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Abstract. We consider the dynamics of a system of differential equations called
a Regulatory Network, which represents complex regulatory relationships such as
gene regulatory networks. The paper by Fiedler-Mochizuki et al.[3] showed that it
is possible to identify a set of determining nodes that determines the asymptotic
dynamics of the Regulatory Network from its network structure alone. We extend
this theory to the case where the regulatory network contains time delays.

1. Introduction

In biology, it is widely believed that the interaction between many molecules such as
genes produces the biological functions and properties. For example, a differentiated
state of a cell is considered as a steady state of the dynamics of gene expression
resulting from gene regulations. Such regulations can be represented as a directed
graph such as gene regulatory network. For example, Figure 1 shows a reduced gene
regulatory network for cell differentiation in the development of the ascidian Ciona
intestinalis [3]. It is important to understand the relationship between the structure
of a network and dynamics to study and control biological systems.

Figure 1. A gene regulatory network

Fiedler, Mochizuki et al [3] developed a theory, in this paper, which we call the
Fiedler-Mochizuki theory, to analyze and control a long-term dynamical behavior in a
system of ODEs on a network based on information of regulatory linkages alone [3].
They showed that it is sufficient to observe on only a feedback vertex set in order to
determine the long-term dynamics of the entire system. See Theorem 8. A feedback
vertex set is a subset of vertices whose removal becomes a graph without directed
cycles. For example, the minimal feedback vertex set of the directed graph in Figure
1 is {FoxD-a/b}, so the dynamics of FoxD-a/b determines the dynamics of the others.
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Their theory is applicable to a wide range of systems. Mathematically, they as-
sumed that the dynamics can be obtained from ordinary differential equations and
they considered the following class with some assumptions:

Definition 1. For given subsets Ik ⊂ {1, . . . , N}\{k} (k = 1, . . . , N), we call an
ODE systems of the form

żk(t) = Fk(t, zk(t), {zj(t)}j∈Ik), k = 1, . . . , N.(1)

a regulatory network (RN) if the nonlinearities Fk satisfies the following assumptions:

Continuity (C): The nonlinearities Fk : R× R× RN−1 → R are C1.
Absorbing (A): There exists a positive constant R such that for any solution
z(t) of (1), there exists a positive time T such that |z(t)| ≦ R, for all t ≧ T .

Boundedness (B): For all k ∈ {1, . . . N} and j ∈ Ik, there exists B > 0 such
that |∂Fk

∂zj
(t, zk, {zj}j∈Ik)| ≦ B for all t ≧ 0, z ∈ RN with |z| ≦ R.

Remark 2. From assumption (C), we have a unique solution of each initial value
problem for (1). In assumption (A), we implicitly assume that the solution z(t) exists
for all t ≧ 0.

In some biological models such as gene transcription and translation, recent studies
have shown that in order to capture the whole range of dynamics, time delay often
plays an important role [10]. For example, in periodic somite segmentation, time delays
in the timing of specific gene (Hes7) expression caused by the introns are required for
oscillatory expression. However, Fiedler-Mochizuki theory is not formulated for time-
delay systems. If we can extend their theory to a class of time-delay systems, we will
be able to analyze broader and more biologically accurate models.

One thing to note in studying time-delay systems is that time-delay systems cannot
be written in the form of (1). For example, the derivative of x at time t of the system

ẋ(t) = −x(t− π

2
)

depends on the past state, that is the value of x at time t − π
2
. Time-delay systems

contain wider range of equations than ordinary differential equations. Generally, we use
the formulation of the functional differential equations. This is one of the difficulties
in extending Fiedler-Mochizuki theory.

The other difficulty is related to the fact that even a simple one-dimensional time-
delay system can show rich dynamical behaviors depending on the time-delay in con-
trast to an ODE without time-delay. For example, the solution x of ẋ(t) = −x(t− τ)
can diverge, converge to 0 or possibly oscillate depending on τ .

To extend Fiedler-Mochizuki theory to time-delay systems, we assume delays are
bounded among various cases of time-delay systems and use Hale’s formulation[6].

In Section 2, we review Fiedler-Mochizuki theory for ordinary differential equations.
In Section 3, we introduce basic concepts of delay differential equations, and in Section
4, we formulate delayed regulatory networks. Our main results is presented in Section
5. After preparing some tools and results in Sections 6 and 7, we give the proof of our
result in Section 8.
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2. Fiedler-Mochizuki theory

In this Section, we briefly review the Fiedler-Mochizuki theory based on [3]. We
represent dependencies between variables of a (RN) by a directed graph. We admit
self-loops.

Definition 3 (Decay condition). We say a function Fk(t, zk, {zj}j∈Ik) in the right hand
side of RN (1) satisfies a decay condition, if the following holds for Fk:

(DC): There exists a positive number a such that for all t ≧ 0 and z ∈ RN

with |z| ≦ R, ∂Fk

∂zk
(t, zk, {zj}j∈Ik) ≦ −a < 0

Definition 4 (Directed graph associated with RN). For a given RN (1), the associated
directed graph Γ = (V,E) with V := {1, . . . , N} as vertices and E ⊂ V × V as edges
is defined as follows:

• (j, k) ∈ E (j 6= k)
def⇐⇒ j ∈ Ik

• (k, k) ∈ E
def⇐⇒ Fk does not satisfy the decay condition.

Definition 5. Let Γ = ({1, . . . , N}, E) be a digraph. The system (1) is called a
regulatory network on Γ if it satisfies assumptions (A),(B),(C), and Γ is the directed
graph associated with (1)

In [3], they showed that it is possible to identify a subset of variables {z1, . . . , zN}
that determines long-term dynamics of (1) from the structure of its associated directed
graph. This is the concept of determining nodes and proven to be related a property
of the associated digraph called the feedback vertex sets.

Definition 6 (Determining nodes). We call a subset I ⊂ {1, . . . , N} a set of deter-
mining nodes for (1) if for any two solutions z̃(t), z(t) of (1) satisfying

z̃j(t)− zj(t) −−−→
t→∞

0 for all j ∈ I

we have
z̃(t)− z(t) −−−→

t→∞
0.

Definition 7 (Feedback vertex set). A subset I ⊂ V is called a feedback vertex set
(abbreviated as FVS) of a di-graph Γ = (V,E) if Γ\I has no directed cycles.

Theorem 8 ([3] Lemma 3.2). Let Γ = ({1, . . . , N}, E) be a given digraph and I be a
FVS of Γ. Then, I is a set of determining nodes for any regulatory networks on Γ.

Example 9.

(2)
ż1(t) = z1(t)− z1(t)

3

ż2(t) = −z2(t) + z1(t)
2

The system has two asymptotically stable equilibria (−1, 1) and (1, 1), and one saddle
equilibrium (0, 0). Any solution which starts from a point on z2-axis converges to the
origin, and any other solution converges to either (−1, 1) or (1, 1).

For this RN (2), the set {1} is a set of determining nodes. To see this, let z̃
and z be two solutions. Then z̃1(t) − z1(t) −−−→

t→∞
0 implies lim

t→∞
z̃1(t) = lim

t→∞
z1(t) =

−1, 1 or 0. If lim
t→∞

z̃1(t) = lim
t→∞

z1(t) = −1 or 1, then lim
t→∞

z̃2(t) = lim
t→∞

z2(t) = 1.
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The case lim
t→∞

z̃1(t) = lim
t→∞

z1(t) = 0 occurs only when z̃1(t) = z1(t) ≡ 0, in which case
lim
t→∞

z̃2(t) = lim
t→∞

z2(t) = 0. In any case, z̃1(t)−z1(t) −−−→
t→∞

0 implies z̃2(t)−z2(t) −−−→
t→∞

0.
The function F2(z) = −z2 + z21 satisfies the decay condition, but F1(z) = z1 − z31

does not satisfy the decay condition, hence the directed graph Γ associated with this
RN (2) has a self-loop on vertex 1 as shown in Figre 2. Consequently the minimal
FVS of the di-graph Γ is I = {1}. According to the above Theorem 8, I must be a set
of determining node for any RN on Γ, and is indeed the case for RN (2).

Figure 2. The directed graph Γ associated with RN (2)

3. time-delay systems: basic concepts

In this section, we introduce a general class of time-delay systems and the definition
of stability of the solution.

We explain some notations. Let C([a, b],Rm) denote the Banach space of continuous
functions from the interval [a, b] to Rm with the norm given by

‖ϕ‖ = max
s∈[a,b]

|ϕ(s)|.

Let τ > 0 be a given upper bound on the bounded time delay and let C = C([−τ, 0],Rn).
For a continuous function x defined on the interval [σ − τ, σ + d) (σ ∈ R, d ≧ 0) and
for any t ∈ [σ, σ + d), we let xt ∈ C be the function defined on [−τ, 0] by

xt(θ) = x(t+ θ), −τ ≦ θ ≦ 0.

For β > 0, let

Cβ = {ϕ ∈ C | ‖ϕ‖ < β}.

Let f : R× C ⊃ dom(f) =: D → Rn be a given function . We say

ẋ(t) = f(t, xt)(3)

is a time-delay system on D (” · ” represents the right-handed derivative). A function
x is said to be a solution of equation (3) on [σ − τ, σ + d) if there are σ ∈ R and
d > 0 such that x ∈ C([σ− τ, σ+d),Rn), (t, xt) ∈ D and x(t) satisfies equation (3) for
t ∈ [σ, σ + d). For given σ ∈ R, ϕ ∈ C, we say x(t; σ, ϕ, f) is a solution of equation (3)
with initial value ϕ at σ or simply a solution through (σ, ϕ) if there there is an d > 0
such that x(t; σ, ϕ, f) is a solution of equation (3) on [σ−τ, σ+d) and x(·; σ, ϕ, f)σ = ϕ.
For notational purposes, we take the domain of definition of f to be R× C. We give
the definition of stability of the solution x = 0.

Definition 10 (Stability). Suppose f(t, 0) = 0 for all t ∈ R.
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• The solution x = 0 of equation (3) is said to be uniformly bounded if for any
α > 0, there exists β = β(α) > 0 such that for all σ ∈ R, ϕ ∈ Cα, we have
‖x(·; σ, ϕ)t‖ ≦ β(α) for all t ≧ σ.

• The solution x = 0 of equation (3) is said to be stable if for any σ ∈ R, ϵ > 0,
there is a δ = δ(ϵ, σ) such that for all ϕ ∈ Cδ, we have x(·; σ, ϕ)t ∈ Cϵ for
t ≧ σ.

• The solution x = 0 of equation (3) is said to be asymptotically stable if it
is stable and there is a b0 = b0(σ) > 0 such that for all ϕ ∈ Cb0 , we have
x(t; σ, ϕ) → 0 as t→ ∞.

• The solution x = 0 of equation (3) is said to be uniformly stable if it is stable
and the number δ in the definition above is independent of σ.

• The solution x = 0 of equation (3) is said to be uniformly asymptotically stable
if it is uniformly stable and there is γ > 0 such that for any q > 0, there is
a t0(q) such that for all ϕ ∈ Cγ, we have x(·; σ, ϕ)t ∈ Cq for t ≧ σ + t0(q) for
every σ ∈ R.

We introduce a result of Yorke [11]. Let C = C([−τ, 0],R). For ϕ ∈ C, define
M(ϕ) = max{0, max

s∈[−τ,0]
ϕ(s)}.

We note that for all ϕ ∈ C and s ∈ [−τ, 0], −M(−ϕ) ≦ ϕ(s) ≦M(ϕ) holds.
Theorem 11 ([11]). Let τ > 0 and F : R× C → R be continuous. Assume for some
constant α ≧ 0, the following three conditions hold:

(I) −αM(−ϕ) ≦ −F (t, ϕ) ≦ αM(ϕ) , for sufficiently large t ≧ 0 and for all
ϕ ∈ C

(II) ατ < 3
2

(III) for all sequences tn → ∞ and ϕn ∈ C converging to a constant nonzero
function in C , F (tn, ϕn) does not converge to 0.

Then, the zero solution x = 0 of the one-dimensional delay differential equation
ẋ(t) = F (t, xt)

is uniformly asymptotically stable.

