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Multiply Robust Weighted Generalized Estimating Equations for 

Incomplete Longitudinal Binary Data Using Empirical Likelihood  

In clinical trials, missing data may lead to serious misinterpretation of trial 

results. To address this issue, it is important to collect post-randomization data 

(such as efficacy measurement data and adverse event onset data). Such post-

randomization data are called auxiliary variables and they can be useful for 

constructing missingness and imputation models. A multiply robust estimator 

using an empirical likelihood method was previously proposed by Han and Wang 

(2013) and Han (2014). However, that estimator was developed for cross-

sectional data and situations in which no auxiliary variables are missing. This is 

contrary to actual clinical trial settings, in which some auxiliary variables will 

invariably be missing. Consequently, to apply Han’s method to longitudinal data, 

missing auxiliary variables need to be imputed. This paper proposes a new 

method that extends Han’s method to a longitudinal outcome model by applying 

weighted generalized estimating equations with new weights. Monte Carlo 

simulations of a repeated binary response with missing at random dropouts 

demonstrated that the proposed estimator is multiply robust and exhibits better 

performance than that of augmented inverse probability weighted complete-case 

estimating equations under several simulation scenarios. We also successfully 

applied the proposed method to plaque psoriasis study data.  

Keywords: auxiliary variables; imputation model; missing at random; Monte 

Carlo simulation; plaque psoriasis 

  



 
 

 

1 Introduction 

Consider a randomized, placebo-controlled, double-blind, parallel-group, phase III trial 

that collects longitudinal data and assesses the drug efficacy at a planned last time point. 

The estimand is the adjusted odds ratio between the improvement proportions of the 

treatment groups when all participants complete the study, which corresponds to a 

parameter of the treatment group in a fitted regression model. In such clinical trials, 

some of the participants are lost to follow-up, resulting in missing primary endpoints. If 

the missing data mechanism is missing at random (MAR) or missing not at random, 

complete-case analysis may lead to a biased estimate of the treatment effect (Little and 

Rubin 2002). 

To address this issue, Han and Wang (2013) and Han (2014) proposed a 

multiply robust estimator using an empirical likelihood (EL) method (Owen 2001). Han 

and Wang (2013) and Han (2014) derived a weight based on the EL method and solved 

the weighted estimating equations to obtain a multiply robust estimator. This method 

has two advantages. First, it prevents the weight values from being extreme. In the 

inverse probability weighting (IPW) method (Horvitz and Thomson 1952), the 

probability of measurements being observed is modeled, and the complete-case data are 

weighted by the inverse of that probability; however, this method has low estimation 

efficiency, especially when the estimated probability of being observed is close to zero 

(i.e., an extreme weight) (Kang and Schafer 2007). Second, the multiply robust 



 

estimator allows multiple missingness and imputation models to mitigate the impact of 

model misspecification; if a correct model is included among these models, the 

treatment effect estimator is consistent. In the missingness and imputation models, post-

randomization data (e.g., an efficacy measurement and an onset of adverse event) are 

sometimes included as explanatory variables, i.e., auxiliary variables. These variables 

are possibly influenced by treatment, correlated with missingness on an outcome and/or 

outcome itself, and improving efficiency (Mallinckrodt 2013). Han and Wang (2013) 

and Han (2014) assumed the response variable to be a scalar and that all auxiliary 

variables are observed. However, in actual clinical settings, some auxiliary variables are 

usually missing.  

In this paper, we propose a new method that extends Han’s method to a 

longitudinal outcome model by applying weighted generalized estimating equations 

(wGEE) with new weights. The resulting estimator is multiply robust, in the sense that 

the treatment effect estimator is consistent if any one of the specified missingness or 

imputation models is correct. Our method accounts for the within-subject correlation 

structure of the repeated measurement. Thus, the proposed estimator achieves better 

performance than that of Han in situations where some of the auxiliary variables are 

missing (i.e., in coarsened longitudinal data analysis).  

A few doubly robust methods for application to longitudinal data with dropout 

have been proposed. Bang and Robins (2005) and Seaman and Copas (2009) proposed 



 
 

 

an approach that uses augmented inverse probability weighted complete-case estimating 

equations (AIPW). The estimator is constructed by the inverse probability weighted 

GEE and augmentation term imputed with Paik’s imputation method (1997), and allows 

the use of only one missingness model and one imputation model, thus achieving 

double robustness. Others (Han et al. 2015; Han 2016) also proposed estimators using 

the EL method, which considers longitudinal data with dropouts. The estimator 

proposed by Han et al. (2015) is based on the numerical implementation of the 

conditional EL method, and allows the use of only one missingness model and one 

imputation model, thus achieving double robustness. The estimator proposed by Han 

(2016) is based on a calibrating method for missingness probability using data from past 

visits, and allows the use of only one missingness model and multiple imputation 

models. When the missingness model is correctly specified, intrinsic efficiency is 

guaranteed. However, the method targets estimation of a mean of a response at the end 

of a longitudinal study instead of estimation of a parameter (such as a treatment effect); 

thus, the estimator most recently proposed by Han (2016) was developed under different 

conditions compared to Han and Wang (2013), Han (2014), and our proposed method. 

The remainder of this paper is organized as follows. In Section 1.1, we describe 

the plaque psoriasis trial used as a case study. In Section 2, we introduce the proposed 

method and relevant notation. In Section 3, we outline Monte Carlo simulation studies 

conducted to evaluate the performance of the proposed method. In Section 4, we 



 

describe the application of the proposed method to the plaque psoriasis study data. 

Finally, we provide a brief discussion and the conclusions of the study in Section 5. 

1.1 Case Study 

The efficacy and safety of the study drug M518101 were evaluated in a randomized, 

placebo-controlled, double-blind, parallel-group, multi-center, phase III study in 

participants with plaque psoriasis (registered at www.clinictrial.gov as NCT01878461). 

Efficacy assessments were taken at baseline and Weeks 2, 4, 6, and 8. The primary 

efficacy endpoint was the success rate based on the Investigator Global Assessment 

(IGA) score at Week 8. The proportions of missing data at Week 8 were 14.5% (53/365) 

and 13.0% (23/177) in the M518101 and placebo groups, respectively. If, for example, 

only the participants who showed improvement completed the trial, the complete-case 

analysis could be biased. In this study, because the estimand was the treatment effect 

supposing that all subjects adhered to the treatment and completed the study, it was also 

necessary to consider the influence of the dropout mechanism.  

2 Methods 

2.1 Notation 

Let 𝑦𝑦𝑖𝑖𝑖𝑖 denote the binary efficacy outcome of a participant 𝑖𝑖(= 1, … ,𝑁𝑁) at a time point 

𝑗𝑗(= 1, … ,𝑇𝑇), and 𝒀𝒀𝑖𝑖 = (𝑦𝑦𝑖𝑖1, … , 𝑦𝑦𝑖𝑖𝑖𝑖)T, where stochastic independence of 𝑦𝑦𝑖𝑖1𝑖𝑖 and 𝑦𝑦𝑖𝑖2𝑖𝑖, 



 
 

 

𝑖𝑖1 ≠ 𝑖𝑖2, is assumed. Let 𝑿𝑿𝑖𝑖 and 𝑅𝑅𝑖𝑖𝑖𝑖 denote the design variables (e.g., treatment, baseline 

covariates) and the indicator variable of observing 𝑦𝑦𝑖𝑖𝑖𝑖, respectively. The post-

randomization data (i.e., auxiliary variables) are represented as 𝒁𝒁𝑖𝑖𝑖𝑖, and 𝒁𝒁�𝑖𝑖𝑖𝑖 =

�𝒁𝒁𝑖𝑖1, … ,𝒁𝒁𝑖𝑖𝑖𝑖�
T
. To simplify an explanation, we assume that 𝒁𝒁𝑖𝑖𝑖𝑖 includes only 𝑦𝑦𝑖𝑖𝑖𝑖. If both 

𝑦𝑦𝑖𝑖𝑖𝑖 and 𝒁𝒁𝑖𝑖𝑖𝑖 are observed, 𝑅𝑅𝑖𝑖𝑖𝑖 = 1; otherwise, 𝑅𝑅𝑖𝑖𝑖𝑖 = 0. The situation is reasonable 

because it is common that these data are observed simultaneously at each subject-visit. 

We assume a monotone missing data pattern and 𝑅𝑅𝑖𝑖1 = 1. Thus, if 𝑅𝑅𝑖𝑖𝑖𝑖 = 0, then 𝑅𝑅𝑖𝑖𝑖𝑖 =

0 (𝑗𝑗 < 𝑘𝑘). Let 𝑛𝑛𝑖𝑖 denote the number of observed measurements of participant i. 

2.2 Models and Estimation 

Let E�𝑦𝑦𝑖𝑖𝑖𝑖|𝑿𝑿𝑖𝑖� = 𝜇𝜇𝑖𝑖𝑖𝑖(𝜷𝜷0) denote the outcome model with an arbitrary link function (e.g., 

logit link), where 𝜷𝜷0 represents the 𝑢𝑢-dimensional coefficients of the mean regression 

of 𝑦𝑦𝑖𝑖𝑖𝑖 on 𝑿𝑿𝑖𝑖. Our main interest is to estimate the parameter of the treatment effect at the 

last visit of the longitudinal study (j=T). The proposed method allows multiple 

missingness and imputation models, derives a weight including the multiple model 

information based on the EL method, and then solves the empirical likelihood weighted 

estimating equations for 𝜷𝜷0. Let 𝜷𝜷EL denote the proposed estimator for 𝜷𝜷0. If any one of 

the multiple models is correct, 𝜷𝜷0 can be consistently estimated. In this study, S 

missingness models and K imputation models are considered, which correspond to 



 

modeling P�𝑅𝑅𝑖𝑖𝑖𝑖 = 1�𝑿𝑿𝑖𝑖,𝒁𝒁�𝑖𝑖,(𝑖𝑖−1),𝜶𝜶𝑠𝑠� for 𝑠𝑠 = 1, … , 𝑆𝑆 and P�𝑦𝑦𝑖𝑖𝑖𝑖 = 1|𝑿𝑿𝑖𝑖,𝒁𝒁�𝑖𝑖,(𝑖𝑖−1),𝜸𝜸 
𝑖𝑖� 

for 𝑘𝑘 = 1, … , 𝐾𝐾 , respectively, where 𝜶𝜶𝑠𝑠 and 𝜸𝜸 
𝑖𝑖 are the corresponding parameters. 

Note that the imputation models can utilize the post-randomization data (i.e., auxiliary 

variables 𝒁𝒁�𝑖𝑖,(𝑖𝑖−1)) and are specified at each time point; thus, they differ from the 

outcome model 𝜇𝜇𝑖𝑖𝑖𝑖(𝜷𝜷0). In the proposed method, two types of (w)GEE for 𝜷𝜷0 were 

performed, other than 𝜷𝜷EL, to derive an EL weight. Let 𝜷𝜷wGEE𝑠𝑠  and 𝜷𝜷GEE𝑖𝑖  denote the 

parameters of the (w)GEE models. The parameters  𝜷𝜷wGEE𝑠𝑠 , 𝜷𝜷GEE𝑖𝑖 , and 𝜷𝜷EL are identical 

for the correct missingness or imputation model. A detailed explanation of each model 

can be found in Sections 2.3 and 2.4. 

2.3 Missingness Model 𝝅𝝅𝒊𝒊𝒊𝒊𝒔𝒔 (𝜶𝜶𝒔𝒔) and wGEE Model 𝝁𝝁𝒊𝒊𝒊𝒊(𝜷𝜷𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒔𝒔 )  

For the missingness model, let 𝜈𝜈𝑖𝑖𝑖𝑖𝑠𝑠 (𝜶𝜶𝑠𝑠) denote the conditional probability of observing 

𝑦𝑦𝑖𝑖𝑖𝑖 being conditional on 𝑅𝑅𝑖𝑖,(𝑖𝑖−1) = 1, 𝑿𝑿𝑖𝑖 and 𝒁𝒁�𝑖𝑖,(𝑖𝑖−1), 𝜈𝜈𝑖𝑖𝑖𝑖𝑠𝑠 (𝜶𝜶𝑠𝑠) = P�𝑅𝑅𝑖𝑖𝑖𝑖 =

1�𝑅𝑅𝑖𝑖,(𝑖𝑖−1) = 1,𝑿𝑿𝑖𝑖,𝒁𝒁�𝑖𝑖,(𝑖𝑖−1),𝜶𝜶𝑠𝑠� for 𝑠𝑠 = 1, … , 𝑆𝑆, and a set of multiple missingness 

models as logit�𝜈𝜈𝑖𝑖𝑖𝑖𝑠𝑠 (𝜶𝜶𝑠𝑠)� = (𝜶𝜶1𝑠𝑠)T𝑿𝑿𝑖𝑖 + (𝜶𝜶2𝑠𝑠)T𝒁𝒁�𝑖𝑖,(𝑖𝑖−1). We define P�𝑅𝑅𝑖𝑖𝑖𝑖 =

1�𝑿𝑿𝑖𝑖 ,𝒁𝒁�𝑖𝑖,(𝑖𝑖−1),𝜶𝜶𝑠𝑠� = 𝜋𝜋𝑖𝑖𝑖𝑖𝑠𝑠 (𝜶𝜶𝑠𝑠) = 𝜈𝜈𝑖𝑖1𝑠𝑠 (𝜶𝜶𝑠𝑠) × … × 𝜈𝜈𝑖𝑖𝑖𝑖𝑠𝑠 (𝜶𝜶𝑠𝑠) as the observation probability 

for 𝑠𝑠 = 1, … , 𝑆𝑆  (Fitzmaurice et al. 1995; Robins et al. 1995).  

Using 𝜋𝜋𝑖𝑖𝑖𝑖𝑠𝑠 (𝜶𝜶�𝑠𝑠), the wGEE analysis (Robins et al. 1995) is performed. The 

estimating equations for 𝜷𝜷wGEE𝑠𝑠  for 𝑠𝑠 = 1, … , 𝑆𝑆 are as follows:  



 
 

 

𝑺𝑺𝑠𝑠( 𝜶𝜶�𝑠𝑠,𝜷𝜷wGEE𝑠𝑠 )=∑ 𝜕𝜕�𝝁𝝁𝑖𝑖�𝜷𝜷wGEE
𝑠𝑠 ��

T

𝜕𝜕𝜷𝜷wGEE
𝑠𝑠𝑖𝑖 (𝑽𝑽𝑖𝑖)−1𝑾𝑾wGEE,𝑖𝑖

𝑠𝑠 {𝒀𝒀𝑖𝑖 − 𝝁𝝁𝑖𝑖(𝜷𝜷wGEE𝑠𝑠 )} = 𝟎𝟎, (1) 

where 𝝁𝝁𝑖𝑖(𝜷𝜷wGEE𝑠𝑠 ) = {𝜇𝜇𝑖𝑖1(𝜷𝜷wGEE𝑠𝑠 ), … , 𝜇𝜇𝑖𝑖𝑖𝑖(𝜷𝜷wGEE𝑠𝑠 )}T, 𝑾𝑾wGEE,𝑖𝑖
𝑠𝑠 = 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑�𝑅𝑅𝑖𝑖𝑖𝑖 𝜋𝜋𝑖𝑖𝑖𝑖𝑠𝑠 (𝜶𝜶�𝑠𝑠)⁄ �

𝑖𝑖≤𝑖𝑖
 

as a diagonal matrix factor, 𝑽𝑽𝑖𝑖 is the working covariance matrix of 𝒀𝒀𝑖𝑖 which is assumed 

as 𝑽𝑽𝑖𝑖 = 𝑨𝑨𝑖𝑖
1
2𝑅𝑅(𝝆𝝆)𝑨𝑨𝑖𝑖

1
2, where 𝑨𝑨𝑖𝑖 is a 𝑇𝑇 × 𝑇𝑇 diagonal matrix whose jth diagonal element is 

the variance functions of 𝜇𝜇𝑖𝑖𝑖𝑖�𝜷𝜷�wGEE𝑠𝑠 �, and 𝑅𝑅(𝝆𝝆) is a 𝑇𝑇 × 𝑇𝑇 working correlation matrix 

with 𝜌𝜌𝑖𝑖𝑖𝑖 = 1 and 𝜌𝜌𝑖𝑖𝑖𝑖′ as a correlation between time points 𝑗𝑗 and 𝑗𝑗’. The predicted value 

𝜇𝜇𝑖𝑖,(𝑖𝑖−1)�𝜷𝜷�wGEE𝑠𝑠 � is used to derive a weight 𝑤𝑤�𝑖𝑖𝑖𝑖 (see Section 2.5). When the missingness 

model includes 𝑦𝑦𝑖𝑖,(𝑖𝑖−1) as 𝒁𝒁�𝑖𝑖,(𝑖𝑖−1), a missing 𝑦𝑦𝑖𝑖,(𝑖𝑖−1) is imputed with the predicted value 

𝜇𝜇𝑖𝑖,(𝑖𝑖−1)�𝜷𝜷�wGEE𝑠𝑠 �.  

2.4 Imputation Model 𝝓𝝓𝒊𝒊𝒊𝒊𝒊𝒊
𝒌𝒌 (𝜸𝜸𝒊𝒊𝒊𝒊𝒌𝒌 ) and GEE Model 𝝁𝝁𝒊𝒊𝒊𝒊�𝜷𝜷𝒘𝒘𝒘𝒘𝒘𝒘𝒌𝒌 �  

For the imputation model, to derive the expected value of 𝑦𝑦𝑖𝑖𝑖𝑖 for each participant and 

time point, we use the sequential imputation method of Paik (1997), in which it is 

assumed that 

E�𝑦𝑦𝑖𝑖𝑖𝑖|𝑿𝑿𝑖𝑖,𝒁𝒁�𝑖𝑖,(𝑖𝑖−1),𝑅𝑅𝑖𝑖,(𝑖𝑖−1) = 1,𝑅𝑅𝑖𝑖𝑖𝑖 = 0� = E�𝑦𝑦𝑖𝑖𝑖𝑖|𝑿𝑿𝑖𝑖,𝒁𝒁�𝑖𝑖,(𝑖𝑖−1),𝑅𝑅𝑖𝑖,(𝑖𝑖−1) = 1,𝑅𝑅𝑖𝑖𝑖𝑖 = 1�. (2) 

Following equation (2), under the MAR assumption, a missing 𝑦𝑦𝑖𝑖𝑖𝑖 can be imputed using 

a regression model for E�𝑦𝑦𝑖𝑖𝑖𝑖|𝑿𝑿𝑖𝑖,𝒁𝒁�𝑖𝑖,(𝑖𝑖−1),𝑅𝑅𝑖𝑖,(𝑖𝑖−1) = 1,𝑅𝑅𝑖𝑖𝑖𝑖 = 1�. This model is fitted to 



 

𝑦𝑦𝑖𝑖𝑖𝑖, which is either observed or has already been imputed. Because a monotone missing 

data pattern is assumed, the maximum number of missing patterns is T. As shown in 

Figure 1, a 𝑇𝑇 × 𝑇𝑇 table is constructed, where the rows are the missing patterns and the 

columns are the time points j. Each 𝑦𝑦𝑖𝑖𝑖𝑖 is assigned to each cell, and the shaded cells are 

missing 𝑦𝑦𝑖𝑖𝑖𝑖. Sequential imputation is performed as in the following procedure. 

(1) As per equation (2), the missing data in the first diagonal cells (1,2), (2,3), ..., 

(T−1,T) are estimated using the observed data (i.e., E�𝑦𝑦𝑖𝑖𝑖𝑖|𝑿𝑿𝑖𝑖 ,𝒁𝒁�𝑖𝑖,(𝑖𝑖−1),𝑅𝑅𝑖𝑖,(𝑖𝑖−1) =

1,𝑅𝑅𝑖𝑖𝑖𝑖 = 1�). For the imputation of cell (2,3), for example, the data at time point 

3, i.e., cells (3,3), (4,3), …, (𝑇𝑇, 3), are used in the regression model. In the first 

step, cell (1,3) is not imputed.  

(2) The missing data in the second diagonal cells (1,3), (2,4), ..., (T−2,T) cannot be 

estimated directly because E�𝑦𝑦𝑖𝑖𝑖𝑖|𝑿𝑿𝑖𝑖,𝒁𝒁�𝑖𝑖,(𝑖𝑖−2),𝑅𝑅𝑖𝑖,(𝑖𝑖−2) = 1,𝑅𝑅𝑖𝑖,(𝑖𝑖−1) = 0� is not 

equal to E�𝑦𝑦𝑖𝑖𝑖𝑖|𝑿𝑿𝑖𝑖 ,𝒁𝒁�𝑖𝑖,(𝑖𝑖−1),𝑅𝑅𝑖𝑖,(𝑖𝑖−1) = 1,𝑅𝑅𝑖𝑖𝑖𝑖 = 1�. If the imputed values of the 

first diagonal are treated as observed ones, the missing data in the second 

diagonal cells (1,3), (2,4), ..., (T−2,T) are estimated using the observed data and 

the imputed values of the first diagonal in accordance with equation (2). For the 

imputation of cell (1,3), for example, the data at time point 3, i.e., cells (2,3), 

(3,3), …, (𝑇𝑇, 3), are used in the regression model. 



 
 

 

(3) By imputing 𝑦𝑦𝑖𝑖𝑖𝑖 with the observed or imputed data, this procedure is repeated 

along the diagonals until all missing measurements have been imputed.  

Let 𝜙𝜙𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (𝜸𝜸𝑖𝑖𝑖𝑖𝑖𝑖 ) (𝑘𝑘 = 1, … , 𝐾𝐾) denote a set of multiple outcome regression 

models for estimating a predicted value of 𝑦𝑦𝑖𝑖𝑖𝑖,  

𝜙𝜙𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 �𝜸𝜸𝑖𝑖𝑖𝑖𝑖𝑖 � = P�𝑦𝑦𝑖𝑖𝑖𝑖 = 1|𝑿𝑿𝑖𝑖 ,𝒁𝒁�𝑖𝑖,(𝑖𝑖−1),𝜸𝜸𝑖𝑖𝑖𝑖𝑖𝑖 �,   (3) 

where 𝑑𝑑(= 1, … ,𝐷𝐷) is the notation for a diagonal pattern. 

Using 𝜙𝜙𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (𝜸𝜸�𝑖𝑖𝑖𝑖𝑖𝑖 ), the GEE analysis is also performed. The estimating equations 

for 𝜷𝜷GEE𝑖𝑖  for 𝑘𝑘 = 1, … , 𝐾𝐾 are as follows:  

𝑺𝑺𝑖𝑖( 𝜷𝜷GEE𝑖𝑖 , 𝜸𝜸�𝑖𝑖𝑖𝑖𝑖𝑖 )=∑ 𝜕𝜕�𝝁𝝁𝑖𝑖�𝜷𝜷GEE
𝑘𝑘 ��

T

𝜕𝜕𝜷𝜷GEE
𝑘𝑘𝑖𝑖 (𝑽𝑽𝑖𝑖)−1�𝒀𝒀�𝑖𝑖 − 𝝁𝝁𝑖𝑖�𝜷𝜷GEE𝑖𝑖 �� = 𝟎𝟎, (4) 

where 𝝁𝝁𝑖𝑖(𝜷𝜷GEE𝑖𝑖 ) = �𝜇𝜇𝑖𝑖1(𝜷𝜷GEE𝑖𝑖 ), … , 𝜇𝜇𝑖𝑖𝑖𝑖(𝜷𝜷GEE𝑖𝑖 )�
T
, 𝒀𝒀�𝑖𝑖 = (𝑦𝑦�𝑖𝑖1, … , 𝑦𝑦�𝑖𝑖𝑖𝑖)T. The function 

∑ 𝜕𝜕�𝝁𝝁𝑖𝑖�𝜷𝜷GEE
𝑘𝑘 ��

T

𝜕𝜕𝜷𝜷GEE
𝑘𝑘𝑖𝑖 (𝑽𝑽𝑖𝑖)−1�𝒀𝒀�𝑖𝑖 − 𝝁𝝁𝑖𝑖�𝜷𝜷GEE𝑖𝑖 �� can be decomposed into 

∑ �𝑺𝑺𝑖𝑖1𝑖𝑖 �𝜷𝜷GEE𝑖𝑖 ,𝜸𝜸�𝑖𝑖𝑖𝑖𝑖𝑖 �+. . . +𝑺𝑺𝑖𝑖𝑖𝑖𝑖𝑖 �𝜷𝜷GEE𝑖𝑖 ,𝜸𝜸�𝑖𝑖𝑖𝑖𝑖𝑖 ��𝑖𝑖 , where 𝑺𝑺𝑖𝑖𝑖𝑖𝑖𝑖 �𝜷𝜷GEE𝑖𝑖 ,𝜸𝜸�𝑖𝑖𝑖𝑖𝑖𝑖 � is an element of the 

estimating function for each time point. A missing 𝑦𝑦𝑖𝑖𝑖𝑖 is imputed using 𝜙𝜙𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (𝜸𝜸�𝑖𝑖𝑖𝑖𝑖𝑖 ) 

derived from equation (3); thus, the response variable is 𝑦𝑦�𝑖𝑖𝑖𝑖 = 𝑅𝑅𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖 + �1 −

𝑅𝑅𝑖𝑖𝑖𝑖�𝜙𝜙𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 �𝜸𝜸�𝑖𝑖𝑖𝑖𝑖𝑖 �. Note that 𝜷𝜷�GEE𝑖𝑖  is estimated as if the entire data were available, except 

for the fact that missing 𝑦𝑦𝑖𝑖𝑖𝑖 are replaced by 𝜙𝜙𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 �𝜸𝜸�𝑖𝑖𝑖𝑖𝑖𝑖 �. The estimate 𝜷𝜷�GEE𝑖𝑖  differs from 



 

𝜷𝜷�wGEE𝑠𝑠 , which is estimated using information on missingness model 𝜋𝜋𝑖𝑖𝑖𝑖𝑠𝑠 (𝜶𝜶𝑠𝑠). Thus, 

𝜷𝜷�wGEE𝑠𝑠  and 𝜷𝜷�GEE𝑖𝑖  are derived from different informations (i.e., missingness models and 

imputation models). After 𝜷𝜷�GEE𝑖𝑖  is estimated, the function 𝑺𝑺𝑖𝑖𝑖𝑖�𝜷𝜷�GEE𝑖𝑖 ,𝜸𝜸�𝑖𝑖𝑖𝑖𝑖𝑖 � =

𝜕𝜕�𝝁𝝁𝑖𝑖
 �𝜷𝜷�GEE

𝑘𝑘 ��
T

𝜕𝜕𝜷𝜷GEE
𝑘𝑘 (𝑽𝑽𝑖𝑖)−1�𝒀𝒀�𝑖𝑖 − 𝝁𝝁𝑖𝑖 �𝜷𝜷�GEE𝑖𝑖 �� = 𝑺𝑺𝑖𝑖1𝑖𝑖 �𝜷𝜷�GEE𝑖𝑖 ,𝜸𝜸�1𝑖𝑖𝑖𝑖 �+. . . +𝑺𝑺𝑖𝑖𝑖𝑖𝑖𝑖 �𝜷𝜷�GEE𝑖𝑖 ,𝜸𝜸�𝑖𝑖𝑖𝑖𝑖𝑖 � is 

calculated to derive a weight 𝑤𝑤�𝑖𝑖𝑖𝑖 (see Section 2.5). The response variables are replaced 

by the expected value as 𝒀𝒀�𝑖𝑖 = �𝑦𝑦�𝑖𝑖1,𝜙𝜙𝑖𝑖2𝑖𝑖𝑖𝑖 �𝜸𝜸�2𝑖𝑖𝑖𝑖 �, … ,𝜙𝜙𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (𝜸𝜸�𝑖𝑖𝑖𝑖𝑖𝑖 )�
T
. An observed value 𝑦𝑦𝑖𝑖1 

is replaced with 𝑦𝑦�𝑖𝑖1, which is the estimate of the expected value of 𝑦𝑦𝑖𝑖1 conditioned on 

𝑿𝑿𝑖𝑖. In addition, each observed value 𝑦𝑦𝑖𝑖𝑖𝑖 (for j=2,…, T) is replaced with 𝜙𝜙𝑖𝑖𝑖𝑖1𝑖𝑖 (𝜸𝜸�𝑖𝑖1𝑖𝑖 ), 

which is derived from the imputation model described by equation (3) for the first 

diagonal cell.  

2.5 Derivation of Weight 𝒘𝒘�𝒊𝒊𝒊𝒊 Using EL Method 

The proposed method assigns a weight 𝑤𝑤𝑖𝑖𝑖𝑖 to each observation at all time points (using 

the element-wise EL method) (Wang et al. 2010). To derive a weight 𝑤𝑤�𝑖𝑖𝑖𝑖 for the 

proposed estimator, the following constraints are imposed: 

∑ ∑ 𝑤𝑤𝑖𝑖𝑖𝑖
𝑛𝑛𝑖𝑖
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1 =1, 𝑤𝑤𝑖𝑖𝑖𝑖 ≥ 0, 

∑ ∑ 𝑤𝑤𝑖𝑖𝑖𝑖
𝑛𝑛𝑖𝑖
𝑖𝑖=1 𝒈𝒈�𝑖𝑖𝑖𝑖�𝜶𝜶�,𝜷𝜷�GEE,𝜷𝜷�wGEE,𝜸𝜸�𝑖𝑖𝑖𝑖� = 𝟎𝟎𝑁𝑁

𝑖𝑖=1 , (5) 



 
 

 

where 𝒈𝒈�𝑖𝑖𝑖𝑖�𝜶𝜶�,𝜷𝜷�GEE,𝜷𝜷�wGEE,𝜸𝜸�𝑖𝑖𝑖𝑖� =  

    �𝜋𝜋𝑖𝑖𝑖𝑖1 (𝜶𝜶�1) − 𝜃𝜃1�𝜶𝜶�1,𝜷𝜷�wGEE1 �, … , 𝜋𝜋𝑖𝑖𝑖𝑖𝑆𝑆 (𝜶𝜶�𝑆𝑆) − 𝜃𝜃𝑆𝑆�𝜶𝜶�𝑆𝑆,𝜷𝜷�wGEE𝑆𝑆 �,    

 �𝑺𝑺𝑖𝑖𝑖𝑖1 �𝜷𝜷�GEE1 ,𝜸𝜸�𝑖𝑖𝑖𝑖1 � − 𝝃𝝃1�𝜷𝜷�GEE1 ,𝜸𝜸�𝑖𝑖𝑖𝑖1 ��
T

, … , �𝑺𝑺𝑖𝑖𝑖𝑖𝐾𝐾�𝜷𝜷�GEE𝐾𝐾 ,𝜸𝜸�𝑖𝑖𝑖𝑖𝐾𝐾 � − 𝝃𝝃𝐾𝐾�𝜷𝜷�GEE𝐾𝐾 ,𝜸𝜸�𝑖𝑖𝑖𝑖𝐾𝐾 ��
T�
T
,  

𝜃𝜃𝑠𝑠�𝜶𝜶�𝑠𝑠,𝜷𝜷�wGEE𝑠𝑠 � = ∑ ∑ 𝜋𝜋𝑖𝑖𝑖𝑖𝑠𝑠 �𝜶𝜶�𝑠𝑠 ,𝜷𝜷�wGEE𝑠𝑠 � (𝑁𝑁𝑇𝑇)⁄𝑖𝑖
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1 , and 

𝝃𝝃𝑖𝑖�𝜷𝜷�GEE𝑖𝑖 ,𝜸𝜸�𝑖𝑖𝑖𝑖𝑖𝑖 � = ∑ ∑ 𝑺𝑺𝑖𝑖𝑖𝑖𝑖𝑖 �𝜷𝜷�GEE𝑖𝑖 ,𝜸𝜸�𝑖𝑖𝑖𝑖𝑖𝑖 � (𝑁𝑁𝑇𝑇)⁄𝑖𝑖
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1 .  

The equation can be also described as follows: 

∑ ∑ 𝑤𝑤𝑖𝑖𝑖𝑖
𝑛𝑛𝑖𝑖
𝑖𝑖=1 �𝜋𝜋𝑖𝑖𝑖𝑖𝑠𝑠 (𝜶𝜶�𝑠𝑠) − 𝜃𝜃𝑠𝑠�𝜶𝜶�𝑠𝑠,𝜷𝜷�wGEE𝑠𝑠 �� = 0𝑁𝑁

𝑖𝑖=1  (𝑠𝑠 = 1, … , 𝑆𝑆), and 

∑ ∑ 𝑤𝑤𝑖𝑖𝑖𝑖
𝑛𝑛𝑖𝑖
𝑖𝑖=1 �𝑺𝑺𝑖𝑖𝑖𝑖𝑖𝑖 �𝜷𝜷�GEE𝑖𝑖 ,𝜸𝜸�𝑖𝑖𝑖𝑖𝑖𝑖 � − 𝝃𝝃𝑖𝑖�𝜷𝜷�GEE𝑖𝑖 ,𝜸𝜸�𝑖𝑖𝑖𝑖𝑖𝑖 �� = 𝟎𝟎𝑁𝑁

𝑖𝑖=1  (𝑘𝑘 = 1, … , 𝐾𝐾). 

When 𝑗𝑗 ≥ 𝑛𝑛𝑖𝑖 + 1, 𝑤𝑤𝑖𝑖𝑖𝑖 is defined as zero. Vector 𝒈𝒈�𝑖𝑖𝑖𝑖 includes S functions for 

missingness model 𝜋𝜋𝑖𝑖𝑖𝑖𝑠𝑠 (𝜶𝜶�𝑠𝑠) and K functions for GEE 𝑺𝑺𝑖𝑖𝑖𝑖𝑖𝑖 �𝜷𝜷�GEE𝑖𝑖 ,𝜸𝜸�𝑖𝑖𝑖𝑖𝑖𝑖 �; i.e., the missing 

data are imputed using a set of K imputation models. Similar to Han (2014), our 

proposed method employs the calibration method (Lumley et al. 2011). Calibration 

weights are defined by matching the values of the calibration variables based on the 

sampled participants to the corresponding known population values. In this setting, 

𝜋𝜋𝑖𝑖𝑖𝑖𝑠𝑠 (𝜶𝜶�𝑠𝑠) and 𝑺𝑺𝑖𝑖𝑖𝑖𝑖𝑖 �𝜷𝜷�GEE𝑖𝑖 ,𝜸𝜸�𝑖𝑖𝑖𝑖𝑖𝑖 � play the role of calibration variables and their population 

values 𝜃𝜃𝑠𝑠�𝜶𝜶�𝑠𝑠,𝜷𝜷�wGEE𝑠𝑠 � and 𝝃𝝃𝑖𝑖�𝜷𝜷�GEE𝑖𝑖 ,𝜸𝜸�𝑖𝑖𝑖𝑖𝑖𝑖 � are estimated by the unweighted sample 



 

averages over all the participants at all the time points (j = 1, …, T). The weight 

�𝑤𝑤�𝑖𝑖𝑖𝑖: 𝑖𝑖 = 1, … ,𝑁𝑁, 𝑗𝑗 = 1, … ,𝑛𝑛𝑖𝑖  � is a set of weights assigned to the biased sample 

�𝑦𝑦𝑖𝑖𝑖𝑖: 𝑖𝑖 = 1, … ,𝑁𝑁, 𝑗𝑗 = 1, … ,𝑛𝑛𝑖𝑖�. Through equation (5), 𝑤𝑤𝑖𝑖𝑖𝑖 corrects for the selection bias 

so that certain population quantities may be consistently estimated based on the biased 

sample. When a missingness model includes 𝑦𝑦𝑖𝑖,(𝑖𝑖−1) as 𝒁𝒁𝑖𝑖,(𝑖𝑖−1), the missing 𝑦𝑦𝑖𝑖,(𝑖𝑖−1) are 

imputed using 𝜇𝜇𝑖𝑖,(𝑖𝑖−1)
 �𝜷𝜷�wGEE𝑠𝑠 � derived from equation (1) �𝑦𝑦�𝑖𝑖,(𝑖𝑖−1)

 = 𝑅𝑅𝑖𝑖,(𝑖𝑖−1)𝑦𝑦𝑖𝑖,(𝑖𝑖−1) +

(1 − 𝑅𝑅𝑖𝑖,(𝑖𝑖−1))𝜇𝜇𝑖𝑖,(𝑖𝑖−1)
 �𝜷𝜷�wGEE𝑠𝑠 ��. Thus, the predicted value 𝜋𝜋𝑖𝑖𝑖𝑖𝑠𝑠 �𝜶𝜶�𝑠𝑠,𝜷𝜷�wGEE𝑠𝑠 � is estimated 

using 𝜇𝜇𝑖𝑖,(𝑖𝑖−1)
 �𝜷𝜷�wGEE𝑠𝑠 �.  

Let 𝑚𝑚 = ∑ ∑ 𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1  denote the total number of observed measurements over 

the time points. By maximizing ∏ ∏ 𝑤𝑤𝑖𝑖𝑖𝑖
𝑛𝑛𝑖𝑖
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1  subject to the constraints in equation (5) 

using Lagrange multipliers, the following set of equations can be obtained: 

𝑤𝑤�𝑖𝑖𝑖𝑖 = 1
𝑚𝑚

× 1
1+𝝀𝝀�T𝒈𝒈�𝑖𝑖𝑖𝑖(𝜶𝜶�,𝜷𝜷�GEE,𝜷𝜷�wGEE,𝜸𝜸�𝑖𝑖𝑗𝑗)

,  (6) 

∑ ∑ 𝑤𝑤�𝑖𝑖𝑖𝑖𝒈𝒈�𝑖𝑖𝑖𝑖�𝜶𝜶�,𝜷𝜷�GEE,𝜷𝜷�wGEE,𝜸𝜸�𝑖𝑖𝑖𝑖�
𝑛𝑛𝑖𝑖
𝑖𝑖=1 = 𝟎𝟎𝑁𝑁

𝑖𝑖=1 ,   

1
𝑚𝑚
∑ ∑ 𝒈𝒈�𝑖𝑖𝑖𝑖(𝜶𝜶�,𝜷𝜷�GEE,𝜷𝜷�wGEE,𝜸𝜸�𝑖𝑖𝑗𝑗)

1+𝝀𝝀T𝒈𝒈�𝑖𝑖𝑖𝑖(𝜶𝜶�,𝜷𝜷�GEE,𝜷𝜷�wGEE,𝜸𝜸�𝑖𝑖𝑗𝑗)
𝑛𝑛𝑖𝑖
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1 = 𝟎𝟎,  (7) 

𝝀𝝀� = arg min
𝝀𝝀∈𝒟𝒟𝑚𝑚

𝑭𝑭𝑚𝑚(𝝀𝝀),   

where 𝝀𝝀 is an (𝑆𝑆 + 𝑢𝑢𝐾𝐾)-dimensional Lagrange multiplier vector, corresponding to the 



 
 

 

functions 𝒈𝒈�𝑖𝑖𝑖𝑖�𝜶𝜶� ,𝜷𝜷�GEE,𝜷𝜷�wGEE,𝜸𝜸�𝑖𝑖𝑖𝑖� (Owen 2001). To estimate 𝝀𝝀, we define 𝑭𝑭𝑚𝑚(𝝀𝝀) =

−𝑚𝑚−1 ∑ ∑ log�1 + 𝝀𝝀T𝒈𝒈�𝑖𝑖𝑖𝑖�𝜶𝜶�,𝜷𝜷�GEE,𝜷𝜷�wGEE,𝜸𝜸�𝑖𝑖𝑖𝑖��
𝑛𝑛𝑖𝑖
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1  and let 𝒟𝒟𝑚𝑚 = �𝝀𝝀: 1 +

𝝀𝝀T𝒈𝒈�𝑖𝑖𝑖𝑖�𝜶𝜶�,𝜷𝜷�GEE,𝜷𝜷�wGEE,𝜸𝜸�𝑖𝑖𝑖𝑖� > 0� (Han 2014). It is easy to see that ∂𝑭𝑭𝑚𝑚(𝝀𝝀) 𝜕𝜕𝝀𝝀⁄ = 0  

because of equation (7). The estimate 𝝀𝝀� minimizes 𝑭𝑭𝑚𝑚(𝝀𝝀) in 𝒟𝒟𝑚𝑚. Here, the existence 

and uniqueness of 𝝀𝝀� are guaranteed by the strict convexity of 𝐹𝐹𝑚𝑚(𝝀𝝀) on 𝒟𝒟𝑚𝑚. Let 𝜋𝜋𝑖𝑖𝑖𝑖1 (𝜶𝜶1) 

denote a correctly specified missingness model and 𝜶𝜶01 denote the true value of 𝜶𝜶1. As 

in the method of Han (2014), 𝝀𝝀� = (�̂�𝜆1, … , �̂�𝜆𝑆𝑆+𝑢𝑢𝐾𝐾)T can be rewritten as �̂�𝜆1 =

𝜅𝜅�1+1
𝜃𝜃1�𝜶𝜶�1,𝜷𝜷�wGEE

1 �
, �̂�𝜆𝑙𝑙 = 𝜅𝜅�𝑙𝑙

𝜃𝜃1�𝜶𝜶�1,𝜷𝜷�wGEE
1 �

 {𝑙𝑙 = 2, … , (𝑆𝑆 + 𝑢𝑢𝐾𝐾)}, where 𝜿𝜿 is an (𝑆𝑆 + 𝑢𝑢𝐾𝐾)-

dimensional Lagrange multiplier vector defined in Appendix A and 𝜿𝜿� converges to 𝟎𝟎 in 

probability when any one of the missingness models is correctly specified. Thus, 𝑤𝑤�𝑖𝑖𝑖𝑖 

can be also described as follows: 

𝑤𝑤�𝑖𝑖𝑖𝑖 = 1
𝑚𝑚

× 1
1+𝝀𝝀�T𝒈𝒈�𝑖𝑖𝑖𝑖�𝜶𝜶�,𝜷𝜷�GEE,𝜷𝜷�wGEE,𝜸𝜸�𝑖𝑖𝑗𝑗�

= 1
𝑚𝑚

×
𝜃𝜃1�𝜶𝜶�1,𝜷𝜷�wGEE

1 � 𝜋𝜋𝑖𝑖𝑖𝑖
1 �𝜶𝜶�1��

1+𝜿𝜿�T𝒈𝒈�𝑖𝑖𝑖𝑖�𝜶𝜶�,𝜷𝜷�GEE,𝜷𝜷�wGEE,𝜸𝜸�𝑖𝑖𝑗𝑗� 𝜋𝜋𝑖𝑖𝑖𝑖
1 (𝜶𝜶�1)�

. 

The details are provided in Appendix A. 

2.6 Proposed Estimator: EL wGEE 

Using the weights 𝑤𝑤�𝑖𝑖𝑖𝑖 described in the previous section, we define the EL wGEE as 

𝑺𝑺( 𝜷𝜷EL) = ∑ 𝜕𝜕{𝝁𝝁𝑖𝑖(𝜷𝜷EL)}T

𝜕𝜕𝜷𝜷EL
(𝑽𝑽𝑖𝑖)−1𝑾𝑾EL,𝑖𝑖{𝒀𝒀𝑖𝑖 − 𝝁𝝁𝑖𝑖(𝜷𝜷EL)}𝑁𝑁

𝑖𝑖=1 = 𝟎𝟎. (8) 



 

As in equation (1), 𝑾𝑾EL,𝑖𝑖 is a 𝑇𝑇 × 𝑇𝑇 diagonal matrix with the jth diagonal element being 

𝑅𝑅𝑖𝑖𝑖𝑖𝑤𝑤�𝑖𝑖𝑖𝑖. The solution to equation (8) can be obtained using the Newton–Raphson 

method. As in Han (2014), the proposed estimator has multiple robustness property. 

Theorem 1. The proposed estimator 𝜷𝜷�𝐸𝐸𝐸𝐸 is consistent if any one of a set of S 

missingness models or K imputation models is correctly specified (see Appendixes A 

and B).  

As several models need to be defined and estimates need to be prepared to 

execute the proposed method, the procedure is summarized as follows: 

(1) Define S missingness models 𝜋𝜋𝑖𝑖𝑖𝑖𝑠𝑠 (𝜶𝜶�𝑠𝑠) and K imputation models 𝜙𝜙𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (𝜸𝜸�𝑖𝑖𝑖𝑖𝑖𝑖 ).  

(2) If auxiliary variables are included in the missingness model, perform the wGEE 

analysis with 𝜋𝜋𝑖𝑖𝑖𝑖𝑠𝑠 (𝜶𝜶�𝑠𝑠), and calculate 𝜇𝜇𝑖𝑖,(𝑖𝑖−1)
 �𝜷𝜷�wGEE𝑠𝑠 �. 

(3) Perform GEE analysis where the missing response variable 𝑦𝑦𝑖𝑖𝑖𝑖 is imputed with 

𝜙𝜙𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (𝜸𝜸�𝑖𝑖𝑖𝑖𝑖𝑖 ), and calculate 𝑺𝑺𝑖𝑖𝑖𝑖𝑖𝑖 �𝜷𝜷�GEE𝑖𝑖 ,𝜸𝜸�𝑖𝑖𝑖𝑖𝑖𝑖 �. 

(4) Using 𝜋𝜋𝑖𝑖𝑖𝑖𝑠𝑠 �𝜶𝜶�𝑠𝑠,𝜷𝜷�wGEE𝑠𝑠 � and 𝑺𝑺𝑖𝑖𝑖𝑖𝑖𝑖 �𝜷𝜷�GEE𝑖𝑖 ,𝜸𝜸�𝑖𝑖𝑖𝑖𝑖𝑖 � for all the participants at all the time 

points, calculate 𝜃𝜃𝑠𝑠�𝜶𝜶�𝑠𝑠,𝜷𝜷�wGEE𝑠𝑠 �, 𝝃𝝃𝑖𝑖�𝜷𝜷�GEE𝑖𝑖 ,𝜸𝜸�𝑖𝑖𝑖𝑖𝑖𝑖 �, and 𝒈𝒈�𝑖𝑖𝑖𝑖�𝜶𝜶�,𝜷𝜷�GEE,𝜷𝜷�wGEE,𝜸𝜸�𝑖𝑖𝑖𝑖� 

using equation (5). 

(5) Estimate 𝝀𝝀� using equation (7), and calculate weight 𝑤𝑤�𝑖𝑖𝑖𝑖 using equation (6). 

(6) Perform an EL wGEE analysis with weight 𝑤𝑤�𝑖𝑖𝑖𝑖, and obtain 𝜷𝜷�EL. 



 
 

 

If no missingness model is specified, 𝜋𝜋𝑖𝑖𝑖𝑖𝑠𝑠 (𝜶𝜶�𝑠𝑠), 𝜇𝜇𝑖𝑖,(𝑖𝑖−1)
 �𝜷𝜷�wGEE𝑠𝑠 �, and 𝜃𝜃𝑠𝑠�𝜶𝜶�𝑠𝑠,𝜷𝜷�wGEE𝑠𝑠 � are 

not calculated. In addition, if no imputation model is specified, 𝜙𝜙𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (𝜸𝜸�𝑖𝑖𝑖𝑖𝑖𝑖 ), 

𝑺𝑺𝑖𝑖𝑖𝑖𝑖𝑖 �𝜷𝜷�GEE𝑖𝑖 ,𝜸𝜸�𝑖𝑖𝑖𝑖𝑖𝑖 �, and 𝝃𝝃𝑖𝑖�𝜷𝜷�GEE𝑖𝑖 ,𝜸𝜸�𝑖𝑖𝑖𝑖𝑖𝑖 � are not calculated. 

