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Abstract

This dissertation investigates the transmission of information, exploring both intentional

and unintentional aspects. Chapter 1 summarizes the background and provides an overview.

Chapter 2 analyzes truth-telling behavior in a dynamic cheap talk game with binary

types. An expert receives signals and provides recommendations regarding the state of the

world over time until the state is publicly revealed. The aim of the expert is to maximize

the reputation of the information acquisition ability on which the precision of the signals

depend. Under this circumstance, giving different recommendations may be seen as a sign of

a poor information acquisition ability, but it can also work as a “safety net” that prevents

the worst reputation. Focusing on equilibria where all signals are delivered promptly, I

propose two truth-telling strategies. One necessitates telling the truth at any history, while

the other demands truth-telling if it has happened before.

Chapter 3 shares a similar model with Chapter 2, but with more general information

structure. It reaffirms the findings from Chapter 2 as robust to an extent. Notably, the

sufficient condition that the expert prefers truth-telling than any other less informative

strategy, continues to hold under games of finite periods with any information structure.

Furthermore, it highlights that the challenge of truth-telling is not solely due to dynamicity

but significantly involves multi-dimensionality. A game in which the expert does not send

messages until the last period before the state reveals, is essentially identical with a static

game in which the signal is multi-dimensional. In such games, truth-telling equilibria may

not be feasible, in contrast to a static game with a unidimensional signal where truth-telling

emerges as a dominant strategy.

Chapter 4 studies a rational bubble model, established on network environments. Play-

ers engage in trading a unit of indivisible good within a network where only one of them

values it. They do not know which network they exactly belong; but they recognize their

own neighbor set, which is used to infer the whole network. There arises information asym-

metricity due to the difference in scope; and it would be reflected in the price. I define

network bubbles, a trade at a positive price that occurs when every player knows that the

good cannot eventually reach the player. I found a necessary condition for the probability

space of networks to have an equilibrium with network bubble. It poses a severe restriction;

otherwise, information asymmetricity collapses.



Acknowledgments

I extend my deepest gratitude to my academic advisor, Professor Sekiguchi Tadashi, for

providing invaluable guidance, encouragement, and continuous support at every stage of

this study. I am also grateful to my sub-advisor, Professor Chia-Hui Chen, for giving me

helpful comments on many aspects of the study. I am indebted to my previous academic

advisor, Professor Hiroshi Osano, whose mentorship in economics enriched my educational

journey and provided a well-rounded support. Special appreciation goes to Professor Ishida

Junichiro; Subsection 3.4.2. is based on his insightful comment. I have also greatly bene-

fited from the advice and comments of Professor Sadakane Hitoshi. Finally, I acknowledge

the financial support from the Japan Society for the Promotion of Science for Chapters 2

and 3.



Contents

1 Introduction 1

2 Reputational Cheap-talk in a Dynamic Game with Binary Types 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Truth-telling equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 On-Path Truth-telling Recommendation . . . . . . . . . . . . . . . 12

2.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Expert-efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.2 Monetary Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.A Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Reputational Cheap-talk in a Dynamic Game 25

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Benchmarks and Equilibriums . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.1 Static Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.2 Fully Truthful Strategy . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.3 On-Path Truthful Strategy . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.1 Expert-efficient Equilibrium . . . . . . . . . . . . . . . . . . . . . . 37

3.4.2 Delayed Communication . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5 Back to Fully Truthful Equilibrium with a Binary Case . . . . . . . . . . . 42

i



3.6 Conclusion Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.A Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Rational Bubble in Resell Markets in Networks 54

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.1 Players and Market . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.2 Strategies and Willingness-to-pay . . . . . . . . . . . . . . . . . . . 59

4.2.3 Information Updates . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3 Bubbles in networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3.1 Single-state Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.5 Simplest Network Bubble and Analysis . . . . . . . . . . . . . . . . . . . . 70

4.6 An Example of Network Bubble . . . . . . . . . . . . . . . . . . . . . . . . 75

4.A Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.B The Details of the Equilibrium in Proposition 4.5 . . . . . . . . . . . . . . 88

ii



List of Figures

4.6.1 Edges required for trade offers . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.6.2 Edges required for information structure of A1 . . . . . . . . . . . . . . . . 77

4.6.3 An example of state set G . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.6.4 An alternative example of state set . . . . . . . . . . . . . . . . . . . . . . 80

4.B.1The flow of the good in each state on path of the equilibrium in Proposition

4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

iii



List of Tables

4.6.1 Probabilities over states . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.B.1Prices at each trade on path of the equilibrium in Proposition 4.5 . . . . . 89

iv



Chapter 1

Introduction

By strategic and non-strategic information transfers, Bayesian individuals update their

information and infer to the true state. Strategic information transfer include cheap-talk

(Crawford and Sobel (1982)), persuasion (Milgrom (1981) and Milgrom and Roberts (1986))

and disclosure (Dye (1986) and Gigler (1994)). Non-strategic information transmission

includes learning by experiments such as strategic experimentation1 (Bolton and Harris

(1999)). In this dissertation, I explore the multifaceted landscape of information trans-

mission, where the transmission occurs both by design and by happenstance. I delve into

the intricacies of how individuals, endowed with distinct types and preferences, choose to

convey their private knowledge and attitudes, shaping the outcomes of diverse interactions.

This thesis is divided into two folds. The first fold is about strategic non-cost-incurring

messages on non-verifiable information to enhance the expectation about type – reputa-

tional cheap talks. Canonical models on cheap talks about preference of Sender, drive

equilibria by preference alingedness of Sender and Receiver. Because optimal targets of

Sender and Receiver are somewhat close, they can settle on some amount of noise in equi-

librium. In cheap talks about being well-informedness of Sender, Sender has monotonically

increasing payoffs in the beliefs of Receiver. In such models, possibilities of outcomes that

1In the literature, an agent is both Sender and Receiver at the same time. When translating the agent
as Receiver, then the Sender here, is nature and not strategic. When translating the agent as Sender, s/he
strategically decides how to gather and release information.
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lower Sender’s reputation, lead to equilibrium. Chapters 2 and 3 center around truthful

outcomes in reputational cheap talk about information acquisiton ability with a dynamic

model based on Tajika (2021). In Chapter 2, I introduce two strategies, which lead to

truth-telling on their respective paths. In Chapter 3, I generalize the results in Chapter 2

and consider the factors that makes truth-telling difficult.

The second fold is dedicated to individuals learning from observations. Wise wisdom

says you cannot have bubble under a common ex-ante prior, when agents are rational

anticipate and it is common knowledge (Milgrom and Stokey (1982)). Recent studies on

rational bubble, thus focused on information asymmetricity, were initiated by Allen et al.

(1993), and applied game-theoretically by Awaya et al. (2022) in a network. When trading,

the value of the good depends on the state which also affects trade histories, price, and the

willingness-to-pay of individuals. As time flows, individuals learn more and more about

the state even when the initial information was asymmetric. Chapter 4 considers rational

bubbles when there is uncertainty about the networks. In the model, prices coincide to

the willingness-to-pay’s due to private information reflected on the attitude, thus learnings

during the game occur.

The rest of this thesis is organized as follows. Chapter 2 analyzes truth-telling out-

comes in a two-period reputational cheap-talk model with binary types. An expert receives

multiple pieces of singals, which become more precise over time. The expert strategically

provides recommendations to the public, aiming to enhance the reputation through care-

fully crafted advice. At the end of the game, the true state, and thereby, whether the

recommendations were correct or not, are revealed; and the expert is evaluated by the

Bayesian public. The model is based on Tajika (2021) who focused on equilibria in which

truth-telling occurs sometimes, and bubbling occurs other times on the paths. I focus on

equilbria in which truth-telling occurs all the time. Those are sustained under certain con-

ditions composed of two dimensions: the information structure of the signals and the ex

ante prior on the ability of the expert.
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The results show that the expert’s chosen strategy can determine whether a society

attains a truth-telling equilibrium. The commitment to behave truthfully across all histories

is more difficult to be achieved than the one to behave truthfully after truthful histories, in

the sense that the condition sustains the former implies the latter; and the reverse is not

true. It sheds lights both on the importance of off-path behavior in cheap-talk environments

and on a normative question: should an individual be truthful all the time. The expert

ex-ante prefers truth-telling equilibria than ones in which some information is lost, if s/he is

risk-loving. Furthermore, it is robust under monetary transfers that alleviate reputational

bias.

Chapter 3 is built based on a similar model, with more general priors and information

structure. I confirmed the robustness of the results in Chapter 2 to an extent. Especially,

the condition for truth-telling to be the most favored by both Sender and Receiver remains

unaltered under any information structure in dynamic reputational cheap-talk games with

finite periods. Moreover, I derive a result regarding to robustness of a truth-telling equi-

librium at a specific condition that is different from existing one in Tajika (2021). I alter

the model to an essentially static one with a multi-dimensional signal space – the expert

collects all available information before making a one-shot recommendation. The impact

of the change is ambiguous; it relies on the strategy the expert was previously employing

and which signal holds more significance in the assessment.

Chatper 4 formulates rational bubbles due to asymmetric information in networks.

Players trade a unit of indivisible good between neighbors, while there is only one player

who appreciates it. Due to their restricted scope, they do not exactly know which network

they are in; but they infer that the network is one of those in which they have the same

neighbor set. Using thier information, they form expectation about the value that good

will bring to them, which will be reflected in the price. Despite that they learn through the

accumulated public history, there may exist an equilibrium in which there is a state such

that on path, a player buys the good at a positive price while all players know there is no

3



feasible path from the player to the one who appreciates it, which I call, a network bubble.

Necessary conditions for such equilibria are investicated; and an example is provided.

The results indicate that network bubbles require severe restrictions on the probability

space. In any network bubbles it is essential there exists a state that the buyer can and the

seller cannot distinguish from the bubble state. However, since the price reflects private

information of trading parties, the next potential buyer would infer the willingness-to-pay

of the current buyer. Nonetheless, I provide an example and an equilibrium with a network

bubble, that satisfies neccesary conditions I suggested. In the model, the price rises because

the states in which a buyer cannot find a next buyer are gradually excluded as time flows.
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Chapter 2

Reputational Cheap-talk in a

Dynamic Game with Binary Types

2.1 Introduction

How precise signals are experts receiving? – especially when the signals are unverifiable.

Information acquisition abilities are often not public information. Sometimes it is not

even private information, which implies that experts themselves do not exactly know their

ability. This uncertainty may lead experts to wish to be perceived as having access to more

precise information. One might naively assume that providing a truthful report is a best

response for an expert when the signals are informative. This assumption stems from the

belief that a correct report suggests the expert is more likely to possess high ability (cf.

Milgrom (1981)). However, the reality may be more complex. Consider a scenario where

an expert truthfully reports the first signal received. If the expert then obtains a second

signal that contradicts the initial one, providing another truthful report might damage the

expert’s reputation. This outcome implies the expert’s ability is not sufficiently high to

generate two accurate signals. Would it be in the expert’s best interest to truthfully report

if the second signal aligns with the first one? Surprisingly, this also might not be the case.

The expert may prefer to avoid the worst-case scenario – providing two incorrect signals –

and opt for a more moderate, and hence safer, reputation.
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Furthermore, when experts are reputation-concerned, they may want to control the

timing to reveal their information. Sometimes the timing can be determined at infinitely

later, which implies never.1 In cheap-talk literature, this is translated to babbling equilibria,

in which no information is delivered, and more importantly, which always exist. Under

such circumstances, experts may want to choose the timing and contents of their advice

strategically, while principals want transparent information.

The main question in this paper is: when we can expect truth-telling equilibria to exist.

To answer these questions, I use a model from Tajika (2021): a two-period-two-state game

with an expert who receives a series of noisy signals whose accuracy indicates the ability

of the expert and increases over time. The state, on which signals depend, is determined

at the very first and does not change through the game. The expert is assumed to be

not aware of own ability, following Holmström (1999)2, and to send a cheap-talk message

after each signal. At the end of the game, the state is publicly revealed, and the expert is

evaluated and receives the corresponding payoff.

In the model, I introduce two truth-telling strategies. In one, the expert always tells

the truth; in the other, the expert tells the truth if there were no misreport. Under both

strategies, non-empty set of priors that sustain the strategy are characterized. Moreover, if

there exists an equilibrium under the former truth-telling strategy, there exists one under

the latter. The reverse is not true. The inclusion relationship is strict, and robust under

monetary transfer. Given a prior, there exist truth-telling equilibria under both strategy,

when the increment in accuracy is sufficiently large. A similar inclusion relationship holds,

but it may be weak.

This is because that, having the expert always tell the truth at any history requires

having the expert tell the truth after lying in the previous period. This is more than

needed to achieve on-path-truth-telling outcomes as, in such equilibrium, the histories

1For example, Gratton et al. (2018).
2This assumption keeps the calculation simple, not essentially changing the result.
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where the expert lied in the first period never come, if played along the strategy. Notice

that the latter strategy requires the minimum to achieve truth-telling outcomes. Removing

this incentive compatibility condition allows truth-telling equilibria to exist under a more

relaxed condition.

This paper analyzes behavior of expert who cares reputation on information acquisition

ability (Holmstrom and Costa (1986); Scharfstein and Stein (1990)). When information

is unverifiable, incentives for distortion may occur. However, many of which are thought

driven by priors of senders and/or receivers, as in Scharfstein and Stein (1990), Levy

(2004), and Gentzkow and Shapiro (2006). However, following Tajika (2021), the most

related work, the priors are even; but there still are incentives to misreport, caused by

statements made by expert him/herself. One of the keys of this paper is established on

the difference in out-of-equilibrium behaviors. Most cases in which continuation game after

out-of-equilibrium behavior lay in the center of consideration, are related to information

selection (Banks and Sobel (1987), Kreps and Wilson (1982)). In contrast, in this paper, it

brings substantial difference in equilibrium support. A representative study on cheap-talks

regarding well-informedness Ottaviani and Sørensen (2006a,b) addresses the difficulties of

fully truthful outcomes, while I focus on existence of such outcomes.

2.2 Model

This is a special case of Tajika (2021)’s model. In particular, I narrow our focus to binary-

type cases where the payoff is solely determined by reputation.3 Consider a two-period

game where there exist an expert (he) and an evaluator (she). There are two states in

this world, ω ∈ Ω := {x, y}, that are equally likely. At the start of the game, a state is

drawn, and it remains fixed throughout the game. It is not known to both players, but

the expert privately receives a series of noisy signals about the state over time. The extent

of the noise varies depending on his type. Formally, in each period, he receives one piece

3I will cover the payoff including a monetary transfer that is considered in Tajika (2021) in Section 2.4.
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of information from a signal space, St = Ω, for t = 1, 2. The expert’s type space is also

binary, θ ∈ Θ = {θH , θL}, with 0.5 < θL < θH < 1, which describes the accuracy of the

signals. Abusing notation, θ indicates the accuracy of the signal expert of type θ in the

first period, Pr(s1 = ω|ω, θ) = θ. The signal becomes more precise in the second period,

reaching an accuracy of Pr(s2 = ω|s1, r1, ω, θ) = Pr(s2 = ω|ω, θ) = (1 + α)θ/(1 + αθ) ≥ θ

with α ≥ 0. Pr(s2 = ω|ω, θ) is weakly increasing in θ and α; is equal to θ if α = 0 and

converges to 1 if α increases to infinity. This specific form makes the model tractable. The

probability of the expert being θH is denoted by π ∈ (0, 1). All the information structure

and the flow of the game are common knowledge among the players, except the type, state,

and the realized signals. To keep it simple, I assume that the expert does not know his

own type.

The expert makes a recommendation each period after observing a signal. The message

space in each period is represented by Rt = {x, y} for t = 1, 2.4 I focus on pure strategies for

the expert. Then, a strategy function is represented by r1 : S → R1 and r2 : S1×S2×R1 →

R2. After two rounds of recommendation, the true state becomes public. Players can

observe the true state and whether the advice coincides with the state. The evaluator

updates her beliefs, β : R1 ×R2 ×Ω → ∆Θ, about the type of the expert following Bayes’

rule. The ex post expected type, perceived by the evaluator, is denoted by θr1r2ω, where rt

represents the message sent in period t = 1, 2. Occasionally, a superscript will be included

to differentiate the belief system forming the expectation.

Given realized r1, r2 and ω, the expert receives the corresponding payoff. Specifically,

Φ(Eβ[θ|r1, r2, ω]︸ ︷︷ ︸
θ
(β)
r1r2ω

),

where Φ is a differentiable function with Φ′(·) > 0. The expert receives higher payoff if

4Although Tajika (2021) incorporated a message ