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Abstract. The summational invariant and the corresponding local Maxwellian
that are compatible with the Enskog equation are discussed, with special in-

terest in the presence of a boundary. The local Maxwellian corresponding to

the summational invariant is restrictive compared to the case of the Boltzmann
equation in the sense that a radial flow and time-dependent temperature are

forbidden. However, a rigid body rotation with a constant angular velocity

is admitted as in the case of the Boltzmann equation. The influence of the
presence of a boundary is also discussed in simple situations.

1. Introduction. It is widely accepted that the Boltzmann equation describes the4

ideal gas behavior well for the entire range of the Knudsen numbers, the ratio of5

the mean free path of gas molecules to a characteristic length of the system. The6

Boltzmann equation is the most fundamental equation in the kinetic theory, which7

today has a wide range of applications, such as chemically reacting gases, dense8

gases, granular gases, traffic flows, electric transports in semiconductors, collective9

motions of chemotactic bacteria. The extension of the Boltzmann equation to a10

dense gas is one of the most classical ones, dating back to the work by Enskog [8].11

He proposed a kinetic equation, now called the (original) Enskog equation, that12

takes into account the different center positions and correlations of molecules in13

the collision integral for a hard-sphere gas. Despite its satisfactory results on the14

transport properties of a dense gas [5, 15] followed by successful applications to15

fundamental flows (e.g., [10, 11, 25, 14]), the original Enskog equation encountered16

the difficulty of proving the H theorem, which had been the cornerstone of the kinetic17

theory since Boltzmann. This difficulty stimulated further research [20, 24, 7] on18

the Enskog equation and gave rise to its variants. To date, the H theorem has19

been proved in two cases: (i) correlation of molecules is neglected, i.e., the so-20

called Boltzmann–Enskog equation [1, 7, 13]; and (ii) correlation of molecules is21

more complicated than in the original Enskog equation, i.e., the so-called modified22

Enskog equation [24, 20].23

For a long time, theoretical studies on the Enskog equation were mostly con-24

cerned with a gas in a periodic domain or with an infinite expanse of gas. However,25

as pointed out in [18], the finite-size effect of molecules in the collision integral26
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makes the dynamics of a system with physical boundary more involved than that1

of a system without boundary, requiring additional considerations even in simple2

situations (see also a numerical example in [9]). In the present paper, motivated by3

[18, 9], we revisit the summational invariant and the corresponding local Maxwellian4

(or Maxwell distribution) that are compatible with the Enskog equation in a system5

with and without physical boundary. In a system with boundary, even the summa-6

tional invariant needs a special care near the boundary, since a part of the contact7

directions of two colliding molecules is forbidden. Nevertheless, we are not aware of8

treating this problem in the literature, except for a well-prepared analysis between9

parallel plates for the Boltzmann–Enskog equation by Brey et al. [3].10

After a brief preparation in Sec. 2, we discuss the summational invariant in Sec. 311

by adapting Boltzmann’s original arguments [2] to the case with a restriction on the12

direction of contact. Then, in Sec. 4, we consider the local Maxwellian along the13

lines of Grad’s argument for the Boltzmann equation [12, 21]. We will show by an14

elementary argument that the local Maxwellian representing a rigid body rotation15

is admissible for the Enskog equation, although it was excluded in the seminal paper16

of Resibois [20]. The rigid body rotation mode of the Maxwellian is numerically17

demonstrated in Sec. 5. The paper is concluded in Sec. 6.18

2. The Enskog equation. Let D be a fixed spatial domain that the centers of19

gas molecules can occupy, where D may be unbounded or bounded by a physical20

boundary. Let t,X and Y , and ξ be time, spatial positions, and molecular velocity,21

respectively. Then, denoting the one-particle distribution function of gas molecules22

by f(t,X, ξ) and the correlation function by g(t,X,Y ), the Enskog equation is23

written as24

∂f

∂t
+ ξi

∂f

∂Xi
= J(f) ≡ JG(f)− JL(f), for X ∈ D, (1a)

JG(f) ≡ σ2

m

∫
g(X+

σα,X)f ′
∗(X

+
σα)f

′(X)Vαθ(Vα)dΩ(α)dξ∗, (1b)

JL(f) ≡ σ2

m

∫
g(X−

σα,X)f∗(X
−
σα)f(X)Vαθ(Vα)dΩ(α)dξ∗, (1c)

where σ and m are the diameter and the mass of a molecule, X±
x = X ± x, α is a25

unit vector,26

θ(x) =

{
1, x ≥ 0

0, x < 0
, (2)

dΩ(α) is a solid angle element in the direction of α, and the following notation27

convention is used:28 {
f(X) = f(X, ξ), f ′(X) = f(X, ξ′),

f∗(X
−
σα) = f(X−

σα, ξ∗), f ′
∗(X

+
σα) = f(X+

σα, ξ
′
∗),

(3)

ξ′ = ξ + Vαα, ξ′∗ = ξ∗ − Vαα, Vα = V ·α, V = ξ∗ − ξ. (4)

The range of integrations in (1b) and (1c) is over the entire range of ξ∗ and all29

directions of α. Here and in what follows, the argument t is suppressed, unless30

confusion is anticipated. Our correlation function g is adjusted to the domain D in31

such a way that the usual correlation function g2(t,X,Y ) is modified as32

g(t,X,Y ) = g2(t,X,Y )χD(X)χD(Y ), (5a)
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χD(X) =

