Segama Besar Island, Kimar

Island, East Belitung, Penambun Island) (h: 0.6033 - 0.9167; 4 - 9 haplotypes)

compared to the other two rookeries located in the Seribu Archipelago (Tidung

Island and Harapan Island) (h: 0.3354 - 0.5965; 3 - 6 haplotypes). Furthermore,

population structure analysis showed a pan-mixed population between Tidung

Island and Harapan Island (FST: 0.003, P > 0.05) but significant population

structure across all other rookery sites (FST: 0.083 - 0.486, P < 0.05), resulting

in five newly identified Management Units (MUs) in this area. This study showed
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the presence of a complex population structure with local haplotypes and narrow

population boundaries for rookeries in relatively close proximity within the Java

Sea, prompting local management and highlighting the need for more research

on hawksbill turtle populations in Indonesia.
KEYWORDS

conservation genetics, Java Sea, management units, mtDNA, population genetics,
mitochondrial DNA, nesting colonies, haplotype diversity
Introduction

Indonesia, an archipelagic country, is home to many critical

foraging and nesting habitats for at least four species of sea turtles:

hawksbill turtle (Eretmochelys imbricata), green turtle (Chelonia

mydas), olive ridley (Lepidochelys olivacea), and leatherback sea

turtle (Dermochelys coriacea) (Halim et al., 2001; Wiadnyana, 2003;

Hutomo and Moosa, 2005; Asaad et al., 2018). In Southeast Asia,

sea turtles face numerous threats, ranging from habitat destruction,

marine heatwaves to illegal trade and bycatch (Parsons, 1972;

Limpus, 1993; Persoon et al., 1996; Meylan and Donnelly, 1999;

da Silva et al., 2016; Konsta et al., 2022; Jeethvendra et al., 2023),

leading to a worrying decline in many populations (e.g., Malaysia,

Indonesia, Myanmar, Thailand) (Groombridge and Luxmoore,

1989; Sutanto-S et al., 1989; Kitchener, 1996; Meylan and

Donnelly, 1999; Pilcher and Ali, 1999; Nishizawa et al., 2016;

Hemelikova et al., 2021). This is particularly true for the critically

endangered hawksbill turtle, listed on the International Union for

Conservation of Nature (IUCN) Red List (Mortimer and Donnelly,

2008). Indonesia is known for its large number of hawksbill turtle

nesting beaches (Meylan and Donnelly, 1999; Putrawidjaja, 2000;

Wiadnyana, 2003; Zainudin et al., 2007; Tapilatu, 2017; Harahap

et al., 2020), but there is a striking gap in our understanding of these

populations, particularly in relation to their population structure.

This lack of knowledge about the connectivity between nesting and

foraging areas could be a significant barrier to effective conservation

efforts (Vargas et al., 2016; Madden Hof et al., 2023).

In general, adult hawksbill turtles have been documented

migrating to over 1,600 km from their nesting sites to foraging

areas (Nietschmann, 1981; Miller et al., 1998; Hawkes et al., 2012;

Marcovaldi et al., 2012; Pilcher et al., 2019), though in some regions,

hawksbill turtles appear to remain near their natal nesting sites

(Gaos et al., 2017). Indonesia plays an important role in preserving

coral reef ecosystems, which serves as the primary habitat for

hawksbill turtles (León and Bjorndal, 2002; Hutomo and Moosa,

2005; Ismuranty, 2006; Bustard, 2016; Hemelikova et al., 2021).

Thus, the complex relationship between scattered nesting sites and

abundant foraging grounds highlights the difficulty in managing

and conserving these species. Understanding the connectivity

between these areas is crucial for effective conservation (Palsbøll
02
et al., 2007; Wallace et al., 2010). Female turtles may exhibit nesting

behavior across several sites, but it’s important to identify areas with

restricted genetic exchange to identify a single genetic stock based

on the degree of female philopatry to particular nesting sites (Reece

et al., 2005; Vargas et al., 2016).