4. Formulation of delayed regulatory networks

Let C(τ) := C([−τ, 0],R) for τ ≧ 0. For a continuous function x defined on the
interval [σ − τ, σ + d) (σ ∈ R, d ≧ 0) and for any t ∈ [σ, σ + d), we let x(τ)t ∈ C(τ) be
the function defined on [−τ, 0] by

x
(τ)
t (θ) = x(t+ θ), −τ ≦ θ ≦ 0.

The norm of an element ϕ ∈ C(τ) is ‖ϕ‖(τ) = maxs∈[−τ,0] |ϕ(s)|. For ϕ ∈ C(τ), define
M(τ)(ϕ) = max{0, max

s∈[−τ,0]
ϕ(s)}.

Let Ik ⊂ {1, . . . , N}\{k} be a given subset and Fk : R×C(τk,k)×
∏

j∈Ik C(τk,j) → R
be a given functional for each k = 1, . . . , N . In this paper, we study time-delay systems
of the form below:

żk(t) = Fk(t, (zk)
(τk,k)
t , {(zj)

(τk,j)
t }j∈Ik) , k = 1, . . . , N(4)
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An upper bound on the delay of the influence from node j on node k is represented as
τk,j.

Definition 12. For given subsets Ik ⊂ {1, . . . , N}\{k} (k = 1, . . . , N), we call a time-
delay system of the form (4) a delayed regulatory network (DRN) if the nonlinearities
Fk satisfies the following assumptions:

Continuity (C): For all k ∈ {1, . . . N} and j ∈ Ik ∪ {k}, Fk and DjFk are
continuous.

Absorbing (A): There exists a positive constant R such that for any solution
z of (4), there exists a positive time T such that |z(t)| ≦ R, for all t ≧ T .

Boundedness (B): For all k ∈ {1, . . . N}, j ∈ Ik, ϕ ∈ C(τk,j), there exists
Bk,j(ϕ) > 0 such that |DjFk(t, ψk, {ψs}s∈Ik)(ϕ)| ≦ Bk,j(ϕ) for all t ≧ 0,
ψℓ ∈ C(τk,ℓ) with ‖ψℓ‖(τk,ℓ) ≦ R (for all ℓ ∈ {1, . . . N}).

Remark 13. The derivativeDjFk denotes the partial Frechet derivative of Fk(t, xk, {xs}s∈Ik)
with respect to the variable xj (j ∈ Ik ∪ {k}). Let B(C(τk,j),R) denotes the space of
all bounded linear operators from C(τk,j) to R.

• Fk : R× C(τk,k)×
∏

j∈Ik C(τk,j) → R
• DjFk : R× C(τk,k)×

∏
j∈Ik C(τk,j) → B(C(τk,j),R)

Remark 14. Let τ := maxk,j∈{1,...,N} τk,j. We can think of Fk as a mapping from
R × C(τ)N . The product space C([−τ, 0],R)N and C([−τ, 0],RN) are isometrically
isomorphic. By this isometric isomorphism, we regard the equations (4) as the general
form of (3).

We represent dependencies between variables of a DRN by a directed graph in the
like manner as a RN. However we have to modify the decay condition. We show you
an example.

Example 15.

(5)
ż1(t) = z1(t)− z1(t)

3

ż2(t) = −z2(t−
π

2
) + z1(t)

2

For this DRN (5), I = {1} is not a set of determining node. Indeed, we have two
solutions (z̃1(t), z̃2(t)) = (0, cos t) and (z1(t), z2(t)) = (0, 0), whose first component is
the same, but z̃2(t) − z2(t) = cos t ↛

t→∞
0. Compared with Example 9, we will show

the di-graph associated with this time-delay system has self loops not only on vertex
1 but also vertex 2 in Example 21.

Remark 16. The system (5) does not satisfy the assumption (A) of the Definition 12
because for any A ∈ R, (x1(t), x2(t)) = (0, A cos t) is a solution. In order to fix this,
we can enforce the assumption (A) by a modification

ẋ2(t) = −x2(t−
π

2
) + x1(t)

2 − f(x2(t))

where the smooth function f(y) is 0 for y2 ≦ 1, and y for large |y|.

Definition 17 (Delayed decay condition). We say a functional Fk(t, ψk, {ψs}s∈Ik) in
the right hand of DRN (4) satisfies a delayed decay condition, if the following holds
for Fk:
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(DDC): Case 1: τk,k > 0. There exists αk > 0 such that for all ψℓ ∈ C(τk,ℓ)
with ‖ψℓ‖(τk,ℓ) ≦ R (for all ℓ ∈ {1, . . . N}), the following holds.
(I) −αkM

(τk,k)(−ϕ) ≦ −DkFk(t, ψk, {ψs}s∈Ik)(ϕ) ≦ αkM
(τk,k)(ϕ), for all t ≧

0 and ϕ ∈ C(τk,k)
(II) αkτk,k <

3
2

(III) for all sequences tn → ∞ and ϕn ∈ C(τk,k) converging to a constant
nonzero function in C(τk,k) , DkFk(tn, ψk, {ψs}s∈Ik)(ϕn) does not con-
verge to 0.

Case 2: τk,k = 0. In this case, (DDC) is coincide with (DC).
Definition 18 (Directed graph associated with DRN). For a given DRN (4), the
associated directed graph Γ = ({1, . . . , N}, E) with {1, . . . , N} as vertices and E ⊂
V × V as edges is defined as follows:

• (j, k) ∈ E (j 6= k)
def⇐⇒ j ∈ Ik

• (k, k) ∈ E
def⇐⇒ Fk does not satisfy the delayed decay condition (DDC).

These conditions in (DDC) are motivated by Theorem 11 [11].
Definition 19. Let Γ = ({1, . . . , N}, E) be a digraph. The system (4) is called a
delayed regulatory network on Γ if it satisfies assumptions (A),(B),(C), and Γ is the
directed graph associated with (4).

5. Main result

By using Yorke’s theorem and defining the (DDC), we can extend the Fiedler-
Mochizuki theory to DRN.
Theorem 20. Let Γ = ({1, . . . , N}, E) be a given digraph and I be a FVS of Γ. Then,
I is a set of determining nodes for any delayed regulatory networks on Γ.
Example 21.