{
1, X ∈ D

0, otherwise
, (5b)

where χD plays the same role as the Heaviside function θ, when D is bounded.1

Among the variants of the Enskog equation, the H theorem is proved for the2

Boltzmann–Enskog equation and for the modified Enskog equation, but not for the3

original Enskog equation. Their difference is in the form of g2. The Boltzmann–4

Enskog equation is the simplest and g2 = 1. The original Enskog equation is more5

complicated, but g2 is to some extent given freely as a function of a gas density, see,6

e.g., [8, 15, 9]. The modified Enskog equation [24, 7] is the most involved and the7

expression of g2 is not straightforward, see, e.g., [20, 18, 22]. Fortunately, however,8

these differences are not relevant in the present paper. Here, we just state that9

g2 has a symmetric property g2(t,X,Y ) = g2(t,Y ,X) and a functional of a gas10

density11

ρ =

∫
fdξ. (6)

Thus, (1) is a closed equation for f and will be referred to simply as the Enskog12

equation, unless the above distinction is necessary. By (5), g has the same symmetric13

property as g2:14

g(t,X,Y ) = g(t,Y ,X). (7)

The summational invariant in the context of the Enskog equation arises in the15

course of analysis of the H theorem [20, 13, 18] (see Sec. 4 of [22] for details) and16

is defined by the following relation that holds in a stationary state:17

ln f ′
∗(X

−
σα) + ln f ′(X) = ln f∗(X

−
σα) + ln f(X), (8)

for the entire range of ξ and ξ∗ and for X,X−
σα ∈ D. The quantity ln f above18

is what we call the summational invariant. The difference from the case of the19

Boltzmann equation is that a finite-size effect of molecules appears in (8).20

3. Summational invariant. Because of the restriction X−
σα ∈ D, (8) does not21

have to hold for a part of directions of α, if X is near the boundary ∂D. We22

will seek a general form of ln f that satisfies (8) for the entire space of (ξ, ξ∗)23

with α being fixed. This is a main difference from the standard proofs for the24

Boltzmann equation, e.g., [17, 12]. Once α is fixed, the sub-domain of D that X25

can occupy is fixed. Then, we follow, to some extent, Boltzmann’s original idea for26

his own equation [2] that makes use of the Lagrange multiplier method and treats27

all velocities ξ, ξ∗, ξ
′, and ξ′∗ as independent variables.28

Consider the variation of (8) with respect to X, ξ, ξ∗, ξ
′, ξ′∗, as if they were29

all independent. Actually, however, among 3 + 3× 4 = 15 variables, there are only30

3+3×2 = 9 independent variables. In other words, there are six constraints arising31

from the momentum, the energy, and the angular momentum conservation:132

ξ + ξ∗ = ξ′ + ξ′∗, (9a)

ξ2 + ξ2∗ = ξ′
2
+ ξ′∗

2
, (9b)

X × ξ +X−
σα × ξ∗ = X × ξ′ +X−

σα × ξ′∗. (9c)

1There are actually only two independent equations in (9c). In accordance with this redun-
dancy, three undetermined constants denoted by γ appear soon later.
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Taking the variations of (8) and (9) and using the Lagrange multiplier method, the1

following identities are obtained:2

∂ ln f(X)

∂ξ
− λ− γ ×X − 2µξ = 0, (10a)

∂ ln f∗(X
−
σα)

∂ξ∗
− λ− γ ×X−

σα − 2µξ∗ = 0, (10b)

∂ ln f ′(X)

∂ξ′
− λ− γ ×X − 2µξ′ = 0, (10c)

∂ ln f ′
∗(X

−
σα)

∂ξ′∗
− λ− γ ×X−

σα − 2µξ′∗ = 0, (10d)

and3

∂

∂X
{ln f(X) + ln f∗(X

−
σα)− ln f ′(X)− ln f ′

∗(X
−
σα)}

+ γ × (ξ + ξ∗ − ξ′ − ξ′∗) = 0, (11)

where λ, γ, and µ are undetermined multipliers. Integrating (10) with respect to4

the molecular velocity yields5

ln f(X) = (λ−X × γ) · ξ + µξ2 + β(X), (12)

where β(X) is a constant of integration, and substituting (12) into (11) shows that6

β(X) is arbitrary. Since the dependence on time t has been suppressed in the7

above discussion, λ, γ, µ, and β(X) may depend on t in general. This is consistent8

with the form given in [18] and is more restrictive than the case of the Boltzmann9

equation. The restriction originates from the difference of centers of two colliding10

molecules. See also Appendix A.11

Remark 3.1. We have implicitly assumed that ln f is differentiable and there is12

a subdomain of D where any direction of α can be taken. In the former sense,13

our approach is similar, though not identical, to that in [3]. For the Boltzmann14

equation, a general form of the summational invariant is obtained under a weaker15

assumption, see, e.g., [23, 4, 19]. To our knowledge, the applicability of the methods16

in these references has not yet been examined.17

4. Local Maxwellian. Because of the form (12), the summational invariant re-18

quires that the corresponding velocity distribution function fe is the local Maxwellian19

in the form20

fe =
ρ(t,X)

(2πRT (t))3/2
exp(− (ξ − v(t,X))2

2RT (t)
), (13a)

where21

v(t,X) = u(t) +X × ω(t), (13b)

and the following correspondence among quantities occurring in (12) and (13) should22

be reminded:23

β = ln
ρ

(2πRT )3/2
− v2

2RT
, µ = − 1

2RT
, λ =

u

RT
, γ = − ω

RT
. (14)

Note that u, ω, and T are also independent of X because λ, γ, and µ are inde-24

pendent of X.25

Let us now substitute (13a) into the Enskog equation (1)26

∂fe
∂t

+ ξi
∂fe
∂Xi

= J(fe), (15)