To derive the asymptotic variance of 𝜷𝜷�EL, as in the method of Han (2014), the 

first-order Taylor expansion of the EL wGEE around �𝟎𝟎T,𝜶𝜶∗T,𝜷𝜷GEE,∗
T ,𝜸𝜸𝑖𝑖𝑖𝑖,∗

T ,𝜷𝜷0T� is a 

possible approach (Tsiatis 2006), where 𝜶𝜶∗T
 = {(𝜶𝜶∗1)T, … , (𝜶𝜶∗𝑆𝑆)T}, 𝜷𝜷GEE,∗

T  =

��𝜷𝜷GEE,∗
1 �

T
, … , �𝜷𝜷GEE,∗

𝐾𝐾 �
T
�  , and 𝜸𝜸𝑖𝑖𝑖𝑖,∗

T  = ��𝜸𝜸𝑖𝑖𝑖𝑖,∗
1 �

T
, … , �𝜸𝜸𝑖𝑖𝑖𝑖,∗

𝐾𝐾 �
T
� denote the probability 

limits of 𝜶𝜶�T = {(𝜶𝜶�1)T, … , (𝜶𝜶�𝑆𝑆)T}, 𝜷𝜷�GEET  
= ��𝜷𝜷�GEE1 �

T
, … , �𝜷𝜷�GEE𝐾𝐾 �

T
�  , and 𝜸𝜸�𝑖𝑖𝑖𝑖T

 =

��𝜸𝜸�𝑖𝑖𝑖𝑖1 �
T

, … , �𝜸𝜸�𝑖𝑖𝑖𝑖𝐾𝐾 �
T
�, and the parameter 𝜷𝜷0 is defined as the true value. We derived two 

formulas for the asymptotic variance of 𝜷𝜷�EL under the assumption that 𝜿𝜿,𝜶𝜶, and 𝜸𝜸𝑖𝑖𝑖𝑖are 

known/unknown parameters. The detailed explanation is presented in Web Appendix A 

of Supporting information. Under the assumption that each parameter is an unknown 

parameter and all auxiliary variables are observed, we derived the asymptotic variance 

estimator 𝑽𝑽emp1 and confirmed that the comparison of efficiency between 𝜷𝜷�EL and 

𝜷𝜷�wGEE is inconclusive (see Web Appendix A of Supporting information). As the 

asymptotic variance estimator 𝑽𝑽emp1 is valid only when any one of the missingness 

models is correctly specified, we additionally derived the asymptotic variance estimator 

𝑽𝑽emp2 under the assumption that 𝜿𝜿,𝜶𝜶, and 𝜸𝜸𝑖𝑖𝑖𝑖  are known parameters.  



 

Theorem 2. Under the assumption that 𝜿𝜿,𝜶𝜶,𝑑𝑑𝑛𝑛𝑑𝑑 𝜸𝜸𝑖𝑖𝑖𝑖 are known parameters,  

√𝑁𝑁�𝜷𝜷�EL − 𝜷𝜷0�  
𝐷𝐷
→𝑁𝑁 �0, �E �𝜕𝜕𝑸𝑸𝑖𝑖

𝜕𝜕𝜷𝜷
��

−1
E�𝑸𝑸𝑖𝑖𝑸𝑸𝑖𝑖

T� ��E �𝜕𝜕𝑸𝑸𝑖𝑖
𝜕𝜕𝜷𝜷
��

−1

�
T

�  

=  𝑁𝑁�0, E(𝑩𝑩𝑖𝑖)−1E�𝑸𝑸𝑖𝑖𝑸𝑸𝑖𝑖
T�{E(𝑩𝑩𝑖𝑖)−1}T�,   (9) 

where 𝑸𝑸𝑖𝑖 = 𝜕𝜕�𝝁𝝁𝑖𝑖�𝜷𝜷�EL��
T

𝜕𝜕𝜷𝜷
(𝑽𝑽𝑖𝑖)−1𝑾𝑾EL,𝑖𝑖�𝒀𝒀𝑖𝑖 − 𝝁𝝁𝑖𝑖(𝜷𝜷�EL)� and  

𝑩𝑩𝑖𝑖 = 𝜕𝜕�𝝁𝝁𝑖𝑖(𝜷𝜷�EL)�T

𝜕𝜕𝜷𝜷
(𝑽𝑽𝑖𝑖)−1𝑾𝑾EL,𝑖𝑖

𝜕𝜕𝝁𝝁𝑖𝑖(𝜷𝜷�EL)
𝜕𝜕𝜷𝜷

.  

We also suggest a bootstrapping method as alternative to calculate the variance of 𝜷𝜷�EL. 

3 Simulation Studies 

We performed Monte Carlo simulations to evaluate the performance of the proposed 

method and estimated the bias, standard error (SE), mean square error (MSE), and type-

1 error rate. We set the sample size n to 75 or 150 in each treatment group with 1000 

Monte Carlo simulations. In the simulation study, we primarily investigated the 

following considerations: (1) whether EL wGEE exhibits multiple robustness compared 

to the bias of logistic regression and GEE; (2) whether the efficiency of EL wGEE is 

comparable to that of wGEE when the missingness model is correctly specified; and (3) 

whether EL wGEE exhibits adequate performance compared to that of AIPW when 



 
 

 

multiple models are specified. 

3.1 Simulation Datasets 

We generated the full dataset for correlated binary outcomes 𝑦𝑦𝑖𝑖𝑖𝑖  (𝑗𝑗 = 1, 2, 3, 4) using 

Lee’s method (1997). The marginal model for 𝑦𝑦𝑖𝑖𝑖𝑖 was defined as logit�𝑃𝑃(𝑦𝑦𝑖𝑖𝑖𝑖 = 1)� =

𝛽𝛽0 + 𝛽𝛽TRT𝑋𝑋TRT,𝑖𝑖 + 𝛽𝛽1𝑖𝑖 + 𝛽𝛽2𝑖𝑖𝑋𝑋TRT,𝑖𝑖 + 𝛽𝛽3𝑋𝑋BL,𝑖𝑖. The model had four independent design 

variables: the treatment 𝑋𝑋TRT,𝑖𝑖 (group A: 1, group B: 0), time points, interactions 

between the treatment and time points, and baseline covariate 𝑋𝑋BL,𝑖𝑖, which was 

generated from 𝑁𝑁(0, 2). The parameters 𝛽𝛽TRT = 1.5,  𝛽𝛽14= 𝛽𝛽24=0,  𝛽𝛽3 = 0.2, and the 

other parameters were obtained from the given marginal response rates over time, and 

were considered under two scenarios as follows: 

Scenario Response rate at time points 1, 2, 3, 4 

Low-response 0.25   0.31   0.38   0.48 for group A 

0.14   0.15   0.17   0.17 for group B 

High-response 0.27   0.43   0.73   0.82 for group A 

0.18   0.21   0.50   0.50 for group B 

 

The within-subject correlation structure was set as the autoregressive (1) type, 

and the correlation parameter 𝜌𝜌 was set to 0.5, which was set based on the plaque 

psoriasis study data. In this simulation, our primary objective was to evaluate the 



 

estimation efficiency (bias, SE, and MSE) of the treatment effect at j = 4, which 

corresponds to 𝛽𝛽TRT = 1.5. In addition, a type-1 error rate was evaluated by 

additionally generating null-hypothesis datasets for 𝛽𝛽TRT = 0, 𝛽𝛽21 = 𝛽𝛽22 = 𝛽𝛽23 =

𝛽𝛽24 = 0.  

We assumed a monotone missing data pattern, and the true missingness model 

was logit�P (𝑅𝑅𝑖𝑖𝑖𝑖 = 1�𝑅𝑅𝑖𝑖,(𝑖𝑖−1) = 1)� = 𝛼𝛼0 + 𝛼𝛼1𝑋𝑋TRT,𝑖𝑖 + 𝛼𝛼2𝑦𝑦𝑖𝑖,(𝑖𝑖−1) + 𝛼𝛼3𝑧𝑧𝑖𝑖,(𝑖𝑖−1), where 

𝑅𝑅𝑖𝑖𝑖𝑖 denotes the indicator variable for observing 𝑦𝑦𝑖𝑖𝑖𝑖 and 𝑧𝑧𝑖𝑖𝑖𝑖, and 𝑦𝑦𝑖𝑖,(𝑖𝑖−1) and 𝑧𝑧𝑖𝑖,(𝑖𝑖−1) are 

auxiliary variables. An auxiliary variable 𝑧𝑧𝑖𝑖𝑖𝑖  (𝑗𝑗 = 1,2,3) was generated from 𝑦𝑦𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖, 

𝜀𝜀𝑖𝑖𝑖𝑖~𝑁𝑁(0,0.5). The indicator variables 𝑅𝑅𝑖𝑖𝑖𝑖 were generated from six different missingness 

models determined by 𝛼𝛼 = (𝛼𝛼0,𝛼𝛼1,𝛼𝛼2,𝛼𝛼3). The six missing data mechanisms were 

given by (pt1) 𝛼𝛼 = (𝛼𝛼0,−1,−1,−1), (pt2) 𝛼𝛼 = (𝛼𝛼0,−1,1,1), (pt3) 𝛼𝛼 =

(𝛼𝛼0, 1,−1,−1), (pt4) 𝛼𝛼 = (𝛼𝛼0, 0,−1,−1), (pt5) 𝛼𝛼 = (𝛼𝛼0, 1,1,1), and (pt6) 𝛼𝛼 =

(𝛼𝛼0, 0,1,1), where the magnitudes of parameters 𝛼𝛼2 and 𝛼𝛼3 were set based on the 

plaque psoriasis study’s auxiliary variables. In addition, we considered two missing data 

proportions at the last time point j = 4 as follows: (i) 15% (moderate missing data 

scenario) and (ii) 30% (high missing data scenario). These two missing data scenarios 

were adjusted from 𝛼𝛼0. 

3.2 Estimators 

We specified a correct/misspecified model for the missingness model and the 



 
 

 

imputation model for 𝑦𝑦𝑖𝑖𝑖𝑖, respectively. The correct missingness model 𝜋𝜋𝑖𝑖𝑖𝑖1 (𝜶𝜶1) was 

defined as logit�P (𝑅𝑅𝑖𝑖𝑖𝑖 = 1�𝑅𝑅𝑖𝑖,(𝑖𝑖−1) = 1)� = 𝛼𝛼01 + 𝛼𝛼11𝑋𝑋TRT,𝑖𝑖 + 𝛼𝛼21𝑦𝑦𝑖𝑖,(𝑖𝑖−1) + 𝛼𝛼31𝑧𝑧𝑖𝑖,(𝑖𝑖−1), 

where missing 𝑦𝑦𝑖𝑖,(𝑖𝑖−1)  and 𝑧𝑧𝑖𝑖,(𝑖𝑖−1) were imputed using predicted values derived from 

wGEE in the proposed method (Section 2.5), and the correct imputation model 

𝜙𝜙𝑖𝑖𝑖𝑖𝑖𝑖1 (𝜸𝜸𝑖𝑖𝑖𝑖1 ) was defined as logit�P (𝑦𝑦𝑖𝑖𝑖𝑖 = 1)� = 𝛾𝛾0,𝑖𝑖𝑖𝑖
1 + 𝛾𝛾1,𝑖𝑖𝑖𝑖

1 𝑋𝑋TRT,𝑖𝑖 + 𝛾𝛾2,𝑖𝑖𝑖𝑖
1 𝑋𝑋BL,𝑖𝑖 +

�𝜸𝜸3,𝑖𝑖𝑖𝑖
1 �

T
𝒀𝒀�𝑖𝑖,(𝑖𝑖−1), where 𝒀𝒀�𝑖𝑖,(𝑖𝑖−1) = �𝑦𝑦�𝑖𝑖1, … , 𝑦𝑦�𝑖𝑖,(𝑖𝑖−1)�

T
, 𝑦𝑦�𝑖𝑖,(𝑖𝑖−1) = 𝑅𝑅𝑖𝑖,(𝑖𝑖−1)𝑦𝑦𝑖𝑖,(𝑖𝑖−1) +

�1 − 𝑅𝑅𝑖𝑖,(𝑖𝑖−1)�𝜙𝜙𝑖𝑖,(𝑖𝑖−1),𝑖𝑖
1 (𝜸𝜸�(𝑖𝑖−1),𝑖𝑖

1 ). To achieve asymptotic unbiasedness, it is important to 

include auxiliary variable 𝒀𝒀�𝑖𝑖,(𝑖𝑖−1) in the imputation model because, under MAR, 

𝒀𝒀�𝑖𝑖,(𝑖𝑖−1) contains information on the missing data 𝑦𝑦𝑖𝑖𝑖𝑖. The misspecified missingness 

model 𝜋𝜋𝑖𝑖𝑖𝑖2 (𝜶𝜶2) was defined as logit�P (𝑅𝑅𝑖𝑖𝑖𝑖 = 1�𝑅𝑅𝑖𝑖,(𝑖𝑖−1) = 1)� = 𝛼𝛼02 + 𝛼𝛼12𝑋𝑋1,𝑖𝑖, and the 

misspecified imputation model 𝜙𝜙𝑖𝑖𝑖𝑖𝑖𝑖2 (𝜸𝜸𝑖𝑖𝑖𝑖2 ) was defined as logit�P (𝑦𝑦𝑖𝑖𝑖𝑖 = 1)� = 𝛾𝛾0,𝑖𝑖𝑖𝑖
2 +

𝛾𝛾1,𝑖𝑖𝑖𝑖
2 𝑋𝑋TRT,𝑖𝑖 + 𝛾𝛾2,𝑖𝑖𝑖𝑖

2 𝑋𝑋1,𝑖𝑖. The covariate 𝑋𝑋1,𝑖𝑖 was generated as exp (𝜁𝜁1), where 𝜁𝜁1 ∽ 

𝑁𝑁(0.1,0.5) for the misspecified model. In the GEEs model, we fit the correctly 

specified model as logit�P(𝑦𝑦𝑖𝑖𝑖𝑖 = 1)� = 𝛽𝛽0 + 𝛽𝛽TRT𝑋𝑋TRT,𝑖𝑖 + 𝛽𝛽1𝑖𝑖 + 𝛽𝛽2𝑖𝑖𝑋𝑋TRT,𝑖𝑖 + 𝛽𝛽3𝑋𝑋BL,𝑖𝑖, 

except that we specified the correlation structure as unstructured and imposed the 

constraint that the parameter for time point 4 be equal to zero (𝛽𝛽14 = 𝛽𝛽24 = 0) in order 

to make �̂�𝛽TRT the treatment effect at time point 4.  

For comparison with the proposed estimator (EL wGEE), 𝛽𝛽TRT was also 

estimated using a logistic regression model (CLUDE), GEE (Liang and Zeger 1986), 



 

wGEE (Robins et al. 1995), and the AIPW method (Seaman and Copas 2009). In 

CLUDE, the outcome model was defined as logit{𝜇𝜇𝑖𝑖4(𝑿𝑿𝑖𝑖,𝜷𝜷)} = 𝛽𝛽INT + 𝛽𝛽TRT𝑋𝑋TRT,𝑖𝑖 +

𝛽𝛽BL𝑋𝑋BL,𝑖𝑖.  

3.3 Simulation Results 

For each of the 48 ways that data were generated (Low/High-response rate × six 

missing data mechanisms × 15%/30% missing data proportion × two pattern of sample 

size for 75/150 per treatment group), we compared the five methods of analysis. Of 

these six missing data mechanisms, all analysis methods using the coarsened datasets 

from (pt5) 𝛼𝛼 = (𝛼𝛼0, 1,1,1) and (pt6) 𝛼𝛼 = (𝛼𝛼0, 0,1,1) had unbiased estimates of 𝛽𝛽TRT, 

thus, the results for these two scenarios are not shown.  

 

When estimating the parameters of missingness/imputation models, quasi-

complete separation occurred in some simulation datasets. Those datasets were 

therefore excluded from the analysis. The number of quasi-complete separations is 

shown in Web Appendix B of Supporting information. We consider that the impact of 

excluding these datasets on the performance evaluation of each analysis method is 

small. We checked the distribution of the remaining datasets (i.e., this excluded the 

datasets in which quasi-complete separation occurred) and found that the mean values 

of �̂�𝛽TRT in the complete datasets were similar among the 1000 Monte Carlo datasets and 



 
 

 

the remaining datasets (the difference in the mean values of �̂�𝛽TRT ranged from 0.0001 to 

0.001). This implies that there are no characteristic differences among the 1000 Monte 

Carlo datasets and the remaining datasets. In addition, the quasi-complete separations in 

each scenario (except missing mechanism of pattern 2) were approximately less than 10 

out of 1000 datasets; thus, we consider that the performance of each estimator could be 

evaluated with the remaining datasets. We report the simulation results for the scenario 

of 30% missing data proportion and 𝑛𝑛 = 150 because the pattern of bias, SE, MSE, and 

type-1 error rate in the scenario of 15% missing data proportion and 𝑛𝑛 = 75  were 

similar, but the bias was smaller in the scenario of 15% missing data proportion. These 

results for the scenario of 15% missing data proportion and 𝑛𝑛 = 75  are summarized in 

the Web Appendix. As discussed by Emerson and Owen (2009) and Han (2014), the 

empirical likelihood method may be problematic when the sample size is small, in 

which case 0 may not be in the convex hull of 𝒈𝒈�𝑖𝑖𝑖𝑖�𝜶𝜶�,𝜷𝜷�GEE,𝜷𝜷�wGEE,𝜸𝜸�𝑖𝑖𝑖𝑖�. In the 

simulation studies, there was no difficulty with estimating parameter 𝝀𝝀�. 

Figure 2 reports on the bias of �̂�𝛽TRT for 𝑛𝑛 = 150 and 30% missing data 

proportion. The notation of these estimators includes the names of the estimators and 

the model specification, which have the form “method-0000.” Each digit in the four-

digit number, from left to right, indicates whether or not 

𝜋𝜋𝑖𝑖𝑖𝑖1 (𝜶𝜶1),𝜋𝜋𝑖𝑖𝑖𝑖2 (𝜶𝜶2),𝜙𝜙𝑖𝑖𝑖𝑖𝑖𝑖1 �𝜸𝜸𝑖𝑖𝑖𝑖1 �,  or 𝜙𝜙𝑖𝑖𝑖𝑖𝑖𝑖2 (𝜸𝜸𝑖𝑖𝑖𝑖2 ) is included, where “1” indicates “included” 

and “0” indicates “not included.” In the simulation results, EL wGEE exhibited better 



 

performance when a correct model was included among the missingness or imputation 

models compared to when only misspecified models were included, excluding pt3 of the 

low-response rate datasets.  

wGEE exhibited similar performance to that of EL wGEE under the correctly 

specified missingness model.  

AIPW exhibited similar performance to that of EL wGEE in most of the 

scenarios, especially when one missingness model and one imputation model are 

specified and both models are correctly specified (i.e., EL wGEE-1010 and AIPW-

1010). The similarity of the estimators is explained in Appendix C. Interestingly, the 

bias for AIPW was larger than that for EL wGEE when only the imputation model was 

correctly specified (i.e., AIPW-0110) in the pt1, pt3, and pt4 of the high-response rate 

datasets. In addition, the bias for AIPW was larger than that for EL wGEE when both 

missingness and imputation models were misspecified (AIPW-0101). When there is a 

higher risk of misspecification for the missingness model, EL wGEE may be more 

robust than AIPW and wGEE. 

Although GEE resulted in biased estimates in most of the scenarios, as expected, 

GEE interestingly exhibited better performance than EL wGEE in pt3 of the low-

response rate datasets and pt2 of the high-response rate datasets. The pt2 (𝛼𝛼 =

(𝛼𝛼0,−1,1,1)) describes a situation in which subjects who are treated with an active drug 

are vulnerable to dropout because of an adverse event and an outcome is assumed to be 



 
 

 

an indicator of improvement (i.e., if 𝑦𝑦𝑖𝑖𝑖𝑖 = 0, the subject is at a higher risk of dropout). 

The pt3 (𝛼𝛼 = (𝛼𝛼0, 1,−1,−1)) describes a situation in which subjects who are treated 

with a placebo is vulnerable to dropout because of lack of efficacy and an outcome is 

assumed as an indicator of worsening of symptoms (i.e., if 𝑦𝑦𝑖𝑖𝑖𝑖 = 1, the subject is at a 

higher risk of dropout). In addition, GEE also exhibited better performance than wGEE 

when the missingness model was misspecified. Thus, in some scenarios, GEE might be 

applied in missing longitudinal data analysis. 

Web Tables 5 to 8 of Supporting information report on the SEs of �̂�𝛽TRT 

�∑ 𝑆𝑆𝑆𝑆𝛽𝛽�TRT,𝑖𝑖
1000
𝑖𝑖=1 1000⁄ �. The SEs of EL wGEE were calculated based on equation (9). 

The SEs of AIPW were also calculated using the sandwich estimator under the 

assumption that both the missingness and imputation models are correct (Seaman and 

Copas 2009, p. 944). In addition, the empirical SE, which is the standard deviation in a 

1000 replication parameter estimate �̂�𝛽TRT, is shown to confirm the validity of these SEs. 

Although the SEs of EL wGEE, AIPW, and wGEE were similar to or slightly larger 

than those of CLUDE and GEE, the difference became smaller in the scenario of 15% 

missing data proportion (Web Tables 6 and 8). We expected that the efficiency (SEs) of 

the EL wGEE method would be improved owing to use of the longitudinal response 

variable; however, adding weights to the estimating equations may have a greater 

influence on the estimation efficiency.  



 

Figure 3 reports on the MSEs of �̂�𝛽TRT for 𝑛𝑛 = 150 and 30% missing data 

proportion �∑ ��̂�𝛽TRT,𝒊𝒊 − 𝛽𝛽TRT�
21000

𝑖𝑖=1 1000⁄ �. Overall, although the results of MSEs were 

similar to that of SEs, the MSEs of EL wGEE were comparative to those of CLUDE 

even under 30% missing data proportion. Other results are summarized in Web Tables 9 

to 12 of Supporting information. The results indicate that the degree of inefficiency of 

EL wGEE relative to the CLUDE or GEE estimator depends on the proportion of 

missing data. At least, the impact on efficiency was small in applying the proposed 

methods in this setting. 

Figure 4 reports on the Type-1 error rate (using null-hypothesis datasets for 

𝛽𝛽TRT = 0, 𝛽𝛽21 = 𝛽𝛽22 = 𝛽𝛽23 = 𝛽𝛽24 = 0). In general, the Type-I error rates of EL wGEE 

approximately ranged from 4% to 6% and were similar to those of other methods in 

each scenario. 

 

4 Application: Plaque Psoriasis Phase III Study 

In this section, we describe the application of the proposed method to the Plaque 

Psoriasis Phase III Study. In total, 542 participants were randomized in a 2:1 ratio to the 

M518101 or placebo group. Efficacy assessments were taken at baseline, Weeks 2, 4, 6, 

and 8. The primary endpoint was the success rate based on the IGA score at Week 8. In 

other efficacy outcomes, we evaluated the modified Psoriasis Area and Severity Index 



 
 

 

(mPASI, in the range 0-no disease to 64.8-maximal disease) and itch score (on a scale 

from 0-None to 3-Severe). The treatment effect �̂�𝛽TRT was estimated using the CLUDE 

for the complete case, GEE, wGEE, AIPW and the proposed estimator (EL wGEE). Let 

𝑋𝑋TRT denote the treatment (M518101 = 1, placebo = 0) and 𝑋𝑋BL the baseline mPASI 

score. We used three auxiliary variables 𝒁𝒁 = (𝑍𝑍1,𝑍𝑍2,𝑍𝑍3), where 𝑍𝑍1,𝑍𝑍2, and 𝑍𝑍3 indicate 

the success rate according to the IGA score, mPASI score, and itch score at a previous 

visit, respectively.  

It is desirable to include all the components of the auxiliary valuables and the 

interactions in one missingness model and one imputation model; however, this was not 

feasible in this case, due to the quasi-complete separation for the binary outcome model. 

Nevertheless, the proposed estimator was able to address this issue via multiple 

modeling. The missingness model was logit� P(𝑅𝑅𝑖𝑖𝑖𝑖 = 1�𝑅𝑅𝑖𝑖,(𝑖𝑖−1) = 1,𝑿𝑿𝑖𝑖,𝒁𝒁𝑖𝑖,(𝑖𝑖−1))� =

𝛼𝛼0𝑠𝑠 + 𝛼𝛼1𝑠𝑠𝑋𝑋TRT,𝑖𝑖 + 𝛼𝛼2𝑠𝑠𝑋𝑋BL,𝑖𝑖 + 𝛼𝛼3𝑖𝑖𝑠𝑠 + 𝛼𝛼4𝑠𝑠𝑋𝑋TRT,𝑖𝑖 × 𝑋𝑋BL,𝑖𝑖 + 𝛼𝛼5𝑠𝑠𝒁𝒁𝑖𝑖,(𝑖𝑖−1), where the two 

missingness models (s = 1, 2) were set as follows: 𝜋𝜋𝑖𝑖𝑖𝑖1 (𝜶𝜶1) with auxiliary variables 

𝑍𝑍1,𝑍𝑍2 , and 𝑋𝑋TRT × 𝑍𝑍2, and 𝜋𝜋𝑖𝑖𝑖𝑖2 (𝜶𝜶2) with an auxiliary variables  𝑍𝑍3, and 𝑋𝑋TRT × 𝑍𝑍3. The 

imputation model for 𝑦𝑦𝑖𝑖𝑖𝑖 was logit�P (𝑦𝑦𝑖𝑖𝑖𝑖 = 1�𝑿𝑿𝑖𝑖 ,𝒁𝒁𝑖𝑖,(𝑖𝑖−1))� = 𝜙𝜙𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (𝜸𝜸𝑖𝑖𝑖𝑖𝑖𝑖 ) = 𝜸𝜸0𝑖𝑖𝑖𝑖𝑖𝑖 +

𝜸𝜸1𝑖𝑖𝑖𝑖𝑖𝑖 𝑋𝑋TRT,𝑖𝑖 + 𝜸𝜸2𝑖𝑖𝑖𝑖𝑖𝑖 𝑋𝑋BL,𝑖𝑖 + 𝜸𝜸3𝑖𝑖𝑖𝑖𝑖𝑖 𝒁𝒁𝑖𝑖,(𝑖𝑖−1). As with the missingness model, the two 

imputation models (k = 1, 2) were set as follows: 𝜙𝜙𝑖𝑖𝑖𝑖𝑖𝑖1 (𝜸𝜸𝑖𝑖𝑖𝑖1 ) with auxiliary variables 



 

𝑍𝑍1, and 𝑍𝑍2, and 𝜙𝜙𝑖𝑖𝑖𝑖𝑖𝑖2 (𝜸𝜸𝑖𝑖𝑖𝑖2 ) with an auxiliary variable  𝑍𝑍3. The GEE analysis was 

performed using the same settings as in Section 3. 

As running example, the proposed method was performed as follows: 

(1) Estimated the parameter of missingness models for 𝜈𝜈𝑖𝑖𝑖𝑖1 (𝜶𝜶1) and calculated 

values of 𝜋𝜋𝑖𝑖𝑖𝑖1 (𝜶𝜶�1) in each participant and time point {𝑖𝑖 = 1, … ,𝑁𝑁, 𝑗𝑗 = 1, … ,𝑛𝑛𝑖𝑖  }. 

The same analysis was performed with 𝜈𝜈𝑖𝑖𝑖𝑖2 (𝜶𝜶2), and calculated values of 

𝜋𝜋𝑖𝑖𝑖𝑖2 (𝜶𝜶�𝟐𝟐). 

(2) Performed wGEE analysis with a combination of weight 𝑅𝑅𝑖𝑖𝑖𝑖 𝜋𝜋𝑖𝑖𝑖𝑖1 (𝜶𝜶�1)⁄  and 

outcome 𝒁𝒁1, where the outcome model was defined as logit�𝑃𝑃(𝑍𝑍1,𝑖𝑖𝑖𝑖 = 1)� =

𝛽𝛽wGEE,0
1 + 𝛽𝛽wGEE,TRT

1 𝑋𝑋TRT,𝑖𝑖 + 𝛽𝛽wGEE,1𝑖𝑖
1 + 𝛽𝛽wGEE,2𝑖𝑖

1 𝑋𝑋TRT,𝑖𝑖 + 𝛽𝛽wGEE,3
1 𝑋𝑋BL,𝑖𝑖.  

(3) Calculated predicted values of 𝒁𝒁1 using the wGEE model. 

(4) The procedures described in (2) and (3) performed again with a combination of 

𝑅𝑅𝑖𝑖𝑖𝑖 𝜋𝜋𝑖𝑖𝑖𝑖1 (𝜶𝜶�1)⁄  and 𝒁𝒁2 as well as 𝑅𝑅𝑖𝑖𝑖𝑖 𝜋𝜋𝑖𝑖𝑖𝑖2 (𝜶𝜶�2)⁄  and 𝒁𝒁3 to calculate predicted values 

of 𝒁𝒁2 and 𝒁𝒁3. 

(5) After missing 𝒁𝒁1, 𝒁𝒁2, and 𝒁𝒁3 were imputed with the predicted values of (3) and 

(4), 𝜋𝜋𝑖𝑖𝑖𝑖𝑠𝑠 �𝜶𝜶�𝑠𝑠,𝜷𝜷�wGEE𝑠𝑠 �, s = 1, 2 for all the participants at all the time points 

{𝑖𝑖 = 1, … ,𝑁𝑁, 𝑗𝑗 = 1, … ,𝑇𝑇 } were calculated. These estimates 𝜋𝜋𝑖𝑖𝑖𝑖𝑠𝑠 �𝜶𝜶�𝑠𝑠,𝜷𝜷�wGEE𝑠𝑠 �, s = 

1, 2 were used in (10). 



 
 

 

(6) Performed Paik’s imputation method using the imputation model 𝜙𝜙𝑖𝑖𝑖𝑖𝑖𝑖1 (𝜸𝜸𝑖𝑖𝑖𝑖1 ) and 

calculated predicted values 𝜙𝜙𝑖𝑖𝑖𝑖𝑖𝑖1 (𝜸𝜸�𝑖𝑖𝑖𝑖1 ) of 𝑦𝑦𝑖𝑖𝑖𝑖 in each participant and time point. 

The same Paik’s imputation was performed using the imputation model 

𝜙𝜙𝑖𝑖𝑖𝑖𝑖𝑖2 (𝜸𝜸𝑖𝑖𝑖𝑖2 ). Similar to 𝜙𝜙𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (𝜸𝜸𝑖𝑖𝑖𝑖𝑖𝑖 ), missing 𝒁𝒁2 were imputed with the predicted 

values of 𝑍𝑍2,𝑖𝑖𝑖𝑖 using the imputation model for 𝑍𝑍2,𝑖𝑖𝑖𝑖 with auxiliary variables 

𝑦𝑦𝑖𝑖,(𝑖𝑖−1) and 𝑍𝑍2,𝑖𝑖,(𝑖𝑖−1); missing 𝒁𝒁3 were imputed with the predicted values of 𝑍𝑍3,𝑖𝑖𝑖𝑖 

using the imputation model for 𝑍𝑍3,𝑖𝑖𝑖𝑖 with auxiliary variables 𝑦𝑦𝑖𝑖,(𝑖𝑖−1) and 

𝑍𝑍3,𝑖𝑖,(𝑖𝑖−1). 

(7) Performed the GEE analysis, where the outcome model was defined as 

logit�𝑃𝑃(𝑦𝑦𝑖𝑖𝑖𝑖 = 1)� = 𝛽𝛽GEE,0
1 + 𝛽𝛽GEE,TRT

1 𝑋𝑋TRT,𝑖𝑖 + 𝛽𝛽GEE,1𝑖𝑖
1 + 𝛽𝛽GEE,2𝑖𝑖

1 𝑋𝑋TRT,𝑖𝑖 +

𝛽𝛽GEE,3
1 𝑋𝑋BL,𝑖𝑖, and the missing response variable 𝑦𝑦𝑖𝑖𝑖𝑖 was imputed with 𝜙𝜙𝑖𝑖𝑖𝑖𝑖𝑖1 (𝜸𝜸�𝑖𝑖𝑖𝑖1 ). 

