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研究目的 (Research Objective): 

  This paper summarizes the author’s studies of the linear theory of tearing 
instability called modified LSC theory, which started from Shimizu’s KDK 
ResearchReport2017 and AAPPS-DPP2018, and then, was continued about 7 
years. Those studies already have been or are scheduled to be published, totally 
in 4 full papers [1-4]. Unfortunately, the first paper [1] has been rejected 7 times 
between 2018-2024. For the reason, the publication of subsequent papers is also 
delayed. This paper may help you to read the first paper and subsequent three 
papers [2,3,4]. Author expects you to improve and extend this study, moreover.  
 
1. Introduction:  
The modified LSC theory is based on the original LSC theory, which was 

introduced by Loureiro,et.al. (PoP2007). In fact, the linear perturbation equations 
solved in the modified LSC were taken from that of original LSC. Hence, most 
notations in the modified LSC are based on the Loureiro’s definitions, where Φ 
and Ψ are respectively perturbed potential functions of flow and magnetic fields. 
The prime is the derivative for the direction normal to the current sheet, where 
f(ξ) is the equilibrium function of magnetic field Bxo. Then, the most important 
target is knowing the linear growth rate of the tearing instability and the critical 
condition, beyond which the current sheet is destabilized. This paper shows some 
topics important to understand about linear theory of tearing instability in my 
viewpoints.  
 

2. Equilibrium must be rigorous:  
Every perturbation theory must start from rigorous equilibrium. Fig.1 shows 

an image to explain that. Evidently, if the equilibrium is not rigorous, such 
theories are meaningless or have a delicate problem. At this point, FKR theory 
(Fruth,et.al.,PhFl1963) has a delicate problem, where a null-flow equilibrium 
field was employed. The null-flow equilibrium field is rigorous only in ideal-MHD 
limit but not in resistive-MHD. Because, the tearing instability does not occur in 
ideal-MHD. Against the problem, FKR focused on when the resistivity is 
sufficiently close to zero. Meanwhile, if the current sheet thickness is infinity, the 
null-flow equilibrium field can be rigorous in resistive-MHD. In that case, even 
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with large resistivity, it is rigorous. However, in such a special case, the tearing 
instability is suggested to be stable [1]. Finally, employing non-zero-flow 
equilibrium field shown in Fig.2, LSC theory completely removed the problem. 
Hence, in resistive-MHD, the original and modified LSC theories can exactly 
study whether the current sheet is destabilized or not.  

 
Fig.1: Rigorous equilibrium is needed to study perturbation theories. One of the circles in 

the left figure is not in the equilibrium.  
 

  
Fig.2: Rigorous equilibrium employed in LSC theory is established by magnetic annihilation, 
where magnetic reconnection does not occur. Left is the 2D flow potential field Φ (stream 
function). Right is 1D magnetic field Bxo. The current sheet is along the horizontal axis, and 
symmetric boundary is assumed at the origin.  
 
3. An interpretation ofΔ’-index:  

The delta-prime index (Δ ’-index) was introduced in FKR, and then, is 
traditionally employed in many linear theories of tearing instability, such as  
the original LSC. The index is defined at a discontinuity of perturbed magnetic 
field Ψ at the neutral sheet (ξ=0), i.e., Δ’=(Ψ’(ξ=+0)-Ψ’(ξ=-0))/Ψ(ξ=0). 
When the index is positive, tearing instability occurs, i.e., the current sheet is 
unstable. Meanwhile, modified LSC refers to Ψ’’(ξ=0), instead of the index.  

Fig.3 shows how the discontinuity appears in the instability. When the 
instability occurs, the current density Ψ’’=-Jz increases. It means the magnetic 
field Ψ’=Bx1 piles up around the neutral sheet, against the magnetic diffusion. 
It results inΨ’’(0)>0, and hence, Ψ has a local maximum point separated from 
the neutral sheet, i.e., ξ=0, because of the magnetic field convection.  
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Fig.3: The most-left is the tearing instability in 2D. The middle is the equilibrium field Bxo, 

perturbed field Ψ’=Bx1, and Bxo+Bx1, assumed in modified LSC. The most-right is Bxo, 
Ψ’=Bx1, and Bxo+Bx1 in FKR and original LSC. Note that δcs’<<δcs.  
 