SUMMATIONAL INVARIANT AND LOCAL MAXWELLIAN 5

and examine (15) along the lines of Grad’s discussions [12, 21] on the Boltzmann1

equation. The main difference from the Boltzmann equation is that J(fe) does not2

vanish in general. Indeed, it is reduced only to3

J(fe) = −σ2

m
fe(X)(ξ − v(X)) ·

∫
αg(X+

σα,X)ρ(X+
σα)dΩ(α), (16)

which is shown as follows. First note that4

f ′
e∗(X

+
σα)f

′
e(X) = fe∗(X

+
σα)fe(X), (17)

since5

(ξ′∗ − v(X+
σα))

2 + (ξ′ − v(X))2

=(ξ′∗ − v(X)−∆v)2 + (ξ′ − v(X))2

=(ξ′∗ − v(X))2 − 2(ξ′∗ − v(X)) ·∆v + (∆v)2 + (ξ′ − v(X))2

=(ξ∗ − v(X))2 − 2(ξ∗ − v(X)) ·∆v + (∆v)2 + (ξ − v(X))2

=(ξ∗ − v(X+
σα))

2 + (ξ − v(X))2. (18)

Here the identities in (18) come from the facts that (i) ∆v ≡ v(X+
σα) − v(X) =6

σα× ω, (ii) α ·∆v = 0 and (ξ′∗ − ξ∗) = −(ξ′ − ξ) ∥ α [see (4)], and (iii) (9a) and7

(9b). Second, JL(fe) is transformed by reversing the direction of α as8

JL(fe) = −σ2

m

∫
g(X+

σα,X)fe∗(X
+
σα)fe(X)Vαθ(−Vα)dΩ(α)dξ∗. (19)

Consequently, J(fe) = JG(fe)− JL(fe) is simplified into9

J(fe) =
σ2

m

∫
g(X+

σα,X)fe∗(X
+
σα)fe(X)VαdΩ(α)dξ∗. (20)

Starting with this form, J(fe) is further transformed as10

σ2

m

∫
g(X+

σα,X)fe∗(X
+
σα)fe(X)VαdΩ(α)dξ∗

(
= J(fe)

)
=
σ2

m
fe(X)

∫
g(X+

σα,X)fe∗(X
+
σα)[c∗(X

+
σα)− c(X+

σα)] ·αdc∗(X
+
σα)dΩ(α)

=− σ2

m
fe(X)

∫
g(X+

σα,X)fe∗(X
+
σα)c(X

+
σα) ·αdc∗(X

+
σα)dΩ(α)

=− σ2

m
fe(X)

∫
g(X+

σα,X)ρ(X+
σα)c(X

+
σα) ·αdΩ(α)

=− σ2

m
fe(X)

∫
g(X+

σα,X)ρ(X+
σα)c(X) ·αdΩ(α)

=− σ2

m
fe(X)(ξ − v(X)) ·

∫
αg(X+

σα,X)ρ(X+
σα)dΩ(α), (21)

where c∗(X) = ξ∗ − v(X), c(X) = ξ − v(X), Vα = (ξ∗ − ξ) · α, and again11

v(X+
σα) ·α = v(X) ·α (or ∆v ·α = 0) has been used. Hence, (16) is obtained. In12

the meantime, the left-hand side of (15) is transformed as13

∂fe
∂t

+ ξi
∂fe
∂Xi

=
(∂ ln ρ

∂t
+

(ξ − v)

RT
· ∂v
∂t

+ (
(ξ − v)2

2RT
− 3

2
)
d lnT

dt

+ vi
∂ ln ρ

∂Xi
+ vi

(ξ − v)

RT
· ∂v

∂Xi
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+ (ξi − vi)
∂ ln ρ

∂Xi
+ (ξi − vi)

(ξ − v)

RT
· ∂v

∂Xi

)
fe. (22)

Comparing (16) and (22), the following identities are obtained:1

∂ ln ρ

∂t
− 3

2

d lnT

dt
+ vi

∂ ln ρ

∂Xi
= 0, (23)

2

1

RT

∂vi
∂t

+
vj
RT

∂vi
∂Xj

+
∂ ln ρ

∂Xi
= −σ2

m

∫
αiρ(X

+
σα)g(X,X+

σα)dΩ(α), (24)

3

d lnT

dt
δij +

∂vj
∂Xi

+
∂vi
∂Xj

= 0. (25)

Here, the time derivative of T is the ordinary derivative because T is independent4

of X, as noted immediately after (14). From (25),5

3

2

d lnT

dt
+

∂vi
∂Xi

= 0, (26)

holds, and (23) combined with (26) is just the continuity equation.6

In the process from (22) to (26), the specific form of v, i.e., (13b), is not fully7

taken into account. By using (13b), further simplification is possible. Indeed,8

∂vi
∂Xj

= ϵijkωk, (27)

and thus9

∂vi
∂Xj

+
∂vj
∂Xi

= 0,
∂vi
∂Xi

= 0. (28)

Consequently, by (26),10

T = const., (29)

and (23) and (24) are reduced to11

∂ ln ρ

∂t
+ (ui + ϵijkXjωk)

∂ ln ρ

∂Xi
=0, (30)

dui

dt
+ ϵijkXj

dωk

dt
+ (uj + ϵjklXkωl)ϵjmiωm +RT

∂ ln ρ

∂Xi

=−RT
σ2

m

∫
αiρ(X

+
σα)g(X,X+

σα)dΩ(α). (31)

Since ϵjklϵjmi = δkmδli − δkiδlm, the third term of (31) is further simplified as12

(uj + ϵjklXkωl)ϵjmiωm =ϵijkujωk + ϵjklϵjmiXkωlωm

=ϵijkujωk + (δkmδli − δkiδlm)Xkωlωm

=ϵijkujωk + (Xkωi −Xiωk)ωk, (32)

and (31) is finally reduced to13

dui

dt
+ ϵijkujωk + ϵijkXj

dωk

dt
+ωk(Xkωi −Xiωk) +RT

∂ ln ρ

∂Xi

=−RT
σ2

m

∫
αiρ(X

+
σα)g(X,X+

σα)dΩ(α). (33)

The solutions ρ(t,X), u(t), and ω(t) for (30) and (33), together with the constant14

uniform temperature, determine the local Maxwellian that is admissible as a solution15

of the Enskog equation.16
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Remark 4.1. The Boltzmann equation admits a local Maxwellian with radial flow1

and uniform temperature, both of which may depend on t [12, 21]. In this sense, the2

present result is more restrictive than the case of the Boltzmann equation. See also3

Appendix A. Although the constant temperature was already pointed out in the4

seminal work of Resibois [20], a rigid body rotation was not brought to attention5

there. Rigid body rotation was mentioned by Maynar et al. [18], but no details6

were given.7

Some details of the properties of g2 to be used in Secs. 4.1 and 4.2 are given in8

Appendix B. Due to the possibility of chained influence of many molecules, available9

properties in the case of the modified Enskog equation are limited, compared to the10

Boltzmann–Enskog equation (g2 ≡ 1) and the original Enskog equation (g2 is a11

function, not a functional, of density), especially for the domain with boundary.12

Since the limited properties remain valid for these equations, the results in Secs. 4.113

and 4.2 are also valid for the Boltzmann–Enskog and original Enskog equations.14

4.1. Domain without boundary. Let us first consider simple situations where15

there is no physical boundary. Because there is no boundary, α can take any16

direction, no matter where X is. Moreover, g can be replaced with g2, because17

χD(X) = χD(X+
σα) ≡ 1.18

1. Suppose that ρ is independent of X. Then, ρ is also independent of t by (30)19

and thus ρ is constant. In the meantime, w and Y in Appendix B can be20

consistently assumed to be independent of X. We will consider the solution21

under this assumption. Then, g2(X,X+
σα) does not depend on α, and thus22

the integration in (33) vanishes. Consequently, it follows that23

dui

dt
+ ϵijkujωk = 0, (34)

ϵijkXj
dωk

dt
+ ωk(Xkωi −Xiωk) = 0. (35)

The inner product of (35) and X shows that X ∥ ω. Since ω is independent24

of X, ω should be zero, and accordingly u is a constant vector by (34). This25

is a time-independent uniform state with a constant flow velocity.26

2. Axisymmetric solution: Introduce the cylindrical coordinates (P, ϕ, z) for X27

and corresponding unit basis vectors (eP , eϕ, ez). Let αP , αϕ, and αz be28

the components of α in the directions of eP , eϕ, and ez, respectively: α =29

αPeP + αϕeϕ + αzez. Now assume that the state is independent of ϕ. In30

this case, ∂/∂ϕ = 0 and an admissible flow velocity is restricted to the form31

u = uez, ω = ωez, i.e., v = uez − Pωeϕ. Then, the equations (30) and (33)32

are reduced to33

∂ ln ρ

∂t
+ u

∂ ln ρ

∂z
= 0, (36a)

du

dt
+RT

∂ ln ρ

∂z
= −RT

σ2

m

∫
αzρ(X

+
σα)g2(X,X+

σα)dΩ(α), (36b)

− P
dω

dt
= −RT

σ2

m

∫
αϕρ(X

+
σα)g2(X,X+

σα)dΩ(α), (36c)

− Pω2 +RT
∂ ln ρ

∂P
= −RT

σ2

m

∫
αP ρ(X

+
σα)g2(X,X+

σα)dΩ(α). (36d)

Before proceeding, it should be noted that the distance P ′ of the position34

X+
σα from the central axis can be expressed as P ′ = (P 2 + σ2 sin2 θα +35



8 SHIGERU TAKATA AND AOTO TAKAHASHI

2Pσ sin θα cosφα)
1/2, where (θα, φα) is a pair of the polar and azimuthal an-1

gles of α with ez being the polar direction, i.e., αP = sin θα cosφα, αϕ =2

sin θα sinφα, and αz = cos θα. Moreover, because of (71) in Appendix B,3

g2(X,X+
σα) = g2(X,X+

σβ) holds for β ≡ α− 2αϕeϕ. Hence, g2 is even in φα4

(or αϕ). Since ρ(X+
σα) is a function of P ′ and z + σαz, it is also even in φα.5

Therefore, the integrand of (36c) is odd with respect to φα, and the right-6

hand side of (36c) vanishes by the integration with respect to φα, yielding7

that ω = const.8

a. Suppose that ρ is independent of P . Then, w and Y in Appendix B can9

be consistently assumed to have the same property. We will consider the10

solution under this assumption. Then, g2(X1,X2) is a function of z1, z2,11

and |X1 − X2| only, where z1 and z2 are the z-coordinates of X1 and12

X2, respectively; see (69a) in Appendix B. Recall that the z-coordinate13

of X+
σα is given by z + σαz = z + σ cos θα. The integrand of (36d) is14

thus simply proportional to cosφα through αP , since both ρ(X+
σα) and15

g(X,X+
σα) are independent of φα. Consequently, the integral in (36d)16

vanishes by the integration with respect to φα. Hence, ω = 0, and ρ and17

u are determined by (36a) and (36b):18

∂ ln ρ

∂t
+ u

∂ ln ρ

∂z
= 0, (37)

du

dt
+RT

∂ ln ρ

∂z
= −RT

σ2

m

∫
αzρ(X

+
σα)g2(X,X+

σα)dΩ(α). (38)

This is a uniform flow along the axial direction.19

b. Suppose that ρ is independent of z, and thus the system is invariant20

under a translation in the z-direction. Then, ρ is independent of t as21

well by (36a). Moreover, g(X,X+
σα) is even with respect to αz by (72)22

in Appendix B. Since P ′ = (P 2 + σ2 sin2 θα + 2Pσ sin θα cosφα)
1/2, the23

integrand in (36b) is odd in αz = cos θα and the right-hand side of (36b)24

vanishes by the integration with respect to θα. Therefore, u is constant25

and ρ is a function of P determined by (36d):26

−P
ω2

RT
+

d ln ρ

dP
= −σ2

m

∫
αP ρ(P

′)g2(X,X+
σα)dΩ(α). (39)

This is a superposition of a time-independent rigid body rotation and a27

constant uniform flow along the axis.28

c. Suppose u is zero. Then, ρ is independent of t and is determined as a29

function of P and z by (36b) and (36d):30

∂ ln ρ

∂z
= −σ2

m

∫
αzρ(X

+
σα)g2(X,X+

σα)dΩ(α), (40)

− P
ω2

RT
+

∂ ln ρ

∂P
= −σ2

m

∫
αP ρ(X

+
σα)g2(X,X+

σα)dΩ(α). (41)

This is a time-independent rigid body rotation.31

d. Suppose that ρ is independent of t. Then u = 0, or otherwise ρ is inde-32

pendent of z. The case u = 0 is the same as Case 2c, while the case u ̸= 033

is the same as Case 2b.34

4.2. Domain with boundary. Next consider simple situations in a domain with35

boundary. A few remarks should be made before proceeding. First, we impose on36
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the boundary ∂D only the impermeable condition, i.e., v · n = 0, where n is the1

inward unit vector normal to the boundary. Second, the range of integration with2

respect to α may be limited at positions near the boundary, although there is no3

such a limitation away from the boundary. No limitation in the latter implies the4

assumption that there is a subdomain of D such that X+
σα ∈ D for any direction of5

α.6

1. Axisymmetric solution in a circular cylinder:2 Since ∂/∂ϕ = 0, an admissible7

flow velocity is restricted to the form u = uez, ω = ωez, i.e., v = uez−Pωeϕ,8

as is already noted in Sec. 4.1. This property is not affected by the presence9

of boundary. Again, the equations (30) and (33) are reduced to10

∂ ln ρ

∂t
+ u

∂ ln ρ

∂z
= 0, (42a)

du

dt
+RT

∂ ln ρ

∂z
= −RT

σ2

m

∫
αzρ(X

+
σα)g(X,X+

σα)dΩ(α), (42b)

− P
dω

dt
= −RT

σ2

m

∫
αϕρ(X

+
σα)g(X,X+

σα)dΩ(α), (42c)

− Pω2 +RT
∂ ln ρ

∂P
= −RT

σ2

m

∫
αP ρ(X

+
σα)g(X,X+

σα)dΩ(α), (42d)

where the same notation of coordinates as that in Case 2 of Sec. 4.1 has11

been used. Recall that g(X,X+
σα) = 0 for X+

σα /∈ D. Since the cross-section12

perpendicular to the axis is circular, the integration range for φα is symmetric13

with respect to φα = 0. Then, because of the similar reason to the case (36c)14

in Sec. 4.1, the integral in (42c) vanishes and ω = const.15

a. The density ρ cannot be uniform in P . Suppose that ρ is independent of16

P . Then, (42d) is reduced to17

−Pω2 = −RT
σ2

m

∫
αP ρ(X

+
σα)g(X,X+

σα)dΩ(α), (43)

and the left-hand side is not positive. However, since αP < 0 and ρg > 018

on the boundary ∂D, the right-hand side is positive, which is inconsistent19

with the left-hand side.20

b. Suppose that ρ is independent of z, and thus the system is invariant under21

a translation in the z-direction. Then, ρ is independent of t as well by22

(42a). Consequently, the right-hand side of (42b) is time-independent23

and du/dt has to be constant. Meanwhile, because of the similar reason24

to that in Case 2b of Sec. 4.1, the right-hand side of (42b) vanishes and25

u is constant. Therefore, ρ is determined as a function of P by (42d):26

−P
ω2

RT
+

d ln ρ

dP
= −σ2

m

∫
αP ρ(P

′)g(X,X+
σα)dΩ(α). (44)

This is a time-independent rigid body rotation superposed with a constant27

uniform flow along the axis.28

c. Suppose that u is zero. Then, ρ is independent of t by (42a) and is29

determined as a function of P and z by (42b) and (42d):30

∂ ln ρ

∂z
= −σ2

m

∫
αzρ(X

+
σα)g(X,X+

σα)dΩ(α), (45)

2Note the difference between the boundary ∂D and the surface of the cylinder. The surface is

placed outside the boundary ∂D by a distance of σ/2 from the central axis.
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− P
ω2

RT
+

∂ ln ρ

∂P
= −σ2

m

∫
αP ρ(X

+
σα)g(X,X+

σα)dΩ(α). (46)

This is a time-independent rigid body rotation.1

2. Axisymmetric solution in a sphere:3 It is convenient to introduce the spherical2

coordinates (r, θ, φ) for X and corresponding unit basis vectors (er, eθ, eφ).3

Let αr, αθ, and αφ be the components of α in the directions of er, eθ, and4

eφ, respectively: α = αrer + αθeθ + αφeφ. Now assume that the state is5

independent of φ. In this case, ∂/∂φ = 0 and the flow velocity is compatible6

with the axisymmetric condition in the form u = uez and ω = ωez. Note that7

X = rer and ez = er cos θ − eθ sin θ. v = u cos θer − u sin θeθ − rω sin θeφ.8

Then, (30) and (33) are reduced to9

∂ ln ρ

∂t
+u cos θ

∂ ln ρ

∂r
− u sin θ

r

∂ ln ρ

∂θ
= 0, (47)

du

dt
cos θ − rω2 sin2 θ +RT

∂ ln ρ

∂r

=−RT
σ2

m

∫
αrρ(X

+
σα)g(X,X+

σα)dΩ(α), (48)