(8) Calculated the function 𝑺𝑺𝑖𝑖𝑖𝑖1 �𝜷𝜷�GEE1 ,𝜸𝜸�𝑖𝑖𝑖𝑖1 �, where all values 𝑦𝑦𝑖𝑖𝑖𝑖, including the 

observed ones, were replaced by model-based expectation 𝜙𝜙𝑖𝑖𝑖𝑖𝑖𝑖1 (𝜸𝜸�𝑖𝑖𝑖𝑖1 ). The 

calculated 𝑺𝑺𝑖𝑖𝑖𝑖1 �𝜷𝜷�GEE1 ,𝜸𝜸�𝑖𝑖𝑖𝑖1 � were used in (10). 

(9) The procedures described in (7) and (8) performed again with 𝜙𝜙𝑖𝑖𝑖𝑖𝑖𝑖2 (𝜸𝜸�𝑖𝑖𝑖𝑖2 ) and 

𝜷𝜷�GEE2 , and finally calculated 𝑺𝑺𝑖𝑖𝑖𝑖2 �𝜷𝜷�GEE2 ,𝜸𝜸�𝑖𝑖𝑖𝑖2 �. 



 

(10) Using 𝜋𝜋𝑖𝑖𝑖𝑖𝑠𝑠 �𝜶𝜶�𝑠𝑠,𝜷𝜷�wGEE𝑠𝑠 � and 𝑺𝑺𝑖𝑖𝑖𝑖𝑖𝑖 �𝜷𝜷�GEE𝑖𝑖 ,𝜸𝜸�𝑖𝑖𝑖𝑖𝑖𝑖 �, s = 1, 2, k = 1, 2 for all the 

participants at all the time points, calculated 𝜃𝜃𝑠𝑠�𝜶𝜶�𝑠𝑠,𝜷𝜷�wGEE𝑠𝑠 �, 𝝃𝝃𝑖𝑖�𝜷𝜷�GEE𝑖𝑖 ,𝜸𝜸�𝑖𝑖𝑖𝑖𝑖𝑖 �, s = 

1, 2, k = 1, 2 and 𝒈𝒈�𝑖𝑖𝑖𝑖�𝜶𝜶� ,𝜷𝜷�GEE,𝜷𝜷�wGEE,𝜸𝜸�𝑖𝑖𝑖𝑖� using equation (5). 

(11) Estimated 𝝀𝝀� using equation (7), and calculated weight 𝑤𝑤�𝑖𝑖𝑖𝑖 using equation (6). 

(12) Performed an EL wGEE analysis with weight 𝑤𝑤�𝑖𝑖𝑖𝑖, and obtained 𝜷𝜷�EL. 

GEE analysis (Liang and Zeger 1986) and wGEE analysis (Robins et al. 1995) 

correspond to the EL wGEE analysis in step (12), where the weight 𝑤𝑤�𝑖𝑖𝑖𝑖 is replaced by 

identity matrix, 𝑅𝑅𝑖𝑖𝑖𝑖 𝜋𝜋𝑖𝑖𝑖𝑖1 (𝜶𝜶�1)⁄  and 𝑅𝑅𝑖𝑖𝑖𝑖 𝜋𝜋𝑖𝑖𝑖𝑖2 (𝜶𝜶�2)⁄ , respectively. 

The results are summarized in Table 1. In Table 1, the odds ratio of CLUDE was 

4.62, while that of EL wGEE was 3.83 to 4.08, and that of AIPW was 3.93 to 4.05, 

respectively. We speculated that these estimators mitigated the bias of CLUDE. In 

addition, these findings were more deeply evaluated by the multiple modeling of EL 

wGEE-1111, which included all components of auxiliary valuables. Therefore, the 

proposed method was useful for evaluating the stability of the conclusion.  

5 Discussion and Conclusions 

The proposed method extends Han’s method to the longitudinal outcome model. The 

simulation results indicate that the EL wGEE method achieves better performance if 

any one of the specified missingness or imputation models is correct (multiple 



 
 

 

robustness).  

In these simulation studies, we also evaluated the performance of this method 

when multiple missingness and imputation models were utilized. Greenland and Pearce 

(2015, p.99) state that “Methods that model both outcome and exposure (including 

doubly robust methods) avoid having to make a choice, but at the cost of more 

modeling effort. They have the option of using more data information with potential 

accuracy gains as a result.” Although diagnostic measures have been widely used in 

model assessment, it is difficult to apply them to incomplete outcome and auxiliary 

data; consequently, there is significant concern regarding model misspecification in 

such a situation. In addition, when a dimension of auxiliary variables is high (i.e., there 

are many auxiliary variables), there is a risk of (quasi-) complete separation for the 

binary outcome model. In such cases, multiple lower dimensional models can be used to 

resolve the issues. However, there have been only a few studies on the performance 

evaluation of the proposed method when misspecified models are included; thus, it 

might not be preferable to use multiple models without a strong reason. We recommend 

specifying one missingness model and/or one imputation model for the primary analysis 

and additional models for the sensitivity analysis. The need for sensitivity analysis 

regarding missing data is established, and its importance is emphasized in the ICH E9 

(R1) (2019). Notably, the multiple modeling method allows for a wide range of 

sensitivity analyses.  



 

Although the imputation approach in the proposed method was under MAR 

assumption, the approach can be modified to be under missing not at random (MNAR), 

such as “jump-to-reference (J2R)” to perform a sensitivity analysis. In J2R 

(Mallinckrodt et al., 2017), missing data for reference group are imputed assuming 

MAR; missing data for drug-treated group are imputed assuming MNAR such that the 

benefit from the drug immediately disappears after discontinuation of the study drug. 

Therefore, parameter 𝛄𝛄𝑖𝑖𝑖𝑖 was estimated using data only for the reference group. Note 

that since this analysis is under MNAR, specifying missingness models 𝜋𝜋𝑖𝑖𝑖𝑖𝑠𝑠 (𝜶𝜶�𝑠𝑠) under 

MAR is not reasonable. 

In some simulation datasets, especially those with low-response rate and n=75, 

quasi-complete separation occurred. In the scenario of pt2 (𝛼𝛼 = (𝛼𝛼0,−1,1,1)) and low-

response rate, the phenomenon was often observed because most subjects drop out after 

𝑦𝑦𝑖𝑖𝑖𝑖 = 0. In this situation, where it is difficult to estimate the parameters of the 

missingness/imputation models, we may choose logistic regression or the GEE 

method—for which there is no need to specify missingness/imputation models.  

In Web Appendix C, we additionally compare the performance of EL wGEE to 

that of Han’s method, in which we specify an imputation and missingness model similar 

to that of the proposed method and use the imputation method of Paik. If explanatory 

variables 𝑦𝑦𝑖𝑖,(𝑖𝑖−1) and 𝑧𝑧𝑖𝑖,(𝑖𝑖−1) were missing in the missingness model of Han’s method, 

we imputed them using last observation carried forward (LOCF) method to calculate 



 
 

 

𝜃𝜃1(= ∑ 𝜋𝜋𝑖𝑖41 (𝜶𝜶�1) 𝑁𝑁⁄𝑁𝑁
𝑖𝑖=1 ). The EL wGEE method achieved better performance with Bias, 

as compared to that of Han’s method with LOCF in such an eventuality. It appears that 

the coarsened explanatory variables 𝒁𝒁�𝑖𝑖𝑖𝑖  (i. e. ,𝑦𝑦𝑖𝑖3 and 𝑧𝑧𝑖𝑖3) affect the accuracy of 𝜷𝜷�TRT. 

When a subject i drops out at or before time point 3, the 𝜋𝜋𝑖𝑖41 (𝜶𝜶�1) cannot be estimated, 

because the explanatory variable 𝒁𝒁�𝑖𝑖3 (𝑖𝑖. 𝑒𝑒. , 𝑦𝑦𝑖𝑖3 and 𝑧𝑧𝑖𝑖3) is missing. In addition, the 

observation probability 𝜋𝜋𝑖𝑖41 (𝜶𝜶�1) is estimated for all of the participants to calculate 𝜃𝜃1(=

∑ 𝜋𝜋𝑖𝑖41 (𝜶𝜶�1) 𝑁𝑁⁄𝑁𝑁
𝑖𝑖=1 ). To cope with this problem, 𝜋𝜋𝑖𝑖41 (𝜶𝜶�1) was estimated substituting 𝑦𝑦𝑖𝑖2 or 

𝑦𝑦𝑖𝑖1 in place of 𝑦𝑦𝑖𝑖3 in Han’s method with LOCF in our simulation studies (the same 

applies to 𝑧𝑧𝑖𝑖3), but that might introduce bias. In contrast, the proposed method can 

impute the missing 𝒁𝒁�𝑖𝑖3 (i. e. ,𝑦𝑦𝑖𝑖3 and 𝑧𝑧𝑖𝑖3) with the predicted values derived from 

wGEE. The proposed method can therefore be used for longitudinal data analysis. 

In the psoriasis clinical trial data analysis, although it was not feasible to include 

all the components of the auxiliary valuables as well as the interactions caused by the 

quasi-complete separation of the binary outcome model, such as in wGEE and AIPW. 

The proposed estimator was able to address this issue via multiple modeling and enable 

the further evaluation of the validity of the conclusions derived. 

Although we assumed that the outcome is binary data and that 𝒁𝒁𝑖𝑖𝑖𝑖 includes only 

𝑦𝑦𝑖𝑖𝑖𝑖 to simplify the explanation presented in Section 2, the proposed method can easily 

be extended to continuous and count data outcomes and used to handle multiple 

auxiliary variables. In terms of multiple robustness, the proposed method is expected to 



 

be more robust and useful than existing methods when the dimension of the auxiliary 

variables is high, and/or reasonable multiple candidate models are available. Future 

work should further investigate the relative performance of the other methods under a 

wider range of settings. 
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Appendix 

Appendix A: Connection Between 𝝀𝝀� and 𝜿𝜿� 

To prove that 𝜷𝜷�EL is consistent if any one of the missingness models is correctly specified 

in Appendix B, we provide the derivation of the weight 𝑤𝑤�𝑖𝑖𝑖𝑖 subject to different constraints.  

More formally, we denote 

𝒈𝒈𝑖𝑖�𝜶𝜶∗,𝜷𝜷GEE,∗,𝜸𝜸𝑖𝑖𝑖𝑖,∗� = �𝜋𝜋𝑖𝑖1(𝜶𝜶∗1)− 𝜃𝜃∗1(𝜶𝜶∗1), … , 𝜋𝜋𝑖𝑖𝑆𝑆(𝜶𝜶∗𝑆𝑆)− 𝜃𝜃∗𝑆𝑆(𝜶𝜶∗𝑆𝑆),  

 �𝑺𝑺𝑖𝑖1�𝜷𝜷GEE,∗
1 ,𝜸𝜸𝑖𝑖𝑖𝑖,∗

1 � −   𝝃𝝃1�𝜷𝜷GEE,∗
1 ,𝜸𝜸𝑖𝑖𝑖𝑖,∗

1 ��T, … , �𝑺𝑺𝑖𝑖𝐾𝐾�𝜷𝜷GEE,∗
𝐾𝐾 ,𝜸𝜸𝑖𝑖𝑖𝑖,∗

𝐾𝐾 � − 𝝃𝝃𝐾𝐾�𝜷𝜷GEE,∗
𝐾𝐾 ,𝜸𝜸𝑖𝑖𝑖𝑖,∗

𝐾𝐾 ��T�
T
. 

The expected value E�∑ 𝑅𝑅𝑖𝑖𝑖𝑖𝒈𝒈𝑖𝑖�𝜶𝜶∗,𝜷𝜷GEE,∗,𝜸𝜸𝑖𝑖𝑖𝑖,∗�𝑖𝑖
𝑖𝑖=1 � ≠ 𝟎𝟎, when the missing data 

mechanism is MAR; thus, the Lagrange multipliers 𝝀𝝀 are also not guaranteed to converge 

to zero based on the theory of empirical likelihood (Owen 2001). Let 𝜋𝜋𝑖𝑖𝑖𝑖1 (𝜶𝜶1) denote a 

correctly specified missingness model, 𝜶𝜶01 denote the true value of 𝜶𝜶1, and 𝑝𝑝𝑖𝑖𝑖𝑖 denote the 

conditional empirical observation probability on 𝑅𝑅𝑖𝑖𝑖𝑖 = 1, where 𝑝𝑝𝑖𝑖𝑖𝑖 is subjected to the 

following constraints: 

∑ ∑ 𝑝𝑝𝑖𝑖𝑖𝑖
𝑛𝑛𝑖𝑖
𝑖𝑖=1 = 1𝑁𝑁

𝑖𝑖=1 , 

𝑝𝑝𝑖𝑖𝑖𝑖 ≥ 0, 

∑ ∑ 𝑝𝑝𝑖𝑖𝑖𝑖
𝑛𝑛𝑖𝑖
𝑖𝑖=1 �𝜋𝜋𝑖𝑖𝑖𝑖𝑠𝑠 (𝜶𝜶�𝑠𝑠) − 𝜃𝜃𝑠𝑠�𝜶𝜶�𝑠𝑠,𝜷𝜷�wGEE𝑠𝑠 �� 𝜋𝜋𝑖𝑖𝑖𝑖1 (𝜶𝜶�1)� = 0𝑁𝑁

𝑖𝑖=1  (𝑠𝑠 = 1, … , 𝑆𝑆), and 

∑ ∑ 𝑝𝑝𝑖𝑖𝑖𝑖
𝑛𝑛𝑖𝑖
𝑖𝑖=1 �𝑺𝑺𝑖𝑖𝑖𝑖𝑖𝑖 �𝜷𝜷�GEE𝑖𝑖 ,𝜸𝜸�𝑖𝑖𝑖𝑖𝑖𝑖 � − 𝝃𝝃𝑖𝑖�𝜷𝜷�GEE𝑖𝑖 ,𝜸𝜸�𝑖𝑖𝑖𝑖𝑖𝑖 �� 𝜋𝜋𝑖𝑖𝑖𝑖1 (𝜶𝜶�1)� = 𝟎𝟎𝑁𝑁

𝑖𝑖=1  (𝑘𝑘 = 1, … , 𝐾𝐾). 

