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We are interested in graphs and networks in biology, 
chemistry, and medical sciences, including metabolic 
networks, protein-protein interactions and chemical 
compounds. We have developed original techniques in 
machine learning and data mining for analyzing these 
graphs and networks, occasionally combining with 
table-format datasets, such as gene expression and 
chemical properties. We have applied the techniques 
developed to real data to demonstrate the performance 
of the methods and find new scientific insights.
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Data Integrative Machine Learning: DIVERSE, 
An Example Approach to Personalized Medicine.

Multiple datasets can be found in any applications. For example, 
the main E-commerce data is a matrix of individuals (users) and 
items. Additionally, matrices on user demographic data and item 
contents can be obtained. In this case, the three matrices can be 
given, sharing the two dimensions, i.e. those of users and of 
items. Our focus is personalized medicine, where the main data is 
a matrix of individuals (patients, eventually cell lines) and their 
drug responses. The problem to be addressed is the drug response 
prediction, i.e. to predict unknown effective drugs for patients 
(cell lines). For this purpose, additional datasets can be used, such 
as a drug similarity matrix, drug-target interactions (a target is a 
protein, which is equivalent to the corresponding gene). These 
relevant data sources are called omics data, particularly in biology. 
Fig. 1 shows a schematic picture of omics data in drug response 
prediction, consisting of five matrices, including the main matrix 
R of drugs vs. cell lines.

Figure 1. Conceptual integration configuration of the multiple data from 
three types of entities; d, g and c denote drugs, genes and cell lines, 
respectively.

Although large-scale omics data have been generated for drug 
response prediction, many machine learning methods have failed 
to achieve good performance for multiple heterogeneous data 
sources, because these methods have been designed for only a 
single type of data. Thus, a challenging task is to build precise 
prediction models on diverse data, coming from different sources, 
which are difficult to compare. In fact, data integration has to 
overcome several obvious problems, such as different data sizes, 
complexity, and noisiness. However, more importantly, data- 
integrative machine learning methods need to decide which infor-
mation is useful to be incorporated and how significant the 
information is for the prediction task. This is the most critical 
problem to be addressed for machine learning models with di-
verse multi-omics data. For this problem, we propose DIVERSE, 
a framework to efficiently integrate scientifically diverse data, 
i.e. genomic, chemical and molecular interaction information. 
DIVERSE has two unique features: 1) It is methodologically 
flexible. Most existing studies ignore uncertainty, and hence 
cannot accept missing values.to predict missing drug responses of 
cancer cell lines. 2) It allows to compute importance weights over 
given multiple matrices, showing the contribution of the given 
matrices to prediction. DIVERSE solves these two practically 
important problems by using a Bayesian setting of matrix factor-
ization. Fig. 2 shows the systematic framework of DIVERSE for 
the given matrix combination, shown in Fig. 1. In this framework, 

each dataset is incorporated into the matrix factorization frame-
work of DIVERSE sequentially,

Figure 2. Overview of our systematic framework, DIVERSE, of integrat-
ing multiple data sets: importance weight tri-(or bi-)matrix factorization. 
We start with adding D to R (first row: DIVERSE3-D). We then add P 
to DIVERSE3-D (second row: DIVERSE3-P). Similarly, we add G to 
DIVERSE3-P (third row: DIVERSE3-G) and T to DIVERSE3-G (fourth 
row: DIVERSE3-T). Another option of the last addition is bi-matrix 
factorization, and this is the last row: DIVERSE2-T.

We empirically validated the performance of DIVERSE, com-
paring with five other methods, including three state-of-the-art 
methods, under 5x5-fold cross-validation. Experimental results 
indicate that DIVERSE significantly outperformed all compared 
methods in both mean-squared error (MSE) and Spearman cor-
relation coefficient (Sc), particularly for out-of-matrix prediction, 
which is a real-world setting and much harder than in-matrix 
prediction. Results clearly show the performance advantage of 
DIVERSE over the current methods for predicting drug responses. 
Table 1 shows one typical example of the results, where ten 
methods are compared.

Table 1. MSE and Sc (average scores of 5x5 cross-validation) of ten 
compared methods in out-of-matrix prediction.

Furthermore, the results indicate that the MSE and Sc of 
DIVERSE were smoothly improved by the step-wise addition of 
each data set. Table 2 shows the performances of different data 
integration types of DIVERSE for three different cancer cell line 
datasets.

Table 2. Average MSE and Spearman correlation scores over 5x5-fold 
cross-validation for three different types of cancer cell lines.

Finally, these advantages of DIVERSE were confirmed by 
several case studies. Overall, DIVERSE is useful for performing 
integrative machine learning for given multiple omics data sources, 
which has not been handled by a regular machine learning algorithm.