As shown in Fig.3 (middle and right), the difference between the original and 
modifed LSCs is whether the differential discontinuity of Ψ exists at ξ=0, or 
not. The former assumes the discontinuity and solves outside of the discontinuity 
as ideal-MHD. Meanwhile, the latter does not assume the discontinuity and 
seamlessly solves resistive-MHD through the inside and outside of the sheet.  
 
4. Introduction of upstream open boundary condition:  

Another difference between the original and modified LSCs, is the introduction 
of the upstream open boundary, which is close to what is often employed in 
numerical simulations. There are some types of the open boundary condition. The 
basic type is Φ=Ψ=0 at ξ=ξc, which results in zero-crossing solution of Φ and 
Ψ [1,2]. The other types are Φ=Ψ=Φ’=0 [2,4] or Φ=Ψ=Ψ’=0 [3], which results 
in zero-contact solution.  

 

Fig.4 : Equilibrium + perturbed fields numerically obtained in modified LSC. The left is flow 
potential field Φo+aΦ1 and the right is the magnetic field Ψo+aΨ1, where adjustable 
parameter “a” must be small but, for the visuality, is extremely emphasized. For the reason, 
the flow field (left figure) is extremely distorted. The upetream open boundary is assumed at
ξ c=3.6. A plasmoid chain of magnetic islands appears along the neutral sheet, i.e., 
horizontal axis of the right figure.  
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Fig.4 shows an image of the combination of equilibrium and perturbed fields in 

the zero-contact solution, where the perturbed field is extremely emphasized for 
the visualization. The upstream side ξ>ξc of the upstream open boundary (ξ
c=3.6) is physically meaningless. At this point, the physical interpretation of the 
outside is similar to that of MHD simulations. The open boundary condition is 
hard to observe in Fig.4, but exactly satisfied there.  
 
5. Initial value problem vs eigen value problem in numerical studies:  

In those 4 papers [1-4], the perturbation equations were numerically solved as 
an initial value problem (IVP). Meanwhile, there are many studies where an 
eigen value problem (EVP) is solved, instead of IVP. Many peoples expect there is 
no difference in the selection, but those 4 papers show there are some differences. 
Since the numerical studies are always affected by numerical errors, the simple 
IVP will have advantages. In particular, the behavior of solutions atξc=+∞ will 
be sensitive for the numerical errors. Regardless of IVP and EVP, any 
approximation or prediction is required to numerically explore the behaviors at 
ξc=+∞. In a viewpoint of numerical errors, solving IVP is close to particle 
simulations (PS), rather than fluid simulations (FS). Because, FSs always have 
dissipative errors while PSs can be neutral for numerical errors. The dissipative 
errors will distort the numerical results.  
 
6. Introduction of viscosity and the non-uniformity:  

The first paper [1] suggested that tearing instability is not perfectly stabilized 
by any resistivity, i.e., in resistive-MHD. In other words, resistivity can slow the 
growth of the instability but even infinite resistivity cannot stop it. To stop it, the 
introduction of viscosity is suggested. The second paper [2] studied the viscosity 
effect and also the non-uniformity. In contrast to the first paper, the equilibrium 
field f(ξ) in the subsequent three papers [2,3,4] was modified to more rigorously 
keep the equilibrium. In fact, f(ξ) in the first paper is assumed to be constant 
outside of the current sheet, which breaks the differential continuity of f(ξ) at 
the outer edge of the sheet, i.e., ξ=1.307. The f(ξ) in the subsequent three 
papers [2-4] is rigorous for the introductions of viscosity and hyper-resistivity.  
 In the second paper [2], it was also shown that the non-uniformity of viscosity 
can enhances the growth of the instability. It suggests that the uniform 
resistivity and viscosity do not effectively work to attain the fast growth, i.e., fast 
magnetic reconnection. Another remarkable result is the derivation of the critical 
condition, beyond which the instability stops. It was also shown that the critical 
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condition consists of three dimensionless parameters, i.e., Lundquist number S, 
magnetic Prandtl number Pm, and the ratio ξc/1.307, which is the ratio of the 
current sheet thickness ξo=1.307 and the distance between the open boundary 
point ξc and the neutral sheet ξ=0. The critical condition may be applicable for 
substorms and solar flares observed in space plasma observations. However, it is 
still unclear what corresponds to the upstream open boundary in real space 
plasmas. Since the real current sheet will be always maintained in the 3D 
plasma convections of magnetosphere and flux tubes, any 3D closed equilibrium 
field may be considered, instead of the 2D equilibrium field with upstream open 
boundary.  

 
Fig.5: The critical condition of tearing instability. N is viscosity and ξcrit is the location of 

the critical upstream open boundary point.  
 

Fig.5 shows the critical condition obtained in the modified-LSC with uniform 
viscosity N [2]. The horizontal axis ξcrit is related to the intensity of the 
uniform resistivity. Above the curve of N is unstable, and below is stable. Largeξ
crit means when the current sheet is thin. For example, imagine when the 
viscosity N in plasma is constant. If the sheet is thinner than a value forξcrit, 
the sheet is unstable for the tearing mode.  
 
7. Hyper-resistivity:  

The third paper [3] studied when tearing instability is caused by 
hyper-resistivity, where resistivity and hyper-resistivity mixedly work. Before 
exploring the perturbation theory, the rigorous equilibrium was numerically 
obtained, which is determined by two inflow Lundquist numbers Si and SHi,  
respectively, for resistivity and hyper-resistivity. Then, the perturbed solutions 
were numerically obtained on the basis of the equilibrium. Hence, depending on 
the ratio of resistivity and hyper-resistivity, the equilibrium magnetic field was 
modified from when resistivity only works, where the equilibrium flow field was 
fixed at that of the second paper [2]. Eventually, it was shown that 
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hyper-resistivity steadily enhances the growth of instability, rather than 
resistivity.  
 
8. Improvement of WKB approximation:  

Fig.6 shows the image of the growth of plasmoid chain formed in plasmoid 
instability [1,5]. In Fig.6(a), plasmoids are generated around the origin, and then, 
move to downstream, i.e., the right of the figure. Since the movement of the 
plasmoids is accelerated in the sheet, the wave length lcs is gradually extended, 
as it moves to downstream. Fig.6(c) shows the movements of some X-points 
formed in the plasmoid chain, which is accelerated, as time proceeds. For this 
reason, in original and modified LSC theories, the wave number k of the 
plasmoid chain changes in time. However, the original LSC solved when k does 
not change in time. That is the zeroth-order WKB approximation. Meanwhile, 
modified LSC solves the first-order WKB.  

 
Fig.6: The growth of plasmoid chain in Plasmoid instability.  
 

In fact, the fourth paper [4] studied the first-order WKB approximation in the 
modified LSC. Originally, the perturbed equations have been introduced by 
Loureiro, et.al., (PoP2007). As reported in KDK Research Report 2022, most of 
our studies have been already completed, and now, the numerical error check is 
being extensively made. The improvement of the WKB approximation tends to 
suppress the growth of the instability. Hence, the current sheet is more stable 
than that of the zeroth-order WKB case.  
 
9. Intermediate shock problem:  

The problems of tearing instability and magnetic reconnection process are 
essentially related to the intermediate shock problem (e.g., T.Hada, AAPPS 
-DPP2020). It suggests that it is important to consider outside of the current 
sheet in the viscous-resistive-MHD. In other words, uniform viscosity is 
important to stabilize the current sheet. At this point, in non-viscous case [1], 
current sheet is always unstable, i.e., cannot exist. Rather, since current sheet is 
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commonly observable in real space plasmas, that must be often stable.  
 
10. Conclusoins:  

Plasmoid instability may be interpreted as an instability driven by plasmoids,  
i.e., through a kind of feedback process of the plasmoid movements. If so, the 
concept is essentially the same as that of the spontaneous fast reconnection 
model introduced by Ugai (JPP1977, PhFl1986, etc.). However, the spontaneous 
model is driven by anomalous (i.e., extreme non-uniform) resistivity, resulting in 
steady state Petsheck model. The plasmoid instability is driven by uniform 
resistivity, resulting in non-steady state Sweet-Parker model, which is a 
turbulent model. To attain the fast magnetic reconnection required for substorms 
and solar flares, the non-uniformity of resistivity and viscosity will be effective. 
Plasmoid instability established by uniform resistivity and viscosity may be a 
candidate for the fast magnetic reconnection but those author’s studies [1-4] 
suggest that the present numerical studies of the plasmoid instability must be 
carefully rechecked [5]. Historically, the science is always developed by reducing 
errors, which includes numerical errors in numerical studies and instrumental 
errors in observations and so on. The MHD scenario introduced by Alfven may 
have any problem for the application to real plasmas, and also, the perturbation 
equation introduced by Loureiro may have any problem. However, reducing the 
numerical errors, it is firstly important to try to exactly explore the mathematical 
characteristics included in the equations.  
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