As in equation (6), using the Lagrange multipliers, we obtain 



 
 

 

�̂�𝑝𝑖𝑖𝑖𝑖 = 1
𝑚𝑚

1
1+𝜿𝜿�T𝒈𝒈�𝑖𝑖𝑖𝑖�𝜶𝜶�,𝜷𝜷�GEE,𝜷𝜷�wGEE,𝜸𝜸�𝑖𝑖𝑗𝑗� 𝜋𝜋𝑖𝑖𝑖𝑖

1 (𝜶𝜶�1)�
, 

where 𝜿𝜿� is also an (𝑆𝑆 + 𝑢𝑢𝐾𝐾)-dimensional Lagrange multiplier vector. When the 

missingness model is correctly specified, E�∑ 𝑅𝑅𝑖𝑖𝑖𝑖𝒈𝒈𝑖𝑖�𝜶𝜶∗,𝜷𝜷GEE,∗,𝜸𝜸𝑖𝑖𝑖𝑖,∗�𝑖𝑖
𝑖𝑖=1 𝜋𝜋𝑖𝑖𝑖𝑖1 (𝜶𝜶1)� � = 𝟎𝟎, 

and the Lagrange multiplier vector 𝜿𝜿� therefore converges to 0 (Owen 2001). As in 

equation (7), the estimating equations for 𝜿𝜿 are as follows: 

∑ ∑ 𝑝𝑝𝑖𝑖𝑖𝑖 𝒈𝒈�𝑖𝑖𝑖𝑖�𝜶𝜶�,𝜷𝜷�GEE,𝜷𝜷�wGEE,𝜸𝜸�𝑖𝑖𝑖𝑖� 𝜋𝜋𝑖𝑖𝑖𝑖1�𝑛𝑛𝑖𝑖
𝑖𝑖=1 (𝜶𝜶�1)𝑁𝑁

𝑖𝑖=1 = 𝟎𝟎, 

     1
𝑚𝑚
∑ ∑

𝒈𝒈�𝑖𝑖𝑖𝑖�𝜶𝜶�,𝜷𝜷�GEE,𝜷𝜷�wGEE,𝜸𝜸�𝑖𝑖𝑗𝑗� 𝜋𝜋𝑖𝑖𝑖𝑖
1 �𝜶𝜶�1��

1+𝜿𝜿T𝒈𝒈�𝑖𝑖𝑖𝑖�𝜶𝜶�,𝜷𝜷�GEE,𝜷𝜷�wGEE,𝜸𝜸�𝑖𝑖𝑗𝑗� 𝜋𝜋𝑖𝑖𝑖𝑖
1 (𝜶𝜶�1)�

𝑛𝑛𝑖𝑖
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1 = 𝟎𝟎. (A.1) 

Then,  

1
𝑚𝑚
∑ ∑ 𝒈𝒈�𝑖𝑖𝑖𝑖�𝜶𝜶�,𝜷𝜷�GEE,𝜷𝜷�wGEE,𝜸𝜸�𝑖𝑖𝑗𝑗�

𝜋𝜋𝑖𝑖𝑖𝑖
1 (𝜶𝜶�1)+𝜿𝜿T𝒈𝒈�𝑖𝑖𝑖𝑖�𝜶𝜶�,𝜷𝜷�GEE,𝜷𝜷�wGEE,𝜸𝜸�𝑖𝑖𝑗𝑗�

= 𝟎𝟎𝑛𝑛𝑖𝑖
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1 ,  

1
𝜃𝜃1�𝜶𝜶�1,𝜷𝜷�wGEE

1 �×𝑚𝑚
∑ ∑ 𝒈𝒈�𝑖𝑖𝑖𝑖�𝜶𝜶�,𝜷𝜷�GEE,𝜷𝜷�wGEE,𝜸𝜸�𝑖𝑖𝑗𝑗�

1+� 𝜅𝜅1+1
𝜃𝜃1�𝜶𝜶�1,𝜷𝜷�wGEE

1 �
,   𝜅𝜅2
𝜃𝜃1�𝜶𝜶�1,𝜷𝜷�wGEE

1 �
,…,

𝜅𝜅(𝑆𝑆+𝑢𝑢𝑢𝑢)
𝜃𝜃1�𝜶𝜶�1,𝜷𝜷�wGEE

1 �
�𝒈𝒈�𝑖𝑖𝑖𝑖�𝜶𝜶�,𝜷𝜷�GEE,𝜷𝜷�wGEE,𝜸𝜸�𝑖𝑖𝑗𝑗�

𝑛𝑛𝑖𝑖
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1 = 𝟎𝟎.  

By comparing the above equation with equation (7), it is evident that �̂�𝜆1 = 𝜅𝜅�1+1
𝜃𝜃1�𝜶𝜶�1,𝜷𝜷�wGEE

1 �
,

�̂�𝜆𝑙𝑙 = 𝜅𝜅�𝑙𝑙
𝜃𝜃1�𝜶𝜶�1,𝜷𝜷�wGEE

1 �
 , l = 2,…, (S+uK). The weight 𝑤𝑤�𝑖𝑖𝑖𝑖 can be described as follows: 

𝑤𝑤�𝑖𝑖𝑖𝑖 = 1
𝑚𝑚

× 1
1+𝝀𝝀�T𝒈𝒈�𝑖𝑖𝑖𝑖�𝜶𝜶�,𝜷𝜷�GEE,𝜷𝜷�wGEE,𝜸𝜸�𝑖𝑖𝑗𝑗�

 = 1
𝑚𝑚

×
𝜃𝜃1�𝜶𝜶�1,𝜷𝜷�wGEE

1 � 𝜋𝜋𝑖𝑖𝑖𝑖
1� �𝜶𝜶�1�

1+𝜿𝜿�T𝒈𝒈�𝑖𝑖𝑖𝑖�𝜶𝜶�,𝜷𝜷�GEE,𝜷𝜷�wGEE,𝜸𝜸�𝑖𝑖𝑗𝑗� 𝜋𝜋𝑖𝑖𝑖𝑖
1 (𝜶𝜶�1)�

.  (A.2) 



 

Appendix B: Multiple Robustness of the Proposed Estimator 

The proposed estimator 𝜷𝜷�EL is consistent if any one of a set of S missingness models or K 

imputation models is correctly specified. The details are as follows: 

When the missingness model is correctly specified 

Appendix A demonstrates that the weight 𝑤𝑤�𝑖𝑖𝑖𝑖 can be denoted as shown in equation (A.2). 

When 𝜋𝜋𝑖𝑖𝑖𝑖1 (𝜶𝜶1) is correctly specified, 𝜿𝜿�
𝑝𝑝
→ 𝟎𝟎. Therefore, the estimating equations in 

equation (8) are asymptotically equivalent to the wGEE (Robins et al. 1995), which is 

weighted with the inverse probability of observing. When the missingness model is 

correctly specified, the left-hand side of the estimating equations converge to zero in 

probability under the true parameter 𝜷𝜷0. Thus, we have  

∑ 𝜕𝜕{𝝁𝝁𝑖𝑖(𝜷𝜷0)}T

𝜕𝜕𝜷𝜷
(𝑽𝑽𝑖𝑖)−1𝑾𝑾EL,𝑖𝑖{𝒀𝒀𝑖𝑖 − 𝝁𝝁𝑖𝑖(𝜷𝜷0)}𝑁𝑁

𝑖𝑖=1 = 𝟎𝟎,  

∑ ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑺𝑺𝑖𝑖𝑖𝑖
𝑛𝑛𝑖𝑖
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1 (𝜷𝜷0) = 𝟎𝟎,  

1
𝑚𝑚
∑ ∑

𝜃𝜃1�𝜶𝜶�1,𝜷𝜷�wGEE
1 � 𝜋𝜋𝑖𝑖𝑖𝑖

1 �𝜶𝜶�1��

1+𝜿𝜿�T𝒈𝒈�𝑖𝑖𝑖𝑖�𝜶𝜶�,𝜷𝜷�GEE,𝜷𝜷�wGEE,𝜸𝜸�𝑖𝑖𝑗𝑗� 𝜋𝜋𝑖𝑖𝑖𝑖
1 (𝜶𝜶�1)�

𝑺𝑺𝑖𝑖𝑖𝑖(𝜷𝜷0)𝑛𝑛𝑖𝑖
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1   

=  𝜃𝜃
1�𝜶𝜶�1,𝜷𝜷�wGEE

1 �
𝑚𝑚

∑ ∑ 𝑅𝑅𝑖𝑖𝑖𝑖
𝜋𝜋𝑖𝑖𝑖𝑖
1 (𝜶𝜶�1)𝑺𝑺𝑖𝑖𝑖𝑖(𝜷𝜷0)𝑖𝑖

𝑖𝑖=1
𝑁𝑁
𝑖𝑖=1 + 𝑜𝑜𝑝𝑝(1)  

𝑝𝑝
→  𝜃𝜃

1�𝜶𝜶01,𝛽𝛽wGEE
1 �

∑ 𝑃𝑃(𝑅𝑅𝑖𝑖𝑖𝑖=1)𝑇𝑇
𝑖𝑖=1

E �∑ 𝑅𝑅𝑖𝑖𝑖𝑖
𝜋𝜋𝑖𝑖𝑖𝑖
1 �𝜶𝜶01�

𝑺𝑺𝑖𝑖𝑖𝑖(𝜷𝜷0)𝑖𝑖
𝑖𝑖=1 � = 𝟎𝟎.  (B.1) 



 
 

 

When the imputation model for 𝑦𝑦𝑖𝑖𝑖𝑖 is correctly specified 

Let 𝜙𝜙𝑖𝑖𝑖𝑖𝑖𝑖1 (𝜸𝜸�𝑖𝑖𝑖𝑖1 ) denote the estimate of the expected value of 𝑦𝑦𝑖𝑖𝑖𝑖 using a correctly specified 

imputation model, 𝜸𝜸𝑖𝑖𝑖𝑖,0
1  denote the true value of 𝜸𝜸�𝑖𝑖𝑖𝑖1 , and 𝜷𝜷�GEE1  denote the estimated 

parameter of the GEE model using 𝜙𝜙𝑖𝑖𝑖𝑖𝑖𝑖1 (𝜸𝜸�𝑖𝑖𝑖𝑖1 ). The estimated parameter 𝜷𝜷�GEE1  converges to 

the true parameter 𝜷𝜷0 in probability. From the constraints in equation (5), 

∑ ∑ 𝑤𝑤𝑖𝑖𝑖𝑖
𝑛𝑛𝑖𝑖
𝑖𝑖=1 𝑺𝑺𝑖𝑖𝑖𝑖1 �𝜷𝜷�GEE1 ,𝜸𝜸�𝑖𝑖𝑖𝑖1 � = ∑ ∑ 𝑺𝑺𝑖𝑖𝑖𝑖1 �𝜷𝜷�GEE1 ,𝜸𝜸�𝑖𝑖𝑖𝑖1 � (𝑁𝑁𝑇𝑇)⁄𝑖𝑖

𝑖𝑖=1
𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1 . Under this condition, 

both sides of the equations converge to zero in probability. The main analysis function 

∑ ∑ 𝑤𝑤�𝑖𝑖𝑖𝑖
𝑛𝑛𝑖𝑖
𝑖𝑖=1 𝑺𝑺𝑖𝑖𝑖𝑖𝑁𝑁

𝑖𝑖=1 (𝜷𝜷0) also therefore converges to zero in probability. By using 𝑦𝑦𝑖𝑖𝑖𝑖 ⊥

𝑅𝑅𝑖𝑖𝑖𝑖�(𝑿𝑿𝑖𝑖𝑖𝑖,𝒁𝒁�𝑖𝑖,(𝑖𝑖−1)) and equation (8), 

∑ ∑ 𝑤𝑤�𝑖𝑖𝑖𝑖
𝑛𝑛𝑖𝑖
𝑖𝑖=1 𝑺𝑺𝑖𝑖𝑖𝑖𝑁𝑁

𝑖𝑖=1 (𝜷𝜷0) = 𝟎𝟎,  

∑ ∑ 𝑤𝑤�𝑖𝑖𝑖𝑖
𝑛𝑛𝑖𝑖
𝑖𝑖=1 𝑺𝑺𝑖𝑖𝑖𝑖(𝜷𝜷0)𝑁𝑁

𝑖𝑖=1 −  

                ∑ ∑ 𝑤𝑤�𝑖𝑖𝑖𝑖
𝑛𝑛𝑖𝑖
𝑖𝑖=1 𝑺𝑺𝑖𝑖𝑖𝑖1 �𝜷𝜷�GEE1 ,𝜸𝜸�𝑖𝑖𝑖𝑖1 � +𝑁𝑁

𝑖𝑖=1 ∑ ∑ 𝑺𝑺𝑖𝑖𝑖𝑖1 �𝜷𝜷�GEE1 ,𝜸𝜸�𝑖𝑖𝑖𝑖1 � (𝑁𝑁𝑇𝑇)⁄𝑖𝑖
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1 = 𝟎𝟎,  

∑ ∑ 𝑤𝑤�𝑖𝑖𝑖𝑖
𝑛𝑛𝑖𝑖
𝑖𝑖=1 �𝑺𝑺𝑖𝑖𝑖𝑖(𝜷𝜷0) − 𝑺𝑺𝑖𝑖𝑖𝑖1 �𝜷𝜷�GEE1 ,𝜸𝜸�𝑖𝑖𝑖𝑖1 ��𝑁𝑁

𝑖𝑖=1 + ∑ ∑ 𝑺𝑺�𝑖𝑖𝑖𝑖1 �𝜷𝜷�GEE1 ,𝜸𝜸�𝑖𝑖𝑖𝑖1 � (𝑁𝑁𝑇𝑇)⁄𝑖𝑖
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1 = 𝟎𝟎, 

  1
𝑚𝑚
∑ ∑

𝑅𝑅𝑖𝑖𝑖𝑖�𝑺𝑺𝑖𝑖𝑖𝑖(𝜷𝜷0)−𝑺𝑺𝑖𝑖𝑖𝑖
1 �𝜷𝜷�GEE

1 ,𝜸𝜸�𝑖𝑖𝑗𝑗
1 ��

1+𝝀𝝀�T𝒈𝒈�𝑖𝑖𝑖𝑖�𝜶𝜶�,𝜷𝜷�GEE,𝜷𝜷�wGEE,𝜸𝜸�𝑖𝑖𝑗𝑗�
𝑖𝑖
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1 + 1

𝑖𝑖
E�∑ 𝑺𝑺𝑖𝑖𝑖𝑖1 �𝜷𝜷0,𝜸𝜸𝑖𝑖𝑖𝑖,0

1 �𝑖𝑖
𝑖𝑖=1 � + 𝑜𝑜𝑝𝑝(1)  

𝑝𝑝
→  1

∑ 𝑃𝑃(𝑅𝑅𝑖𝑖𝑖𝑖=1)𝑇𝑇
𝑖𝑖=1

E �∑
𝑅𝑅𝑖𝑖𝑖𝑖�𝑺𝑺𝑖𝑖𝑖𝑖(𝜷𝜷0)−𝑺𝑺𝑖𝑖𝑖𝑖

1 �𝜷𝜷0,𝜸𝜸𝑖𝑖𝑗𝑗,0
1 ��

1+𝝀𝝀�T𝒈𝒈𝑖𝑖�𝜶𝜶∗,𝜷𝜷GEE,∗,𝜸𝜸𝑖𝑖𝑗𝑗,∗�
𝑖𝑖
𝑖𝑖=1 �  

=  1
∑ 𝑃𝑃(𝑅𝑅𝑖𝑖𝑖𝑖=1)𝑇𝑇
𝑖𝑖=1

E �E �∑
𝑅𝑅𝑖𝑖𝑖𝑖�𝑺𝑺𝑖𝑖𝑖𝑖(𝜷𝜷0)−𝑺𝑺𝑖𝑖𝑖𝑖

1 �𝜷𝜷0,𝜸𝜸𝑖𝑖𝑗𝑗,0
1 ��

1+𝝀𝝀�T𝒈𝒈𝑖𝑖�𝜶𝜶∗,𝜷𝜷GEE,∗,𝜸𝜸𝑖𝑖𝑗𝑗,∗�
𝑖𝑖
𝑖𝑖=1 �𝑅𝑅𝑖𝑖𝑖𝑖,𝑿𝑿𝑖𝑖𝑖𝑖 ,𝒁𝒁�𝑖𝑖,(𝑖𝑖−1)�� = 0. 



 

Appendix C: Similarity Between EL wGEE and AIPW 

When one missingness model and one imputation model are specified, and both models 

are correctly specified, the proposed estimator is similar to the AIPW estimator. 

From equation (8), 

𝑺𝑺( 𝜷𝜷EL) = ∑ 𝜕𝜕{𝝁𝝁𝑖𝑖(𝜷𝜷0)}T

𝜕𝜕𝜷𝜷0
(𝑽𝑽𝑖𝑖)−1𝑾𝑾EL,𝑖𝑖{𝒀𝒀𝑖𝑖 − 𝝁𝝁𝑖𝑖(𝜷𝜷0)}𝑁𝑁

𝑖𝑖=1 = 𝟎𝟎, 

∑ ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑺𝑺𝑖𝑖𝑖𝑖
𝑛𝑛𝑖𝑖
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1 (𝜷𝜷0) = 𝟎𝟎. 

By using equation (5), ∑ ∑ 𝑤𝑤𝑖𝑖𝑖𝑖
𝑛𝑛𝑖𝑖
𝑖𝑖=1 𝑺𝑺𝑖𝑖𝑖𝑖1 �𝜷𝜷�GEE1 ,𝜸𝜸�𝑖𝑖𝑖𝑖1 � = ∑ ∑ 𝑺𝑺𝑖𝑖𝑖𝑖1 �𝜷𝜷�GEE1 ,𝜸𝜸�𝑖𝑖𝑖𝑖1 � (𝑁𝑁𝑇𝑇)⁄𝑖𝑖

𝑖𝑖=1
𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1 , 

∑ ∑ 𝑤𝑤�𝑖𝑖𝑖𝑖
𝑛𝑛𝑖𝑖
𝑖𝑖=1 𝑺𝑺𝑖𝑖𝑖𝑖(𝜷𝜷0)𝑁𝑁

𝑖𝑖=1 −  

 ∑ ∑ 𝑤𝑤�𝑖𝑖𝑖𝑖
𝑛𝑛𝑖𝑖
𝑖𝑖=1 𝑺𝑺𝑖𝑖𝑖𝑖1 �𝜷𝜷�GEE1 ,𝜸𝜸�𝑖𝑖𝑖𝑖1 � +𝑁𝑁

𝑖𝑖=1 ∑ ∑ 𝑺𝑺𝑖𝑖𝑖𝑖1 �𝜷𝜷�GEE1 ,𝜸𝜸�𝑖𝑖𝑖𝑖1 � (𝑁𝑁𝑇𝑇)⁄𝑖𝑖
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1 = 𝟎𝟎. 

When the missingness model is correctly specified, from equation (A.2), 

 𝑤𝑤�𝑖𝑖𝑖𝑖 = 1
𝑚𝑚

𝜃𝜃1�𝜶𝜶�1,𝜷𝜷�wGEE
1 � 𝜋𝜋𝑖𝑖𝑖𝑖

1 �𝜶𝜶�1��

1+𝜿𝜿�T𝒈𝒈�𝑖𝑖𝑖𝑖�𝜶𝜶�,𝜷𝜷�GEE,𝜷𝜷�wGEE,𝜸𝜸�𝑖𝑖𝑗𝑗� 𝜋𝜋𝑖𝑖𝑖𝑖
1 (𝜶𝜶�1)�

 
𝑝𝑝
→  1

𝑚𝑚
𝜃𝜃1�𝜶𝜶�1,𝜷𝜷�wGEE

1 �
𝜋𝜋𝑖𝑖𝑖𝑖
1 (𝜶𝜶�1) ,  

thus, 

1
𝑚𝑚
∑ ∑ 𝜃𝜃1�𝜶𝜶�1,𝜷𝜷�wGEE

1 �𝑅𝑅𝑖𝑖𝑖𝑖
𝜋𝜋𝑖𝑖𝑖𝑖
1 (𝜶𝜶�1) 𝑺𝑺𝑖𝑖𝑖𝑖(𝜷𝜷0)𝑖𝑖

𝑖𝑖=1
𝑁𝑁
𝑖𝑖=1   

− 1
𝑚𝑚
∑ ∑ 𝜃𝜃1�𝜶𝜶�1,𝜷𝜷�wGEE

1 �𝑅𝑅𝑖𝑖𝑖𝑖
𝜋𝜋𝑖𝑖𝑖𝑖
1 (𝜶𝜶�1)

𝑖𝑖
𝑖𝑖=1 𝑺𝑺𝑖𝑖𝑖𝑖1 �𝜷𝜷�GEE1 ,𝜸𝜸�𝑖𝑖𝑖𝑖1 � +𝑁𝑁

𝑖𝑖=1 ∑ ∑ 𝑺𝑺𝑖𝑖𝑖𝑖1 �𝜷𝜷�GEE1 ,𝜸𝜸�𝑖𝑖𝑖𝑖1 � (𝑁𝑁𝑇𝑇)⁄𝑖𝑖
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1 = 𝟎𝟎. 

By using 𝑦𝑦𝑖𝑖𝑖𝑖 ⊥ 𝑅𝑅𝑖𝑖𝑖𝑖�(𝑿𝑿𝑖𝑖𝑖𝑖 ,𝒁𝒁�𝑖𝑖,(𝑖𝑖−1)) and 𝜃𝜃1�𝜶𝜶�1,𝜷𝜷�wGEE1 � = ∑ ∑ 𝜋𝜋𝑖𝑖𝑖𝑖𝑠𝑠 �𝜶𝜶�𝑠𝑠,𝜷𝜷�wGEE𝑠𝑠 � (𝑁𝑁𝑇𝑇)⁄𝑖𝑖
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1 , 

𝜃𝜃1�𝜶𝜶�1,𝜷𝜷�wGEE
1 �

𝑚𝑚
∑ ∑ 𝑅𝑅𝑖𝑖𝑖𝑖

𝜋𝜋𝑖𝑖𝑖𝑖
1 (𝜶𝜶�1)𝑺𝑺𝑖𝑖𝑖𝑖(𝜷𝜷0)𝑖𝑖

𝑖𝑖=1
𝑁𝑁
𝑖𝑖=1   

−𝜃𝜃1�𝜶𝜶�1,𝜷𝜷�wGEE
1 �

𝑚𝑚
∑ ∑

𝑅𝑅𝑖𝑖𝑖𝑖−
𝑚𝑚

𝜃𝜃1�𝜶𝜶�1,𝜷𝜷�wGEE
1 �𝑁𝑁𝑇𝑇

𝜋𝜋𝑖𝑖𝑖𝑖
1 �𝜶𝜶�1�

𝜋𝜋𝑖𝑖𝑖𝑖
1 (𝜶𝜶�1)

𝑖𝑖
𝑖𝑖=1 𝑺𝑺𝑖𝑖𝑖𝑖1 �𝜷𝜷�GEE1 ,𝜸𝜸�𝑖𝑖𝑖𝑖1 �𝑁𝑁

𝑖𝑖=1 = 𝟎𝟎, 

𝜃𝜃1�𝜶𝜶�1,𝜷𝜷�wGEE
1 �

𝑚𝑚
∑ ∑ 𝑅𝑅𝑖𝑖𝑖𝑖

𝜋𝜋𝑖𝑖𝑖𝑖
1 (𝜶𝜶�1)𝑺𝑺𝑖𝑖𝑖𝑖(𝜷𝜷0)𝑖𝑖

𝑖𝑖=1
𝑁𝑁
𝑖𝑖=1   



 
 

 

−𝜃𝜃1�𝜶𝜶�1,𝜷𝜷�wGEE
1 �

𝑚𝑚
∑ ∑

𝑅𝑅𝑖𝑖𝑖𝑖−
𝑚𝑚

∑ ∑ 𝜋𝜋𝑖𝑖𝑖𝑖
𝑠𝑠 �𝜶𝜶�𝑠𝑠,𝜷𝜷�wGEE

𝑠𝑠 �𝑇𝑇
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1

𝜋𝜋𝑖𝑖𝑖𝑖
1 �𝜶𝜶�1�

𝜋𝜋𝑖𝑖𝑖𝑖
1 (𝜶𝜶�1)

𝑖𝑖
𝑖𝑖=1 𝑺𝑺𝑖𝑖𝑖𝑖1 �𝜷𝜷�GEE1 ,𝜸𝜸�𝑖𝑖𝑖𝑖1 �𝑁𝑁

𝑖𝑖=1 +  𝑜𝑜𝑝𝑝(1).  

When the imputation model is correctly specified, 𝜷𝜷�GEE1 𝑝𝑝
→𝜷𝜷0, thus,  

𝑝𝑝
→  𝜃𝜃

1�𝜶𝜶�1,𝜷𝜷�wGEE
1 �

𝑚𝑚
∑ ∑ 𝑅𝑅𝑖𝑖𝑖𝑖

𝜋𝜋𝑖𝑖𝑖𝑖
1 (𝜶𝜶�1)𝑺𝑺𝑖𝑖𝑖𝑖(𝜷𝜷0)𝑖𝑖

𝑖𝑖=1
𝑁𝑁
𝑖𝑖=1   

−𝜃𝜃1�𝜶𝜶�1,𝜷𝜷�wGEE
1 �

𝑚𝑚
∑ ∑

𝑅𝑅𝑖𝑖𝑖𝑖−
𝑚𝑚

∑ ∑ 𝜋𝜋𝑖𝑖𝑖𝑖
𝑠𝑠 �𝜶𝜶�𝑠𝑠,𝜷𝜷�wGEE

𝑠𝑠 �𝑇𝑇
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1

𝜋𝜋𝑖𝑖𝑖𝑖
1 �𝜶𝜶�1�

𝜋𝜋𝑖𝑖𝑖𝑖
1 (𝜶𝜶�1)

𝑖𝑖
𝑖𝑖=1 𝑺𝑺𝑖𝑖𝑖𝑖1 �𝜷𝜷0,𝜸𝜸�𝑖𝑖𝑖𝑖1 �𝑁𝑁

𝑖𝑖=1 , 

in the probability as 𝑁𝑁 → ∞, since ∑ ∑ 𝜋𝜋𝑖𝑖𝑖𝑖𝑠𝑠 �𝜶𝜶�𝑠𝑠,𝜷𝜷�wGEE𝑠𝑠 �𝑖𝑖
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1 → 𝑚𝑚; thus, 

𝜃𝜃1�𝜶𝜶�1,𝜷𝜷�wGEE
1 �

𝑚𝑚
∑ ∑ 𝑅𝑅𝑖𝑖𝑖𝑖

𝜋𝜋𝑖𝑖𝑖𝑖
1 (𝜶𝜶�1)𝑺𝑺𝑖𝑖𝑖𝑖(𝜷𝜷0)𝑖𝑖

𝑖𝑖=1
𝑁𝑁
𝑖𝑖=1 − 𝜃𝜃1�𝜶𝜶�1,𝜷𝜷�wGEE

1 �
𝑚𝑚

∑ ∑
𝑅𝑅𝑖𝑖𝑖𝑖−𝜋𝜋𝑖𝑖𝑖𝑖

1 �𝜶𝜶�1�
𝜋𝜋𝑖𝑖𝑖𝑖
1 (𝜶𝜶�1)

𝑖𝑖
𝑖𝑖=1 𝑺𝑺𝑖𝑖𝑖𝑖1 �𝜷𝜷0,𝜸𝜸�𝑖𝑖𝑖𝑖1 �𝑁𝑁

𝑖𝑖=1  + 𝑜𝑜𝑝𝑝(1) 

𝑝𝑝
→  𝜃𝜃

1�𝜶𝜶�1,𝜷𝜷�wGEE
1 �

∑ 𝑃𝑃(𝑅𝑅𝑖𝑖𝑖𝑖=1)𝑇𝑇
𝑖𝑖=1

𝑆𝑆 �∑ 𝑅𝑅𝑖𝑖𝑖𝑖
𝜋𝜋𝑖𝑖𝑖𝑖
1 (𝜶𝜶�1)𝑺𝑺𝑖𝑖𝑖𝑖(𝜷𝜷0)𝑖𝑖

𝑖𝑖=1 − ∑
𝑅𝑅𝑖𝑖𝑖𝑖−𝜈𝜈𝑖𝑖𝑖𝑖

1 (𝜶𝜶�1)𝑅𝑅𝑖𝑖,(𝑖𝑖−1)

𝜋𝜋𝑖𝑖𝑖𝑖
1 (𝜶𝜶�1) 𝑺𝑺𝑖𝑖𝑖𝑖1 �𝜷𝜷0,𝜸𝜸�𝑖𝑖𝑖𝑖1 �𝑖𝑖

𝑖𝑖=1 � = 𝟎𝟎. (C.1) 

Equation (C.1) is similar to equation (4) of the AIPW described in Han et al. (2015). 

  



 

Tables  

Table 1. Parameter estimates �̂�𝛽TRT in the plaque psoriasis study. 

  𝜋𝜋�1 𝜋𝜋�2 𝜙𝜙�1 𝜙𝜙�2 �̂�𝛽TRT SE Odds ratio 
95% confidence 

interval 

CLUDE - - - - 1.531 0.283 4.62 2.653–8.055 

GEE - - - - 1.452 0.280 4.27 2.468–7.398 

wGEE 1 0 0 0 1.402 0.278 4.06 2.357–7.004 

 0 1 0 0 1.417 0.282 4.12 2.372–7.168 

AIPW 1 0 1 0 1.399 0.274 4.05 2.369–6.930 

 0 1 0 1 1.367 0.280 3.93 2.269–6.790 

EL wGEE 1 1 1 1 1.367 0.281 3.92 2.262–6.799 

 1 0 1 0 1.407 0.274 4.08 2.384–6.988 

 0 1 0 1 1.343 0.280 3.83 2.212–6.630 

CLUDE: logistic regression; wGEE: weighted generalized estimating equations; AIPW: 

augmented inverse probability weighted complete-case estimating equations (Seaman and Copas 

2009); EL wGEE: proposed estimator; SE: standard error. 

The names of the estimators have the form “method-0000,” with each digit of the four-digit 

number, from left to right, indicating whether or not 𝜋𝜋𝑖𝑖𝑖𝑖1 (𝜶𝜶1),𝜋𝜋𝑖𝑖𝑖𝑖2 (𝜶𝜶2),𝜙𝜙𝑖𝑖𝑖𝑖𝑖𝑖1 �𝜸𝜸𝑖𝑖𝑖𝑖1 �,  or 𝜙𝜙𝑖𝑖𝑖𝑖𝑖𝑖2 (𝜸𝜸𝑖𝑖𝑖𝑖2 ) is 

included, where “1” indicates “included” and “0” indicates “not included.” In the results of the 

proposed method and AIPW method, only two or three models are shown; EL wGEE-1111 for the 

multiply robust model and EL wGEE-1010, and EL wGEE-0101 (or AIPW-1010, AIPW-0101) for 

the doubly robust model  

 

  



 
 

 

Figures 

 

 

Figure 1. Imputation method of Paik.



 

 

Figure 2. Bias of  �̂�𝛽TRT in each estimator obtained using 1000 Monte Carlo datasets (𝑛𝑛 = 150 in each treatment 

group; proportion of missing data at j=4 is 30%). CLUDE: logistic regression; wGEE: weighted generalized 

estimating equations; AIPW: augmented inverse probability weighted complete-case estimating equations (Seaman 

and Copas 2009); EL wGEE: proposed estimator. The results were multiplied by 100 to reduce the number of 



 
 

 

decimal places. The notation of these estimators in the table includes the names of the estimators and the model 

specification, which have the form “method-0000.” Each digit in the four-digit number, from left to right, indicates 

whether or not 𝜋𝜋𝑖𝑖𝑖𝑖1 (𝜶𝜶1),𝜋𝜋𝑖𝑖𝑖𝑖2 (𝜶𝜶2),𝜙𝜙𝑖𝑖𝑖𝑖𝑖𝑖1 �𝜸𝜸𝑖𝑖𝑖𝑖1 �,  or 𝜙𝜙𝑖𝑖𝑖𝑖𝑖𝑖2 (𝜸𝜸𝑖𝑖𝑖𝑖2 ) is included, where “1” indicates “included” and “0” 

indicates “not included.” When estimating the parameters of the missingness/imputation models, quasi-complete 

separation occurred in some of the simulation datasets. Those datasets were excluded from the analysis. The 

detailed values are shown in Web Appendix B of Supporting information. 

  



 

 

 

Figure 3. Mean square errors (MSE) of  �̂�𝛽TRT in each estimator obtained using 1000 Monte Carlo datasets (𝑛𝑛 = 150 

in each treatment group; proportion of missing data at j=4 is 30%). CLUDE: logistic regression; wGEE: weighted 

generalized estimating equations; AIPW: augmented inverse probability weighted complete-case estimating 



 
 

 

equations (Seaman and Copas 2009); EL wGEE: proposed estimator. The results were multiplied by 100 to reduce 

the number of decimal places. The detailed values are shown in Web Appendix B of Supporting information. 

  



 

 

 

Figure 4. Type-1 error rates in each estimator obtained using 1000 Monte Carlo datasets (𝑛𝑛 = 150 in each treatment 

group; proportion of missing data at j=4 is 30%). Full dataset: logistic regression with full dataset; CLUDE: logistic 

regression; wGEE: weighted generalized estimating equations; AIPW: augmented inverse probability weighted 



 
 

 

complete-case estimating equations (Seaman and Copas 2009); EL wGEE: proposed estimator. The results were 

multiplied by 100 to reduce the number of decimal places. The detailed values are shown in Web Appendix B of 

Supporting information 
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