(6)
ż1(t) = z1(t)− z1(t)

3

ż2(t) = −z2(t−
π

2
) + z1(t)

2

We consider the same system in Example 15 again. If we define F2 : C(π
2
) → R by

F2(ψ) := −ψ(−π
2
), then ż2(t) = F2((z2)t) + z1(t)

2 and DF2(ψ)(ϕ) = −ϕ(−π
2
) for all

ψ, ϕ ∈ C(π
2
). Thus, we can choose α2 = 1 such that −α2M

(π
2
)(−ϕ) ≦ −DF2(ψ)(ϕ) ≦

α2M
(π
2
)(ϕ). This means F2 satisfies (DDC)(I). However F2 does not satisfy (DDC)(I

I) since α2τ2,2 =
π
2
, hence the directed graph associated with this DRN has a self-loop

on vertex 2. The set {1,2} is the FVS and obviously the set of determining nodes.

Figure 3. The directed graph associated with DRN (6)
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Example 22.

(7)
ż1(t) = z1(t)− z1(t)

3

ż2(t) = −z2(t− 1) + z1(t)
2

Compared to Example 21, F2(ψ) := −ψ(−1) satisfies (DDC)(I) for α2 = 1 and
(DDC)(II) since α2τ2,2 = 1. (DDC)(III) is fulfilled, so the directed graph associated
with this DRN (7) is the same as Figure 2.

We prepare some necessary lemmas and theorems before we show the proof of The-
orem 20.

6. variation of constants formula

Throughout this and next sections, we fix τ > 0 and let C = C([−τ, 0],Rn).

Theorem 23 (Variation of constants formula [6]). For (σ, ϕ) ∈ R × C, consider the
linear system

(8) ẋ(t) =

∫ 0

−τ

dθ[η(t, θ)]xt(θ) + f(t), t ≧ σ,

xσ = ϕ,

where f ∈ L1
loc([σ,∞),Rn). The n × n matrix function η(t, s) is measurable in (t, s).

We suppose that for every t ∈ R, η(t, s) = η(t,−τ) for s ≦ −τ , η(t, s) = 0 for s ≧ 0,
and also assume that η(t, s) is continuous from the left in s on (−τ, 0). We suppose
that [t 7→ η(t, ·)] is continuous and η(t, s) has bounded variation in s on R for each t.
Let k(t, s) := η(t, s− t) and r(t, s) be the solution of the equation

r(t, s) +

∫ t

s

k(t, u)r(u, s)du = r(t, s) +

∫ t

s

r(t, u)k(u, s)du = k(t, s), for all t, s ∈ [σ,∞).

We define

X(t, σ) =

{
E −

∫ t

σ
r(u, σ)du t ≧ σ

0 t < σ,

where E is the n× n identity matrix.
Then there exists a unique solution x(t; σ, ϕ, f) defined and being continuous on

[σ − τ,∞) that satisfies (8) on [σ,∞). Furthermore, this solution is given by

x(t; σ, ϕ, f) = X(t, σ)ϕ(0) +

∫ t

σ

X(t, α)

(∫ σ−α

−τ

dθ[η(α, θ)]ϕ(α− σ + θ)

)
dα +

∫ t

σ

X(t, α)f(α)dα.

(9)

Remark 24. Using the representation (9), we have

x(t; σ, ϕ, f) = x(t; σ, ϕ, 0) +

∫ t

σ

X(t, α)f(α)dα.(10)

We later use the representation of this form.

Remark 25. The function r(t, s) in Theorem 23 is called the resolvent of k. Existence
and uniqueness of r is proved in [1], [4], [6]. The resolvent r(t, s) is right continuous
and Riemann integrable function with respect to t in any closed subinterval of [σ,∞).
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Remark 26. For a fixed s, X(t, s) is a solution as a function of t for t ≧ s+ τ to (8)
with f ≡ 0 , that is

ẋ(t) =

∫ 0

−τ

dθ[η(t, θ)]xt(θ)(11)

with respect to the initial data
(12) X0 := X(·, s)s+τ

since if t ≧ s+ τ ,
∂X(t, s)

∂t
= −r(t, s)

=

∫ t

s

k(t, u)r(u, s)du− k(t, s)

=

∫ t

s

η(t, u− t)r(u, s)du− η(t, s− t)X(s, s) + η(t, 0)X(t, s)

=

∫ t

s

du[η(t, u− t)]X(u, s)

=

∫ 0

s−t

dθ[η(t, θ)]X(θ + t, s)

=

∫ −τ

s−t

dθ[η(t, θ)]X(θ + t, s) +

∫ 0

−τ

dθ[η(t, θ)]X(θ + t, s)

=

∫ 0

−τ

dθ[η(t, θ)]X(θ + t, s).

We used integration by parts and the assumption that η(t, θ) = η(t,−τ) for θ ≦
−τ . When s ≦ t ≦ s + τ , X(t, s) satisfies (11) if we think of the right-hand side
of (11) as the Lebesgue-Stieltjes integral. We call the matrix solution X(t, s) the
fundamental matrix solution of (11). We note that the fundamental matrix solution
X(t, s) = E −

∫ t

s
r(u, s)du is continuous with respect to t ∈ [s,∞) because r(·, s) is

integrable.
Remark 27. For an interval [−τ, 0], NBV([−τ, 0],Mn(R)) denotes the space of bounded
variation matrix functions η : [−τ, 0] → Mn(R) such that η(0) = 0 and η(s) is
continuous from the left on (−τ, 0). ‖η‖BV := V ars∈[−τ,0]η(s) defines a norm on
NBV([−τ, 0],Mn(R)) with which NBV([−τ, 0],Mn(R)) forms a Banach space. The
restriction η(t, ·)|[−τ,0] used in Theorem 23 is in NBV([−τ, 0],Mn(R)).
Remark 28. From the Riesz representation theorem, for any linear mapping L(t) :
C → Rn, there exists an η : R×[−τ, 0] →Mn(R) such that η(t, ·) ∈ NBV([−τ, 0],Mn(R)),
‖η(t, ·)‖BV = ‖L(t)‖ and we can obtain the expression of L(t) by a Riemann-Stieltjes
integral

L(t)ϕ =

∫ 0

−τ

dθ[η(t, θ)]ϕ(θ)

for all t. We can get the continuity of the mapping R 3 t 7→ η(t, ·) ∈ NBV([−τ, 0],Mn(R))
if we assume t 7→ L(t) is continuous.
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7. stability

In this section we consider the homogenous linear equation (11) where η satisfies the
assumptions of Theorem 23. Let x(t; σ, ϕ) denote the solution of (11) through (σ, ϕ).

Definition 29. A collection of two-parameter family of bounded linear operators
T (t, s) (t ≧ s) on a real Banach space B is called an evolutionary system on B if

• T (s, s) = I
• T (u, t)T (t, s) = T (u, s) , u ≧ t ≧ s.

A solution operator of Equation (11) is defined to be an evolutionary system T on C
given by T (t, s)ϕ := x(·; s, ϕ)t. Let T (t, s) be the solution opeartor of (11) and X(t, s)
be the fundamental solution of (11).

Lemma 30 ([6]). The following statements are equivalent:

(I) The solution x = 0 is uniformly bounded.
(II) The solution x = 0 is uniformly stable.

(III) There is a constant B0 > 0 such that for all σ ∈ R, |T (t, σ)| ≦ B0, t ≧ σ.

Proof. (I⇒III) From the uniform boundedness, for α = 1, we can take B0 > 0 such
that for all σ ∈ R and ϕ ∈ Cα, we have ‖T (t, σ)ϕ‖ = ‖x(·; σ, ϕ)t‖ ≦ B0 for t ≧ σ.
Hence |T (t, σ)| ≦ B0 for t ≧ σ.

(III⇒II) For any ϵ > 0, we choose δ(ϵ) so that 0 < δ(ϵ) < ϵ
B

. Then, for any ϕ ∈ Cδ(ϵ),
σ ∈ R and t ≧ σ,

‖x(·; σ, ϕ)t‖ ≦ |T (t, σ)|‖ϕ‖
≦ B0δ(ϵ)

< ϵ.

(II⇒I) From the uniform stability, for ϵ = 1, we can take δ(ϵ = 1) > 0 such that
for any ϕ ∈ Cδ(1), σ ∈ R and t ≧ σ, we have ‖x(·; σ, ϕ)t‖ < ϵ = 1. For any α > 0, we
choose β(α) = α

δ(1)
. Then, for all ϕ ∈ Cα, σ ∈ R and t ≧ σ, we have ‖ δ(1)

α
x(·; σ, ϕ)t‖ =

‖x(·; σ, δ(1)
α
ϕ)t‖ < 1 since δ(1)

α
ϕ ∈ Cδ(1). Therefore, ‖x(·; σ, ϕ)t‖ < α

δ(1)
= β(α). □

Lemma 31 ([6]). The following statements are equivalent:

(I) The solution x = 0 is uniformly asymptotically stable.
(II) There is a constant B > 0, β > 0 such that for all s ∈ R, |T (t, s)| ≦ Be−β(t−s),

t ≧ s.

Proof. (I⇒II) From the uniform asymptotic stability, there is γ > 0 such that for
any q > 0, there is a t0(q) > 0 such that for all ϕ ∈ Cγ, we have T (t, σ)ϕ ∈ Cγq for
t ≧ σ + t0(q) for every σ ∈ R. We choose 0 < q < 1 and take a t0 = t0(q) > 0. Then
for all ϕ ∈ C1, we have ‖T (t, σ)(γϕ)‖ < γq for all t and σ satisfying t − σ ≧ t0 since
γϕ ∈ Cγ. Thus, for all t and σ with t − σ ≧ t0, |T (t, σ)| ≦ q holds. We note that
uniform asymptotic stability implies uniform stability in general. By using B0 from
Lemma 30, we define β := −t−1

0 log(q) and B := B0e
βt0 . We fix s ∈ R and t ≧ s, and
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take a n ∈ N≧0 so that nt0 ≦ t− s < (n+ 1)t0. Then,

|T (t, s)| ≦ |T (t, s+ nt0)||T (s+ nt0, s)|
≦ B0|T (s+ nt0, s)|
≦ B0|T (s+ nt0, s+ (n− 1)t0)||T (s+ (n− 1)t0, s)|
≦ B0q|T (s+ (n− 1)t0, s)|
≦ B0q

n

= B0e
−βnt0

= B0e
βt0e−β(n+1)t0

≦ Be−β(t−s).

(II⇒I) For any ϵ > 0, we choose δ(ϵ) so that 0 < δ(ϵ) < ϵ
B

. Then, for any ϕ ∈ Cδ(ϵ),
σ ∈ R and t ≧ σ,

‖x(·; σ, ϕ)t‖ ≦ |T (t, σ)|‖ϕ‖
≦ Be−β(t−σ)δ(ϵ)

≦ cδ(ϵ)

< ϵ.

Therefore, the solution x = 0 is uniformly stable.
For any q > 0, we choose t0(q) > 0 so that t0(q) > − 1

β
log( q

B
). Then, for any ϕ ∈ C1,

σ ∈ R and t ≧ σ + t0(q),

‖x(·; σ, ϕ)t‖ ≦ |T (t, σ)|‖ϕ‖
≦ Be−β(t−σ)

≦ Be−βt0(q)

< q.

□

Lemma 32 ([6]). Assume that there exists a constant m1 such that∫ t+τ

t

‖η(u, ·)‖BVdu ≦ m1

holds for all t ∈ R and assume there is a constant B0 > 0 such that for all σ ∈ R,
|T (t, σ)| ≦ B0, t ≧ σ. Then there is a constant A0 > 0 such that for all s ∈ R,
|X(t, s)| ≦ A0, t ≧ s

Proof. The fundamental solution X(t, s) is a solution of (11), thus

X(t, s) = X(s, s) +

∫ t

s

∫ 0

−τ

dθ[η(u, θ)]X(θ + u, s)du, t ≧ s.
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Therefore, for s ≦ t ≦ s+ τ ,

|X(t, s)| ≦ c0 +

∫ t

s

∣∣∣∣∫ 0

−τ

dθ[η(u, θ)]X(θ + u, s)

∣∣∣∣ du
= c0 +

∫ t

s

∣∣∣∣∫ 0

s−u

dθ[η(u, θ)]X(θ + u, s)

∣∣∣∣ du
≦ c0 +

∫ t

s

V arθ∈[s−u,0]η(u, θ)‖X(·, s)u‖du

≦ c0 +

∫ t

s

‖η(u, ·)‖BV‖X(·, s)u‖du,

where c0 := |X(s, s)| = |E|. The same inequality holds for t ≧ s+ τ .
When s− τ ≦ k ≦ s, we have |X(k, s)| ≦ c0. When s ≦ k ≦ t, we have

|X(k, s)| ≦ c0 +

∫ k

s

‖η(u, ·)‖BV‖X(·, s)u‖du

≦ c0 +

∫ t

s

‖η(u, ·)‖BV‖X(·, s)u‖du.