−du

dt
sin θ − rω2 cos θ sin θ +

RT

r

∂ ln ρ

∂θ

=−RT
σ2

m

∫
αθρ(X

+
σα)g(X,X+

σα)dΩ(α), (49)

−r
dω

dt
sin θ = −RT

σ2

m

∫
αφρ(X

+
σα)g(X,X+

σα)dΩ(α). (50)

Before proceeding, let (r′, θ′, φ′) be the spherical coordinates of X+
σα and10

let (θα, φα) be the polar and azimuthal angles of α with er being the polar11

direction:12

X+
σα ≡ X + σα = (r + σαr)er + σαθeθ + σαφeφ, (51)

αr = cos θα, αθ = sin θα cosφα, αφ = sin θα sinφα, (52)

er · ez = cos θ, eθ · ez = − sin θ, eφ · ez = 0, (53)

er · ex = sin θ cosφ, eθ · ex = cos θ cosφ, eφ · ex = − sinφ, (54)

r′ =
√
|X + σα|2 =

√
r2 + σ2 + 2rσ cos θα, (55)

r′ cos θ′ = X+
σα · ez = (r + σ cos θα) cos θ − σ sin θα cosφα sin θ. (56)

Obviously θ′ depends on φα as a function of cosφα, while r′ is independent13

of φα. Because the system is axisymmetric, (71) in Appendix B applies, and14

g(X,X+
σα) = g(X,X+

σβ) holds for β = α− 2αφeφ. Therefore g(X,X+
σα) is15

even in φα. Since the integration is over the whole range of φα, the integral16

in (50) becomes zero, yielding that ω is constant. Furthermore, u ≡ 0, since17

the boundary is impermeable. Hence, ρ is independent of t by (47), and (48)18

and (49) are reduced to19

− rω2

RT
sin2 θ +

∂ ln ρ

∂r
= −σ2

m

∫
αrρ(X

+
σα)g(X,X+

σα)dΩ(α), (57)

3Note the difference between the boundary ∂D and the surface of the sphere. The surface is
placed outside the boundary ∂D by a distance of σ/2 from the center.
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− rω2

RT
cos θ sin θ +

1

r

∂ ln ρ

∂θ
= −σ2

m

∫
αθρ(X

+
σα)g(X,X+

σα)dΩ(α). (58)

a. The density ρ cannot be independent of r. Suppose that ρ is independent1

of r. Then, (57) is reduced to2

−rω2

RT
sin2 θ = −σ2

m

∫
αrρ(X

+
σα)g(X,X+

σα)dΩ(α), (59)

and thus, the left-hand side is not positive. Meanwhile, since ρg > 0 and3

αr < 0 on the boundary, the right-hand side is positive and is inconsistent4

with the left-hand side.5

b. Suppose that ρ is independent of θ. Then, w and Y in Appendix B can be6

consistently assumed to be spherically symmetric. We will consider the7

solution under this assumption. Then, g2(X1,X2) is a function of r1, r2,8

and X1 ·X2 only, where r1 and r2 are the radial coordinates of X1 and9

X2, respectively, see (69a) in Appendix B. Since X ·X+
σα = (r+σαr)r, g210

and g are independent of φα. Consequently, the integral in (58) vanishes11

by the integration with respect to φα. Hence ω = 0, and ρ is determined12

as a function of r by13

d ln ρ

dr
= −σ2

m

∫
αrρ(X

+
σα)g(X,X+

σα)dΩ(α). (60)

This is a spherically symmetric time-independent resting state.14

5. Numerical examples. We present numerical examples for the Boltzmann–15

Enskog equation, i.e., g2 = 1. Case 2b in Sec. 4.1 and Case 1b in Sec. 4.2 are16

chosen as the simplest examples. It should be reminded that we simply impose17

the condition v · n = 0 on the boundary, see the first paragraph of Sec. 4.2. Fig-18

ure 1 shows the axisymmetric solution with and without rotation. In Fig. 1a, since19

there is no rotation, the Boltzmann–Enskog equation gives the uniform density in20

the case without boundary as does the Boltzmann equation. However, the density21

profile is no longer uniform in the case with boundary. Figure 1b shows the den-22

sity profile in the case of a rigid body rotation. In the case without boundary, the23

Boltzmann–Enskog equation gives a monotonically increasing density with the dis-24

tance from the axis of rotation, as does the Boltzmann equation. Further numerical25

experiments by varying the computational domain show an unlimited increase in26

density, although the rate of increase is smaller than the case of the Boltzmann27

equation. Indeed, the behavior of density at a far distance can be estimated by28

retaining the first two terms of the Taylor expansion of ρ(P ′) around P in (39):29

ρ(P ′) ≃ ρ(P ) + (1/2)σ sin θα(2 cosφα + ε sin θα sin2 φα)(dρ/dP ), where ε = σ/P30

and its higher order terms have been neglected. Using this approximation leads to31

the following expression4:32

ρ(P ) ≃ C exp(−W0(
4π

3

σ3

m
C exp(

ω2P 2

2RT
)) +

ω2P 2

2RT
), (61)

where C is a positive constant and W0(x) is the principal branch of the Lambert33

W function [6, 16]. Since W0(x) ≈ ln(x) − ln(ln(x)) + · · · as x → ∞, ρ(P ) ≈34

4We have the same expression as (61) for the entire region, without approximation, from
the compressible Navier–Stokes–Fourier set of equations, with the aid of the equation of state
p = ρRT [1 + (2π/3)(σ3/m)ρ]. This equation of state is that for the Boltzmann–Enskog equation,

see ,e.g., [5, 15]. In the rigid body rotation mode, the viscous dissipation into heat does not occur
and the isothermal state is compatible with the energy equation.
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:Boltzmann–Enskog
:Boltzmann–Enskog (no boundary)
:Boltzmann