Genetic tools provide a way to elucidate movement between

nesting sites and foraging grounds (Pella and Masuda, 2001; Bolker

et al., 2007), as well as gene flow between nesting sites (Jensen et al.,

2019). However, the critically endangered status of the hawksbill

turtle, combined with the logistical challenges of sampling across

scattered and remote areas, has limited research for this species in

Indonesia. While genetic studies on hawksbill turtle populations

have been extensive globally (Broderick et al., 1994; Reece et al.,

2005; Bowen et al., 2007; FitzSimmons and Limpus, 2014; Gaos

et al., 2016; Nishizawa et al., 2016; Vargas et al., 2016; Bell and

Jensen, 2018; FitzSimmons et al., 2020; Madden Hof et al., 2023),

there remains a critical gap in our understanding of the genetic

structure of hawksbill turtles in the Indo-Pacific region, particularly

Indonesia. This lack of baseline genetic information hinders our

ability to accurately determine the natal origin of foraging

hawksbills or to trace the origin of illegally harvested tortoiseshell

(LaCasella et al., 2021). With Indonesia known for hosting

regionally large hawksbill nesting populations (Salm and Halim,

1984; Schulz, 1987; Limpus, 1993; Meylan and Donnelly, 1999),

obtaining genetic information from these nesting sites is urgently

needed. A previous study has indicated a loss of genetic variation in

some nesting sites, possibly due to population decline (Nishizawa

et al., 2016). Thus, it is vital to investigate the genetic diversity and

population structure of nesting hawksbill turtles in Indonesia.

This study specifically aims to reveal the population genetic

structure of Indonesian hawksbill turtles in the Java Sea by

analyzing the control region (d-loop) of mitochondrial DNA

(mtDNA); this region has been utilized to define management

units (MUs) based on genetic differentiation (Moritz, 1994), and

has been proven to effectively differentiate sea turtle nesting

populations (Bowen et al., 2005; FitzSimmons and Limpus, 2014;

Gaos et al., 2016; Nishizawa et al., 2016; Vargas et al., 2016; Bell and

Jensen, 2018; Madden Hof et al., 2023). To date, nine MUs have

been identified across the Indo-Pacific (Madden Hof et al., 2023).

Many populations of hawksbill turtles in the Java Sea experienced a
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substantial population decline during the 20th century (Meylan and

Donnely, 1999; Mortimer and Donnelly, 2008). At least 13 nesting

sites have been recorded across seven provinces (i.e., Bangka

Belitung, Jakarta, Jawa Tengah, Jawa Timur, Kalimantan Barat,

Kalimantan Selatan, Lampung) (Suganuma et al., 1999; Meylan and

Donnely, 1999). Conservation efforts have led to population

increase in some of these nesting sites (https://seaturtle.or.id/).

However, it is crucial to determine the connectivity between these

populations to carry out effective management actions in the future.

Our research investigates the genetic diversity, population structure,

and connectivity among hawksbill turtles from six nesting sites in

this region. Our study provides important baseline data on the

genetics of hawksbill turtles in the Java Sea, which will have

significant implications for their conservation and management

in Indonesia.
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Materials and methods

Tissue sample collections

A total of 152 tissue samples were collected from nesting female

hawksbill turtles at six locations in the Java Sea of Indonesia

between 2002 to 2021 year-round. A small piece of skin tissue of

the hindlimb was collected from the different individuals and put

into a prefilled 2 ml cryotube with 96% ethanol. The specific

locations and number of samples from each location are as

follows: Tidung Island (n=26), Harapan Island (n=19), Segama

Island (n=25), Kimar Island (n=24), East Belitung (n=30), and

Penambun Island (n=28) (Figure 1; Table 1). The samples collected

from East Belitung consisted of two locations, Momparang Island

(n=8) and Pesemut Island (n=22), which are approximately 3.5 km
FIGURE 1

Map showing hawksbill turtle (Eretmochelys imbricata) genetic studies in (A) Indo-Pacific region (blue) including Malaysia, Thailand, Australia, Papua
New Guinea, and Solomon Islands, (B) 152 tissue samples used from six sites in the Java Sea region of Indonesia (Red) including Tidung Island,
Harapan Island, Segama Besar Island, Kimar Island, Momparang and Pesemut Island of East Belitung, and Penambun Island.
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apart. Therefore, these two sites were considered one nesting site

based on tagging data observations between 1999 and 2020

(personal communication to ELNA https://www.elna.or.jp/ and

YPLI http://seaturtle.or.id/).

All samples were transported and stored at Marine Biodiversity

and Biosystematic Laboratory (Biodivsi), Department of Marine

and Science and Technology, IPB University in Bogor, Indonesia. In

the laboratory, the samples were stored in a -24° C freezer to ensure

long-term preservation of the genetic material.
DNA extraction and amplification

Genomic DNA was extracted from the collected tissue samples

using Qiagen Dneasy Blood and Tissue Kits. The targeted ~800 bp

of mitochondrial DNA control region (d-loop) was amplified by

PCR using the primers LCM15382 and H950 (Abreu-Grobois et al.,

2006), the same primers used in other population genetics studies of

hawksbill turtles (Reece et al., 2005; Bowen et al., 2007;

FitzSimmons and Limpus, 2014; Gaos et al., 2016; Nishizawa

et al., 2016; Vargas et al., 2016; Bell and Jensen, 2018; Madden

Hof et al., 2023). DNA amplification was performed with

13 mL MyFi 2x hotstart polymerase (Bioline), 1 mL forward and 1

mL reverse primers, 9 mL ddH2O, and 3 mL DNA templates (3 mL
ddH2O was used for the negative control). The DNA amplification

processes were run with an initial denaturation at 95°C for 8

minutes, followed by 35 cycles of denaturation at 95°C for 45

seconds, annealing at 52°C for 45 seconds, and extension at 72°C for

45 seconds, then final extension at 72°C for 5 minutes (Vargas et al.,

2016). All PCR products were then visualized on 2% agarose gel

electrophoresis and sequenced at DNA Sanger sequencing facility in

Apical Scientific, Malaysia.
Data analysis

Raw sequences of 152 samples collected from six sites in

Indonesia were imported and edited in MEGA11 (Tamura et al.,

2021). All sequences were checked to avoid double peak

chromatograms of the nucleotide sequence, and then processed

to identify the number of unique haplotypes using DnaSP

V.6.12.03 (Rozas et al., 2017). The haplotypes were then
Frontiers in Marine Science 04
identified using Basic Local Alignment Search Tool (BLAST) via

National Centre Biotechnology Information (NCBI) (https://

blast.ncbi.nlm.nih.gov/) and searched against the ShellBank

database (www.shellbankproject.org), a global repository for

marine turtle haplotype data. This comparison determined if

sequences matched previously known haplotypes or were new to

science. Haplotype sequences that were not 100% identical to

previously published haplotypes were classified as new

and assigned a unique name following the standardized

nomenclature for Indo-Pacific haplotypes, prefixed with EiIP

and the next sequential number. Haplotype identification was

done strictly by double check from different people. These new

haplotypes were then submitted to NCBI GenBank (accession no

OR961305 - OR961456) and ShellBank for inclusion in the global

genetic database.

To visualize the relation between newly identified haplotypes

and existing haplotypes of Indo-Pacific hawksbill turtles, a

haplotype network was constructed using the median-joining

network (Bandelt et al., 1999) in PopArt (Leigh and Briant, 2015).

This network provides a visual representation of the genetic

relationship between haplotypes (EiIP) of hawksbill turtles

identified in this study. The haplotype number, haplotype

diversity (h), and nucleotide diversity (p) were calculated in the

Arlequin v.3.5 program (Excoffier and Lischer, 2010) for each site.

The analysis of population structure was based on conventional FST
measures based on haplotype frequencies. The significance level was

determined using 10,000 permutation replicates, with a threshold of

p < 0.05 for statistical significance. Pairwise FST was visualized using

pheatmap package (Kolde and Kolde, 2015), and Mantel test was

carried out based on Spearman correlation with 10,000 permutation

test to evaluate the correlation between FST value and geographical

distance using vegan package (Oksanen et al., 2007) in R, using

Rstudio (RStudio Team, 2013).

To provide a regional perspective on the genetic diversity and

structure of hawksbill turtle populations, haplotype frequencies

were visualized on a map along with previously published

hawksbill turtle rookeries in the region using rookery baseline

data from the ShellBank database. This included published data

from nesting hawksbill turtles in Malaysia at Malaka, Redang

Island, and Sabah Turtle Islands (Wahidah and Syed Abdullah,

2009; Nishizawa et al., 2016; Vargas et al., 2016), Thailand at Kram

Island (Wahidah and Syed Abdullah, 2009); Australia at Western
TABLE 1 Detailed information on hawksbill turtle (Eretmochelys imbricata) samples used in this study.

Country MU Nesting site Latitude Longitude Sample size

Indonesia Seribu Archipelago Tidung Island 5°48’07”S 106°31’38”E 26

Harapan Island 5°37’40”S 106°35’14”E 19

Indonesia Segama Besar Island Segama Besar Island 5°09’45”S 106°06’55”E 25

Indonesia Kimar Island Kimar Island 2°57’47”S 107°13’54”E 24

Indonesia East Belitung Momperang Island 2°31'35"S 108°49'35"E 8

Pesemut Island 2°29'35"S 108°49'35"E 22

Indonesia Penambun Island Penambun Island 3°01’49”S 110°13’41”E 28
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Australia, northeast Arnhemland in the Northern Territory and

North Queensland (Vargas et al., 2016; Bell and Jensen, 2018;

LaCasella et al., 2021), in the Solomon Islands (Vargas et al.,

2016; LaCasella et al., 2021), Conflict Islands, Milne Bay, and

Kavieng, New Ireland (Madden Hof et al., 2023).
Results

Haplotype connectivity and
genetic diversity

The analysis of the mtDNA control region sequences from 152

individuals across six sites in the Java Sea identified a total of 20

haplotypes. Among these, 13 were new haplotypes, indicating a

significant discovery in the genetic diversity of hawksbill turtles in

this region (Figure 2). The distribution of both new and previously

identified haplotypes varied across the sites. Previously identified

haplotypes found in our study were EiIP08 (23%), EiIP49 (19%),

EiIP67 (18%), EiIP122 (8%), EiIP53 (5%), EiIP50 (3%), and EiIP123

(1%) (Figure 3A). Haplotype EiIP67 was particularly widespread

and found in all sites except Penambun Island, and EiP49 was found

in all sites except Segama Besar Island and Tidung Island. In

contrast, EiIP08 was only found in Tidung Island, Harapan
Frontiers in Marine Science 05
Island, and Segama Besar Island. For the newly identified

haplotypes, EiIP153 was dominant (7%), distributed on Kimar

Island and Penambun Island. The remaining 12 newly identified

haplotypes (EiIP) were rare and site-specific (0.66-6.58%). The

haplotype network suggested that most of the newly identified

haplotypes likely mutated from either EiP53 (EiIP152, EiIP153,

EiIP154, EiIP140, EiIP157, EiIP160), or EiP08 (EiIP155,

EiIP158, EiIP159).

The haplotype diversity was the highest in Kimar Island (h:

0.9167), followed by East Belitung (h: 0.7540), Penambun Island (h:

0.6852), and Segama Besar Island (h: 0.6033), Harapan Island

(h: 0.5965), and Tidung Island (h: 0.3354) (Figure 3B; Table 2).

Nucleotide diversity was highest at Harapan Island (p: 0.0141),
Segama Besar Island (p: 0.0118), and Tidung Island (p: 0.0107).
These sites also exhibited a high number of polymorphic sites (28 to

32) compared to other with only 5 to 10 polymorphic

sites (Table 2).
Population structure

The results indicate substantial genetic segregation, suggesting

the existence of at least five demographically independent genetic

stocks (or MUs) within the Java Sea. The only exception to this

pattern was observed between Tidung Island and Harapan Island,

located in Seribu Archipelago (FST: 0.003, P > 0.05), suggesting a

close genetic relationship between these two sites (Figure 4). The

other genetic stocks showing clear differentiation include Kimar

Island, Segama Besar Island, East Belitung, and Penambun Island.