Thus, if s− τ ≦ k ≦ t,

|X(k, s)| ≦ c0 +

∫ t

s

‖η(u, ·)‖BV‖X(·, s)u‖du

holds. Using this, we have
‖X(·, s)t‖ = sup

θ∈[−τ,0]

|X(t+ θ, s)|

= sup
k∈[t−τ,t]

|X(k, s)|

≦ sup
k∈[s−τ,t]

|X(k, s)|

≦ c0 +

∫ t

s

‖η(u, ·)‖BV‖X(·, s)u‖du.

From Grönwall’s inequality, we have

‖X(·, s)t‖ ≦M exp
∫ t

s

‖η(u, ·)‖BVdu, t ≧ s.

Consequently, if s ≦ t ≦ s+ τ ,

‖X(·, s)t‖ ≦M exp
∫ s+τ

s

‖η(u, ·)‖BVdu ≦Mem1 .(13)

If t ≧ s+ τ ,
‖X(·, s)t‖ ≦ |T (t, s+ τ)|‖X(·, s)s+τ‖

≦ B0Mem1 .

In either case, the conclusion holds. □
We recall an important lemma from [6], to which we give a proof using an argument

in [8].
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Lemma 33 ([6]). Assume that there exists a constant m1 such that∫ t+τ

t

‖η(u, ·)‖BVdu ≦ m1

holds for all t ∈ R and assume the zero solution of (11) is uniformly asymptotically
stable. Then there is a constant A > 0, β > 0 such that for all s ∈ R, |X(t, s)| ≦
Ae−β(t−s), t ≧ s.

Proof. From Lemma 31, we can choose a constant B > 0 and β > 0 such that
|T (t, s)| ≦ Be−β(t−s) for all t ≧ s. We fix ξ ∈ Rn and define y(t; s, ξ) := X(t, s)ξ.
Let ψξ := y(·; s, ξ)s+τ ∈ C. y(t; s, ξ) is the solution of (11) for t ≧ s + τ with respect
to the initial function ψξ.

If t ≧ s+ τ ,
|X(t, s)ξ| = |y(t; s, ξ)|

≦ ‖y(·; s, ξ)t‖
= ‖T (t, s+ τ)y(·; s, ξ)s+τ‖
= |T (t, s+ τ)|‖ψξ‖
≦ Be−β(t−s−τ)‖ψξ‖
= Beβτe−β(t−s) sup

θ∈[−τ,0]

|y(θ + s+ τ ; s, ξ)|

= Beβτe−β(t−s) sup
u∈[s,s+τ ]

|X(u, s)ξ|

= Beβτ sup
u∈[s,s+τ ]

|X(u, s)|e−β(t−s)|ξ|

so, we have
|X(t, s)| ≦ Beβτ sup

u∈[s,s+τ ]

|X(u, s)|e−β(t−s)

≦ A0Be
βτe−β(t−s).

We used the evaluation
sup

u∈[s,s+τ ]

|X(u, s)| ≦ A0

from Lemma 32.
If s ≦ t ≦ s+ τ ,

|X(t, s)| ≦
(

sup
t∈[s,s+τ ]

|X(t, s)|

)
eβ(t−s)e−β(t−s)

≦
(

sup
t∈[s,s+τ ]

|X(t, s)|eβτ
)
e−β(t−s)

≦ A0e
βτe−β(t−s).

In either case, the conclusion holds. □

We have finished the preparation for the proof of Theorem 20.
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8. proof of the main result

We prove Theorem 20 in a similar way as the proof of Theorem 8 in [3]. Let
τ := maxk,j∈{1,...,N} τk,j.

Lemma 34 (labeling order [3]). Let Γ = ({1, . . . , N}, E) be a di-graph and I be a
FVS of Γ. We can relabel the vertices of Γ such that

J = {1, · · · , N}\I = {1, · · · , N ′} (N ′ = N − |I|)
I = {N ′ + 1, · · · , N} : FV S

and for all k ∈ J , we have
• Ik ⊂ I ∪ {1, · · · , k − 1} (k ≧ 2)
• I1 ⊂ I

Our proof will be based on this labeling order.

Lemma 35. Let z and z̃ be arbitrary two solutions of (4) and w be the difference
between z and z̃, that is, w(t) = z̃(t)− z(t). Then, w(t) satisfies

ẇk(t) = Lk(t) (wk)
(τk,k)
t +

∑
j∈Ik

hj(t) (k = 1, · · · , N)(14)

where we define Lk(t) : C(τk,k) → R (t ∈ R), hj : R → R by

Lk(t)ϕ =

∫ 1

0

DkFk

(
t, (zk + θwk)

(τk,k)
t ,

{
(zj + θwj)

(τk,j)
t

}
j∈Ik

)
(ϕ) dθ,

hj(t) =

∫ 1

0

DjFk

(
t, (zk + θwk)

(τk,k)
t ,

{
(zj + θwj)

(τk,j)
t

}
j∈Ik

)(
(wj)

(τk,j)
t

)
dθ.

Proof.
ẇk(t) = ˙̃zk(t)− żk(t)

=

[
Fk

(
t, (zk + θwk)

(τk,k)
t ,

{
(zj + θwj)

(τk,j)
t

}
j∈Ik

)]θ=1

θ=0

=

∫ 1

0

d

dθ
Fk

(
t, (zk + θwk)

(τk,k)
t ,

{
(zj + θwj)

(τk,j)
t

}
j∈Ik

)
dθ

=

∫ 1

0

DkFk

(
t, (zk + θwk)

(τk,k)
t ,

{
(zj + θwj)

(τk,j)
t

}
j∈Ik

)(
(wk)

(τk,k)
t

)
dθ

+
∑
j∈Ik

∫ 1

0

DjFk

(
t, (zk + θwk)

(τk,k)
t ,

{
(zj + θwj)

(τk,j)
t

}
j∈Ik

)(
(wj)

(τk,j)
t

)
dθ.

□
Remark 36. When we fix z and z̃, the mapping Lk(t) is linear. However the equation
(14) in itself is not a linear equation in terms of wk. In fact, Lk(t) depends on wk.

Now fix z and z̃, and consider the linear nonhomogeneous equation in terms of x

(15)
ẋk(t) = Lk(t) (xk)

(τk,k)
t +

∑
j∈Ik

hj(t), t ≧ σ,

(xk)
(τk,k)
σ = (wk)

(τk,k)
σ ,
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for each k = 1, . . . , N . We take an initial time σ ≧ T + τ arbitrarily. By Lemma 35,
wk is the solution of (15). To solve (15), we use Theorem 23 (the variation of constants
formula [6]).

Remark 37. Regarding the equation (15), from the Riesz representation theorem, we
can obtain the expression of Lk(t) by a Riemann-Stieltjes integral

Lk(t)ϕ =

∫ 0

−τk,k

dθ[ηk(t, θ)]ϕ(θ),(16)

where ηk(t, ·)|[−τk,k,0] ∈ NBV([−τk,k, 0],R) and ‖ηk(t, ·)‖BV = ‖Lk(t)‖. From the as-
sumotion (C), the mapping [t 7→ Lk(t)] is continuous. Consequently, t 7→ ηk(t, ·) ∈
NBV([−τk,k, 0],R) is continuous.

Example 38. We define L : C(τ) → R by Lϕ := aϕ(0) + bϕ(−τ) for a, b ∈ R. If we
define η : R → R by

η(θ) =


−a− b (θ ≦ −τ)
−a (−τ < θ < 0)

0 (0 ≦ θ),

then we have Lϕ =
∫ 0

−τ
dη(θ)ϕ(θ).

We now prove the theorem 20 by induction based on the labeling order.
Proof of Theorem 20. We want to show that the FVS I is a set of determining nodes,
so we assume that for any fixed two solutions of (4) z and z̃,

z̃j(t)− zj(t) −−−→
t→∞

0 for all j ∈ I = {N ′ + 1, . . . , N}(17)

and show
z̃k(t)− zk(t) −−−→

t→∞
0 for all k ∈ J = {1, . . . , N}\I = {1, . . . , N ′}(18)

by induction over k. As an induction hypothesis, we assume, for fixed k ∈ {2, . . . , N ′},
z̃j(t)− zj(t) −−−→

t→∞
0 for all j ∈ {1, . . . , k − 1}.(19)

Using the convergences (17) and (19) for a fixed k ∈ {2, . . . , N ′}, we shall show
z̃k(t)− zk(t) −−−→

t→∞
0.(20)

We assume τk,k > 0. In case τk,k = 0, we can prove (20) in the same way as in [3].
Using the representation (10), we have the solution of (15)

xk(t; σ, ϕ,
∑
j∈Ik

hj(t)) = xk(t; σ, ϕ, 0) +
∑
j∈Ik

∫ t

σ

Xk(t, s)hj(s)ds,(21)

where Xk(t, s) is the fundamental solution of

ẋk(t) = Lk(t) (xk)
(τk,k)
t .(22)

We show each term of (21) converges to 0. The first term on the right hand of
(21) is the solution of (22). By the assumption (A), ‖(zℓ + θwℓ)t‖ ≦ R for all ℓ and
t ≧ σ(≧ T + τ), and the nonlinearity Fk satisfies (DDC). According to the Theorem
11, the zero solution of (22) is uniformly asymptotically stable. The equation (22) is
a linear equation, so from Lemma 31, xk(t; σ, ϕ, 0) converges to 0.



16

The nonlinearity Fk satisfy (DDC)(I). Thus, we have

−αkM
(τk,k)(−ϕ) ≦ −DkFk

(
t, (zk + θwk)

(τk,k)
t ,

{
(zj + θwj)

(τk,j)
t

}
j∈Ik

)
(ϕ) ≦ αkM

(τk,k)(ϕ)

for t ≧ σ and ϕ ∈ C(τk,k). Hence, we obtain
−αkM

(τk,k)(−ϕ) ≦ Lk(t)ϕ ≦ αkM
(τk,k)(ϕ),

hence
|Lk(t)ϕ| ≦ αk max{M (τk,k)(−ϕ),M (τk,k)(ϕ)}

≦ αk‖ϕ‖(τk,k).
By the Riesz theorem, the norm of Lk(t) is equivalent to the total variation of ηk
defined by (16). Hence,

V ars∈[−τk,k,0]ηk(t, s) = ‖Lk(t)‖ ≦ αk.

Therefore, ηk satisfies the assumption of Lemma 33. Lemma 33 gives
|Xk(t, s)| ≦ Cke

−γk(t−s).(23)
By the assumption (B) and the uniform boundedness principle, for all k ∈ {1, . . . N},
j ∈ Ik, there exists a positive constant Bk,j such that |DjFk(t, ψk, {ψs}s∈Ik)(ϕ)| ≦
Bk,j‖ϕ‖(τk,j) for all t ≧ 0, ϕ ∈ C(τk,j) and ψℓ ∈ C(τk,ℓ) with ‖ψℓ‖(τk,ℓ) ≦ R (for all
ℓ ∈ {1, . . . , N}). Thus, we have

|hj(s)| ≦ Bk,j

∥∥∥(wj)
(τk,j)
s

∥∥∥(τk,j) , s ≧ σ.(24)

Therefore, we can estimate the second term on the right hand of (21) as follows:∣∣∣∣∫ t

σ

Xk(t, s)hj(s)ds

∣∣∣∣ ≦ CkBk,j

∫ t

σ

e−γk(t−s)
∥∥∥(wj)

(τk,j)
s

∥∥∥(τk,j) ds.(25)

We show that the integral on the right-hand side converges to 0 by the Lebesgue
dominated convergence theorem in the same manner as Fiedler-Mochizuki theory,
namely ∫ t

σ

e−γk(t−s)
∥∥∥(wj)

(τk,j)
s

∥∥∥(τk,j) ds = ∫ t−σ

0

e−γku‖(wj)
(τk,j)
t−u ‖(τk,j)du(26)