:Boltzmann–Enskog
:Boltzmann–Enskog (no boundary)
:Boltzmann

(a) (b)

Figure 1. Density profile for axisymmetric solutions, i.e., Case
2b in Sec. 4.1 and Case 1b in Sec. 4.2. (a) ω = 0 (no rotation),

(b) ω = 0.05
√
2RT/σ. The ρ̂ is a normalized density defined

by ρ̂ ≡ (π/6)(σ3/m)ρ, which represents the local volume frac-
tion of molecules and never exceed the value of close-packing of
equal spheres

√
2π/6 ≃ 0.74 in the case of the Boltzmann–Enskog

equation. In both panels, solid (red) lines indicate the results of
the Boltzmann–Enskog equation in a circular cylinder with a ra-
dius of 10.5σ (Case 1b in Sec. 4.2), dashed (blue) lines those of
the Boltzmann–Enskog equation without boundary (Case 2b in
Sec. 4.1), and dash-dotted (black) lines those of the Boltzmann
equation (the solution of (39) or (44) with the integral on the
right-hand side being omitted).

[Cω2/(2RT )]P 2 as P → ∞. The unlimited increase of density in the infinite domain1

is one of the reasons why the rigid body rotation mode escaped from the discussions2

in [20]. In the presence of a boundary, the density remains finite, and its profile is3

no longer monotonic and exhibits the behavior similar to the no-rotation case near4

the boundary.5

Although the present numerical study is limited to the Boltzmann–Enskog equa-6

tion, some comments on the original and modified Enskog equations are in order.7

The non-monotonic profile of density near the boundary is expected for these equa-8

tions as well. However, the growing rate of density is different because of the9

difference of the equation of state, see the footnote 4. Since the H theorem is not10

assured, the numerical study of the original Enskog equation was not carried out in11

the present work. Numerical study of the modified Enskog equation is desired, but12

remains difficult and untouched.13

6. Conclusion. In the present paper, we have discussed the summational invari-14

ant and the corresponding local Maxwellian that are compatible with the Enskog15

equation. Unlike the Boltzmann equation, a general form of the local Maxwellian16

is not obtained analytically. However, the admissible local Maxwellian turns out17

to be more restrictive than the case of the Boltzmann equation in the sense that18

(i) the temperature does not depend on spatial variables nor on time and that (ii)19
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the flow is a superposition of a spatially uniform flow and a rigid body rotation.1

A radial flow and a time-dependent temperature are not possible, unlike the case2

of the Boltzmann equation. The influence of a boundary on the admissible local3

Maxwellian has also been discussed in simple situations; a uniform density profile4

is no longer established in the presence of a boundary, as is widely recognized.5

The possibility of a rigid body rotation was not brought to attention in the6

seminal work of Resibois [20]. This is probably due to the fact that the density7

grows indefinitely in the infinite domain and that the Fourier analysis has been8

applied to the spatial variables in [20]. The infinite growth of the density in the9

infinite domain is confirmed in the present work by both numerical experiments10

and a far-field estimate. The numerical experiments also demonstrate that a rigid11

body rotation mode with a finite local density (or more strongly with a local volume12

fraction less than unity) is possible in an axially symmetric confinement. The rigid13

body rotation shown in Fig. 1 is compatible with a specular reflection wall and with14

other conventional types of wall, such as the diffuse reflection and the Cercignani–15

Lampis condition. Apart from the specular reflection wall, the wall temperature16

must be uniform and the wall must rotate about the central axis at the angular17

velocity ω (and must move in the axial direction at the velocity u).18

Appendix A. Another approach to the admissible local Maxwellian. In19

Sec. 3, we have used the conservation of the angular momentum, in addition to20

other kinds of conservation used in the case of the Boltzmann equation. In this21

Appendix, we will show that the same form of the Maxwellian as in (13) can be22

obtained without using the angular momentum, thereby making clearer the origin23

of the difference with the case of the Boltzmann equation.24

Consider the variational problem of (8) with respect to twelve variables of molec-25

ular velocities under the constraints (9a) and (9b). Then we recover (10) with γ = 0,26

where λ and µ are independent of the molecular velocity variables. Hence, at this27

stage, we obtain28

ln f(X) = λ(X) · ξ + µ(X)ξ2 + β(X). (62)

Substitution of the above into (8) shows that µ is independent of X, while λ(X)29

needs to satisfy30

[λ(X)− λ(X−
σα)] · (ξ∗ − ξ′∗) = 0. (63)

Consequently, the form of (13a) is recovered with a new restriction31

∆v · (ξ∗ − ξ′∗) = 0, or equivalently ∆v ·α = 0, (64)

where ∆v ≡ v(X+
σα) − v(X). Thanks to (64), the process of deriving (16) is32

unchanged and (23)–(25) are recovered as they stand. Taking a partial derivative33

of (25) with respect to X, it is seen [12, 21] that v can be written as vi(t,X) =34

ui(t) + Mij(t)Xj . Thus ∆vi = σMij(t)αj and accordingly Mijαiαj = 0 by (64).35

Furthermore, the substitution of the form of vi(t,X) into (25) gives the relation36

Mij + Mji = −(d lnT/dt)δij . This means that Mij can be expressed as Mij(t) =37

−(1/2)(d lnT/dt)δij + Ωij(t) with Ωij being an antisymmetric matrix, i.e., Ωij +38

Ωji = 0. Finally, substituting the form of Mij into Mijαiαj = 0 yields39

0 = Mijαjαi = −1

2

d lnT

dt
+Ωijαjαi

= −1

2

d lnT

dt
+

1

2
(Ωij +Ωji)αjαi = −1

2

d lnT

dt
. (65)
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Hence T is a constant and vi(t,X) = ui(t) +Ωij(t)Xj , the same conclusion as (29)1

and (13b).2

As is clear from the above discussion, (64) is the property that restricts the local3

Maxwellian to be a superposition of a uniform flow and a rigid body rotation with a4

constant temperature. In the discussions in Sec. 3, the property (64) was embedded5

as the conservation of the angular momentum.6

Appendix B. Some properties of g2 and related quantities. The purpose of7

this Appendix is to explain the properties of g2 used in Secs. 4.1 and 4.2.8

In the framework of the modified Enskog equation, the velocity distribution func-9

tion f is assumed to be in the form:10

f(t,X1, ξ1) =
mN

Φ(t)
W (t,X1, ξ1)Y (t,X1), (66)

where N is the number of molecules in D,11

Y (t,X1) =

∫
DN−1

w(t,X2) · · ·w(t,XN )Θ(X1, · · · ,XN )dX2 · · · dXN , (67a)

Φ(t) =

∫
DN

w(t,X1) · · ·w(t,XN )Θ(X1, · · · ,XN )dX1 · · · dXN , (67b)

w(t,X) =

∫
W (t,X, ξ)dξ, (67c)

Θ(X1, · · · ,XN ) =

N∏
i=1

N∏
j>i

θ(|Xij | − σ), Xij = Xi −Xj , (67d)

and DN is the N -times direct multiple of D. Substituting (66) into (6), the density12

ρ is expressed in terms of w as13

ρ(t,X) =
mN

Φ(t)
w(t,X)Y (t,X). (68)

The correlation function g2 in (5a) is defined as14

g2(t,X1,X2)

=
m2N(N − 1)

Φ(t)

w(t,X1)w(t,X2)

ρ(t,X1)ρ(t,X2)

×
∫
DN−2

w(t,X3) · · ·w(t,XN )Θ(1,2)(X1, · · · ,XN )dX3 · · · dXN , (69a)

where15

Θ(1,2)(X1, · · · ,XN ) =

N∏
i=1

N∏
j>max(i,2)

θ(|Xij | − σ). (69b)

Note that16

Θ(X1, · · · ,XN ) = θ(|X12| − σ)Θ(1,2)(X1, · · · ,XN ), (69c)

by (67d) and (69b). By (68) with (67a), ρ can be regarded as a functional of w and,17

if invertible, vice versa. Hence, Φ and g2 can also be regarded as functionals of ρ.18

Below, the argument t is suppressed unless confusion is expected, and the sum-19

mation convention for repeated indices is not used.20



SUMMATIONAL INVARIANT AND LOCAL MAXWELLIAN 15

Case I. Assume that the system under consideration is axially symmetric about1

the z-axis. The geometry of D must also be axially symmetric about the z-axis.2

Then, w(X) = w(RX) holds by the axial symmetry, where R is a rotation matrix3

about the z-axis. Since D is invariant under the rotation R, Θ is also invariant4

under the rotation by (67d). Thus, the axial symmetry of w propagates to Y and5

ρ, see (67a) and (68).6

Let (Pi, ϕi, zi) be the cylindrical coordinates of Xi and let Ri be the rotation7

matrix that moves the position Xi to Yi with the cylindrical coordinates (Pi, 2ϕ1−8

ϕi, zi). The new position Yi = RiXi is a mirror image of Xi with respect to the9

plane spanned by X1 and the z-axis. If X1 is on the z-axis, simply put ϕ1 = 0.10

Since the relative distances do not change under the transformations R2, · · · ,RN ,11

|Yij | = |Xij | and Θ(1,2)(X1, · · · ,XN ) = Θ(1,2)(X1,Y2, · · · ,YN ) hold. The integral12

in (69a) can therefore be transformed as follows:13 ∫
DN−2

w(X3) · · ·w(XN )Θ(1,2)(X1,X2, · · · ,XN )dX3 · · · dXN

=

∫
DN−2

w(X3) · · ·w(XN )Θ(1,2)(X1,Y2, · · · ,YN )dX3 · · · dXN

=

∫
DN−2

w(X3) · · ·w(XN )Θ(1,2)(X1,Y2, · · · ,YN )dY3 · · · dYN

=

∫
DN−2

w(Y3) · · ·w(YN )Θ(1,2)(X1,Y2, · · · ,YN )dY3 · · · dYN . (70)

Note that the integration range does not change under the change of variables14

made at the third equality and that the rotational invariance of w is used at the15

last equality. Using the rotational invariance of ρ and w again on the right-hand16

side of (69a),17

g2(X1,X2) = g2(X1,R2X2), (71)

is obtained. That is, g2(X1,X2) is even with respect to ϕ2 − ϕ1.18

Case II. Assume that the system under consideration is invariant under a transla-19

tion in the z-direction. The geometry of D must also be invariant under the same20

translation. By a similar argument to Case I, w, Y , and ρ are invariant under a21

translation in the z-direction.22

Now let Si be the translation that moves the positionXi toZi with the cylindrical23

coordinates (Pi, ϕi, 2z1 − zi). The new position Zi = SiXi is a mirror image of Xi24

with respect to the plane normal to the z-axis containing X1. Since the relative25

distances do not change under the transformations S2, · · · ,SN , |Zij | = |Xij | and26

Θ(1,2)(X1, · · · ,XN ) = Θ(1,2)(X1,Z2, · · · ,ZN ) hold. Hence, by the transformation27

similar to (70),28

g2(X1,X2) = g2(X1,S2X2). (72)

That is, g2(X1,X2) is even with respect to z2 − z1.29
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