The Mantel test results suggest positive correlations between FST or

population structure with the geographical distance (r: 0.525,

P < 0.05).
Discussion

The hawksbill turtle, classified as critically endangered, faces

several threats, particularly illegal trade and bycatch (Meylan and

Donnelly, 1999; Bourjea et al., 2008; da Silva et al., 2016), requiring

effective conservation strategies, including the establishment of

MUs (Broderick et al., 1994; FitzSimmons, 2020; Tabib et al.,

2011, Tabib et al., 2014; Vargas et al., 2016; Bell and Jensen, 2018;

Madden Hof et al., 2023). While MUs have been widely recognized

as essential for sea turtle conservation, there is a significant

knowledge gap in the genetic analysis of hawksbill turtle rookeries

in the Indo-Pacific region, particularly across Indonesia (Vargas

et al., 2016; LaCasella et al., 2021; Madden Hof et al., 2023). For sea

turtle conservation, the genetic analysis contributes to determining

an adequate scale for demographic (Jensen et al., 2013; Dutton et al.,

2014; Reid et al., 2017; Jensen et al., 2019; FitzSimmons et al., 2020;

Vilaça et al., 2022) and genetic diversity (Jensen et al., 2016;

Madduppa et al., 2021), as well as identifying the likely sources of

recruits for population expansion (Komoroske et al., 2017).

Identifying five distinct MUs populations within the Java Sea area

brings the total number of MUs in the Indo-Pacific to 14, with

Indonesia contributing at least five, and likely many more.
FIGURE 2

Haplotype network of hawksbill turtles (Eretmochelys imbricata) in
the Java Sea region generated based on median-joining network.
Each line between points represents a single mutational step.
Asterisk symbol (*) indicates new identified haplotypes in the
Indo-Pacific.
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The population structure revealed in the Java Sea also brings a new

perspective on how demographic variations may exist in very small

areas. Therefore, it is crucial to acknowledge that many gaps still

exist across the region. Identifying more MUs in this region, which

is notably rich in coral reef ecosystems and a primary habitat for

hawksbill turtles, could aid in shaping conservation policies at the

regional level for numerous countries in Southeast Asia.

Our genetic analysis demonstrates significant population

differences even across very small distances (~75 to 500 km),

challenging previous assumptions about hawksbill turtle dispersal

and fine-scale population structure (Vargas et al., 2016; Arantes

et al., 2020). We observed significant genetic differentiation between

Segama Besar Island and Harapan Island, despite their proximity

(approximately 75 km). This pattern of isolation over short

distances is remarkable and contrasts with previous observations
Frontiers in Marine Science 06
in the Indo-Pacific, where differentiation is generally noted between

rookeries several hundred kilometers apart (Gaos et al., 2016;

Nishizawa et al., 2016; Vargas et al., 2016; Gaos et al., 2017). Our

findings align more closely with studies in the Atlantic, where

genetic differentiation between rookeries has been noted separated

by just 30 km (Browne et al., 2010). While hawksbill turtles are

known to have migrated 1,600 km (Nietschmann, 1981; Miller et al.,

1998), significant differentiations among nearby nesting sites

indicate a high degree of natal philopatry, where turtles return to

their birthplace to nest (Gaos et al., 2017). This species has been

observed to have extremely strong nesting site fidelity (Horne et al.,

2023), which makes it possible to have genetic differentiations occur

on a small scale area. In the Java Sea, recaptured records on different

places are only between Pesemut Island and Momperang Island

(~3.5 km apart), revealed by YPLI and ELNA that conducted
FIGURE 3

Haplotype distributions and frequencies of hawksbill turtles (Eretmochelys imbricata) (A) across Indo-Pacific, (B) Genetic diversity information of six
nesting sites in the Java Sea region of Indonesia.
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tagging programs for nesting females from 1996 to 2024 in 4 sites

(Segama Besar Island, Kimar Island and Penambun Island, and

Pesemut Island and Momperang Island).

In addition to a high degree of natal philopatry that results in

isolation by distance (IBD) supported by correlation between genetic

differentiation and geographic distances, the distribution of coral reef

foraging habitats may facilitate strong nest site fidelity (Tanabe et al.,

2023). Patchy coral reef habitats could restrict movement, aggregation,

and mating of hawksbill turtles, facilitating the population

differentiation. Restricted movement patterns of this species have

been reported in other areas (Berube et al., 2012; Martinez-Estevez

et al., 2021), with dependency on the reef habitats. Utilizing different

coral reef systems near the birthplace may lead IBD in the Java Sea on

a relatively small geographical scale. Our result showed the genetic

differentiation is likely dependent on distance between nesting sites

located on different complex reef areas, while the same genetic stock

occurs in one complex reef area. TheMomparang Island group of East

Belitung consists of two nesting sites (i.e., Momparang Island and

Pesemut Island) resulting in one genetic stock. Seribu Archipelago,

known as a complex reef area (Djohani, 1994; Cleary et al., 2006) also
Frontiers in Marine Science 07
revealed a pan-mixed population indicated by Tidung Island and