=

∫
R≧0

e−γku1l[0,t−σ](u)‖(wj)
(τk,j)
t−u ‖(τk,j)du

Note that ‖(wj)
(τk,j)
t ‖(τk,j) converges to 0 for t → 0 since j ∈ Ik ⊂ I ∪ {1, . . . , k − 1}

and we supposed (17) and (19). Therefore, for all ϵ > 0, there exists a δ > 0 such that
‖(wj)

(τk,j)
s ‖(τk,j) < ϵ holds for s > δ. Owing to the continuity of s 7→ ‖(wj)

(τk,j)
s ‖(τk,j),

‖(wj)
(τk,j)
s ‖(τk,j) is bounded on [0, δ]. Thus, ‖(wj)

(τk,j)
s ‖(τk,j) is bounded on [0,∞). Let

M be an upper bound of ‖(wj)
(τk,j)
s ‖(τk,j), then, for all t ≧ 0 and u ≧ 0, we have

e−γku1l[0,t−σ](u)‖(wj)
(τk,j)
t−u ‖(τk,j) ≦Me−γku.

Observe that e−γku is integrable and e−γku1l[0,t−σ](u)‖(wj)
(τk,j)
t−u ‖(τk,j) → 0 as t→ 0, and

hence, the integral (26) converges to 0. □
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9. Other results in Fiedler, Mochizuki et al [3]
In [3], another theorem about a global attractor of a regulatory network was proved.

We briefly review the theorem and give some remark for extending this theorem to
time-delay systems.

For any subset J ⊂ {1, . . . , N} and z = (z1, . . . .zN) ∈ RN , let zJ := (zk)k∈J ∈ R|J |.
For z0 ∈ RN , z(t; z0) denotes the solution of an autonomous regulatory network (1)
with an initial condition z(0) = z0. For any subset D ⊂ RN , z(t;D) denotes the set
of solutions z(t; z0) for z0 ∈ D, namely, z(t;D) := {z(t, z0)|z0 ∈ D}. For any subset
A,B ⊂ RN , dist(A,B) denote the Hausdorff semidistance between A and B, which is
defined as

dist(A,B) = sup
a∈A

inf
b∈B

|a− b|.

Definition 39 (Global attractor). A compact set A ⊂ RN is the global attractor for
an autonomous regulatory network (1) if z(t;A) = A for all t, and for each bounded
subset B ⊂ RN , dist(z(t;B),A) → 0 as t→ ∞.

Theorem 40 ([3] Theorem 1.6). Consider an autonomous regulatory network. Let
Γ = ({1, . . . , N}, E) be a given digraph, I be a FVS of Γ and A be the global attractor.
Then the continuous projection

PI : A → BC2(R,R|I|)

z0 7→ zI(·; z0)

is injective.

Remark 41. For the (unique) existence of a global attractor, the assumption (A’)
below is sufficient [2]:

(A’): There exists a nonempty compact subset K ⊂ RN such that for all
bounded subsetD ∈ RN , there exists a positive time t1(D) such that z(t;D) ⊂
K for all t ≧ t1(D).

This assumption (A’) seems different from the assumption (A) for RN:
(A): There exists a positive constant R such that for any z0 ∈ RN , there exists

a positive time T (z0) such that |z(t; z0)| ≦ R, for all t ≧ T (z0).
In case of RN in [3], (A’) implies (A), and actually the converse is also true since the
phase space is RN and the system we consider is autonomous [9]. Thus, the existence
of the global attractor in Theorem 40 is guaranteed.

Remark 42. If there exists a global attractor A, it can be characterized as the col-
lection of globally defined and bounded solutions [2], namely,

A = {z0 ∈ RN |there is a bounded global solution z(t; z0)}.

We use this characterization when we prove the Theorem 40.

In extending Theorem 40 to time-delay systems (4), we have to note that the phase
space of time-delay system is in general an infinite dimensional space C([−τ, 0],R)N '
C([−τ, 0],RN). For ϕ ∈ C([−τ, 0],RN), z(t;ϕ) denotes the solution of an autonomous
DRN (4) with an initial condition z0 = ϕ. For any subset D ⊂ C([−τ, 0],RN), z(·;D)t
denotes the set of z(·;ϕ)t for ϕ ∈ D, namely, z(·;D)t := {z(·;ϕ)t|ϕ ∈ D}. For any
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subset A,B ⊂ C([−τ, 0],RN), dist(A,B) denote the Hausdorff semidistance between
A and B, which is defined as

dist(A,B) = sup
a∈A

inf
b∈B

‖a− b‖.

Definition 43 (Global attractor in time-delay systems). A compact set A ⊂ C([−τ, 0],RN)
is the global attractor for an autonomous delayed regulatory network (4) if z(·;A)t = A
for all t, and for each bounded subset B ⊂ C([−τ, 0],RN), dist(z(·;B)t,A) → 0 as
t→ ∞.

Most importantly, any closed ball is non-compact in an infinite dimensional space
C([−τ, 0],RN). Thus, the assumption (A) for an autonomous DRN does not seem to
be appropriate for the existence of a global attractor. Therefore, we use the assumption
(A’) for an autonomous DRN.

(A’): There exists a nonempty compact subset K ⊂ C([−τ, 0],RN) such that
for all bounded subset D ∈ C([−τ, 0],RN), there exists a positive time t1(D)
such that z(·;D)t ⊂ K for all t ≧ t1(D).

There are other hypotheses to obtain the existence of a global attractor in an infinite
dimensional phase space [2], [5], [7]. For now, we do not carefully examine what
assumption we should use. If there exists a global attractor A for an autonomous
DRN, we have

A = {ϕ ∈ C([−τ, 0],RN)|there is a bounded global solution z(t;ϕ)}.

When we assume (A’), there exists R′ > 0 such that A ⊂ K ⊂ CR′ , and R > 0 in
(DDC) should be replaced for R′. Then, we may be able to prove that the projection
PI is injective without the assumption (B).

Theorem 44. Consider an autonomous delayed regulatory network. We do not as-
sume (B). Let Γ = ({1, . . . , N}, E) be a given digraph, I be a FVS of Γ and A be the
global attractor. Then the continuous projection

PI : A → BC2(R,R|I|)

z0 7→ zI(·; z0)
is injective.

The proof is the same as that of Theorem 20.
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