Harapan Island. As species that are generally known to have very

dependency on coral reef areas (León and Bjorndal, 2002; Blumenthal

et al., 2009; Goatley et al., 2012), the large number of coral reefs

present in Indonesia (https://allencoralatlas.org/) may allowing many

genetic stock to occur in many places, not only in the Java Sea. We

speculate that the same pattern of genetic differentiation dependency

can be observed in other parts of Indonesia (such as the Coral Triangle

area). Moreover, habitat use of this species is not only limited to coral

reefs (i.e., mangrove estuaries), that could be another potential to

influence the genetic differentiation as has been previously reported

(Gaos et al., 2016).

The discovery of 13 new haplotypes specific to the Java Sea area

further highlights the region’s high genetic diversity. This high

haplotype diversity is likely a result of the haplotypes at these sites

belonging to two divergent clades, suggesting a complex

evolutionary history. The northern Java Sea rookeries (Kimar

Island, East Belitung, and Penambun Island), were characterized

by haplotypes belonging to one clade that includes EiIP49 and

EiIP53, mainly observed from rookeries in Sabah and the Malay
TABLE 2 Genetic diversity of hawksbill turtle (Eretmochelys imbricata) in the Java Sea of Indonesia (n: sample size, h: haplotype diversity, p:
nucleotide diversity, S: polymorphic sites).

Haplotype
Tidung Island
(n=26; S= 28)

Harapan
Island (n=19;

S= 32)

Segama Besar
Island (n=25;

S= 5)

Kimar Island
(n=24; S= 10)

East Belitung
(n=30; S= 5)

Penambun
Island (n=28;

S= 5)

EiIP08 21 12 2 0 0 0

EiIP49 0 1 0 3 11 14

EiIP50 0 0 0 3 1 0

EiIP53 0 0 0 0 3 4

EiIP67 4 3 15 3 3 0

EiIP122 0 0 0 2 10 0

EiIP123 0 0 0 2 0 0

EiIP140 0 0 0 0 0 2

EiIP141 0 0 0 0 0 1

EiIP151 0 0 0 1 0 0

EiIP152 0 0 0 3 0 0

EiIP153 0 0 0 3 0 7

EiIP154 0 0 0 4 0 0

EiIP155 0 0 3 0 0 0

EiIP156 0 0 5 0 0 0

EiIP157 0 0 0 0 2 0

EiIP158 0 1 0 0 0 0

EiIP159 0 1 0 0 0 0

EiIP160 1 0 0 0 0 0

EiIP161 0 1 0 0 0 0

Haplotype diversity (h) 0.3354 +/- 0.1060 0.5965 +/- 0.1217 0.6033 +/- 0.0914 0.9167 +/- 0.0229 0.7540 +/- 0.0491 0.6852 +/- 0.0675

Nucleotide diversity (p) 0.0107 +/- 0.0057 0.0141 +/- 0.0075 0.0118 +/- 0.0062 0.0028 +/- 0.0018 0.0021 +/- 0.0014 0.0015 +/- 0.0011
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Peninsula, respectively (Nishizawa et al., 2016). The clade contains

haplotype EiIP67 that was shared in five sites except Penambun

Island. In contrast, the southern rookeries (Segama Besar Island,

Tidung Island, and Harapan Island), showed haplotypes from two

distinct clades, one of which contained EiIP08 that was reported

from rookeries in northern Australia (Vargas et al., 2016; Bell and

Jensen, 2018). In addition, haplotypes EiIP122 and EiIP123,

previously reported from a foraging ground in the South China

Sea at Tiga Island near Sabah (Nishizawa et al., 2016), were

identified for the first time at a nesting site in this study. We

considered hawksbills turtles in the northern MUs of Java Sea

potentially moving out to the northern area (i.e., Sabah, Malaysia),

meanwhile, the southern Java Sea MUs are restricted or resident.

This finding further supports a complex phylogeographic pattern

for hawksbill turtles, indicating multiple colonization events in the

Indo-Pacific (Vargas et al., 2016).

As an area that has strong evidence to have complex

evolutionary lineages of the Indo-Pacific, Java Sea hawksbill

population has highest genetic diversity compared to other

regions (Vargas et al., 2016; Gaos et al., 2016; Bell and Jensen,

2018). For instance, the Java Sea of Indonesia certainly has a total

haplotype nearly three times that exists in the Eastern Pacific, the

region that has four genetic stocks with seven haplotypes (Gaos et

al., 2016). For many cases, the differentiated genetic stocks

measured from haplotype frequency regionally appears with low

genetic diversity; three genetic stocks in Melanesia with 14

haplotypes (Madden Hof et al., 2023), three genetic stocks in

Australasia with 15 haplotypes (Vargas et al., 2016). These

regions have larger coverage areas compared to the Java Sea, the

highest known high genetic diversity and genetic stocks in the Indo-

Pacific to date. The Java Sea area itself was also recognized to have a

phylogeographical break pattern as observed by restricted gene

flow, which is greatly influenced by ocean currents (Carpenter et

al., 2011; Kool et al., 2011). Previously, Jensen et al. (2020) reported

that genetic stock differences of marine turtle (i.e., green turtle) are
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related to environmental factors (i.e., regional ocean current

patterns). To have better understanding of hawksbill turtle

distribution across Java Sea, satellite telemetry work (Chaloupka

et al., 2004; Pilcher et al., 2019; Madde Hof et al., 2023) or mixed

stock analysis (Bowen et al., 2007; Limpus et al., 2009; Jensen, 2010;

Jones et al., 2018; Piovano et al., 2019) could bring in-depth

information of main foraging areas, and also stock contributions

between different rookeries and foraging areas.

Small islands play a crucial role in preserving hawksbill turtle

habitats due to their isolation from human activity compared to those

that nest on the mainland. It is expected that the mainland coastal area

will continue to be under increased stress, especially in relation to

land-based pollution from anthropogenic activity (Adyasari et al.,

2021). The existence of small islands, particularly those in the Java Sea,

has a major impact on preventing the number of hawksbill turtles

from declining populations and also maintaining genetic diversity.

More importantly, strong nesting site fidelity has been recognized for

this species (Horne et al., 2023). Site-specific haplotypes were found on

small islands in the Java Sea, highlighting the island’s important role in

the preservation of the genetic pool. In regions such as Indo-Pasific, a

large contribution of haplotypes comes from small islands such as

Sabah Turtle Island, Redang Island (Malaysia), Khram Island

(Thailand), Varanus Island, Rosemary Island, Groote Eylandt,

Milman Island (Australia), Arvanond Island (Solomon Islands), and

other 15 Islands in Papua New Guinea (Wahidah and Syed Abdullah,

2009; Nishizawa et al., 2016; Vargas et al., 2016; LaCasella et al., 2021;

Madden Hof et al., 2023).
Future directions of hawksbill genetics
study in Indonesia

This initial study on the genetic diversity and connectivity of

hawksbill turtle population from nesting sites in Indonesia

(particularly from the Java Sea area), has revealed overall high

genetic diversity among major rookeries (i.e., Jakarta, Lampung,

Bangka Belitung, West Kalimantan) (Meylan and Donnelly, 1999;

Suganuma et al., 1999). Contrary to observations in Malaysia

(Nishizawa et al., 2016), our findings do not indicate reduced

genetic diversity, due to past population decline. The five MUs

identified here form the foundation of the national conservation

management strategy under the Turtle Conservation National

Action Plan (RAN) for 2022-2024, as outlined by the Indonesian

Government. Despite regulations banning the utilization of six sea

turtle species including hawksbill turtle (e.g., Minister of

Environment and Forestry Regulation No.7/1999; No.526/MEN-

KP/VIII/2015; and P.106/SETJEN/KUM.1/12/2018), their critically

endangered status persists, and illegal turtle trade including

tortoiseshell harvesting remains a challenge in Southeast Asia and

elsewhere (Hemelikova et al., 2021; Jeethvendra et al., 2023).

The nesting sites in our study are typically small islands that

have their waters (i.e., reef habitat), and all of the MUs identified in

this study are covered by the conservation areas or Marine

Protected Areas (MPAs). In a conservation context, MPAs play

an important role in protecting marine resources, including sea

turtles (Dobbs et al., 2007; Scott et al., 2012; Schofield et al., 2013;
FIGURE 4

Heatmap of pairwise FST value of of hawksbill turtle (Eretmochelys
imbricata) of six nesting sites in the Java Sea region of Indonesia
(ns: not significant or P > 0.05).
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Pendoley et al., 2014). Tidung Island and Harapan Island are

situated within the Seribu Islands Marine National Park, which is

located ~45 km north of Jakarta and covers an area of 107,489 ha

(KEPMEN HUT 6310/Kpts-II/2002); Segama Besar Island is

covered under 14,878 Ha of Batang Island and Segama Island

conservation area (KEPMEN KP no 125/KEPMEN-KP/2023);

Kimar Island is covered under 391,820.23 Ha of Belitung Water

conservation area in Kepulauan Bangka Belitung province

(KEPMEN KP no 94/KEPMEN-KP/2020); Momparang Island

and Pesemut Island of East Belitung are protected under the

MPA of the Momparang Island group and its surroundings

covering a total area of 124,320 ha (KEPMEN KP no 52/

KEPMEN-KP/2017); Penambun Island is covered under 164,595

Ha of Kendawangan coastal and small islands conservation area

and surrounding waters in West Kalimantan province (KEPMEN

KP no 91/KEPMEN-KP/2020). It is possible to achieve the goals of

conservation and sustainable management of the hawksbill turtle

population with the existence of a conservation area designated for

MUs revealed in this study. Notably, when considering that one of

Southeast Asia's largest hawksbill populations is in Indonesia.

Given the distinct genetic structure we observed between nearby

nesting sites, it is crucial to extend genetic studies to foraging

grounds surrounding the Java Sea, and to other Indonesian nesting

sites beyond the Java Sea. A comprehensive understanding of

genetic composition in rookeries is important for accurately

estimating the origin of hawksbill turtle foraging aggregations and

illegally traded turtle parts and products. The genetic approach

offers a powerful tool against illegal trade (Naro-Maciel et al., 2010;

Foran and Ray, 2016), potentially originating from various regions

within Indonesia (LaCasella et al., 2021). Enhanced forensic

techniques and updated DNA databases could significantly aid

conservation efforts by tracing illegal turtles, parts and products

back to their source, a method proven effective in prosecuting illegal

activities in marine environments (van Oppen and Coleman, 2022).

In addition, hawksbill turtle foraging aggregations in Indonesia

should be further studied. Sporadic reports of foraging hawksbill

turtles in Southeast Asia (Nishizawa et al., 2016; Joseph et al., 2017;

Nishizawa et al., 2024) highlight gaps in our knowledge of their life

history, habitat use, and movement. The presence of haplotypes

EiIP122 and EiIP123 in Java Sea rookeries, previously reported from

foraging ground in South China Sea (e.g., Tiga Island) (Nishizawa

et al., 2016), suggests a potential migratory connection that

warrants further exploration. This further indicates the possibility

of connectivity patterns between hawksbill turtles in the Java Sea

and foraging areas in Sabah. Previous satellite documentation

(Pilcher et al., 2019) showed the movement of hawksbill turtles

from Sarawak, ~560-630 km apart from the location where EiIP122

and EiIP123 were found in the Java Sea (e.g., Kimar Island and East

Belitung), moving towards Sabah. This supports previous

suggestion that hawksbill turtles from various rookeries have

migrated to Southeast Asia’s foraging regions (Nishizawa et al.,

2016). A comprehensive understanding of both foraging

aggregations and nesting rookeries is essential for accurately

estimating population dynamics and conservation needs. By

involving numerous parties with open information (e.g., local

communities), it will be highly useful in developing and
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evaluating conservation plans for this endangered species (Gaos

and Yañez, 2012). Collaborative efforts among diverse institutions

and local communities, including Universities, Non-Government

Organizations or NGOs and Governments will become more

important for understanding hawksbill turtles throughout

Indonesia, as done in olive ridley turtles and leatherback turtles in

Madduppa et al. (2019, 2021).
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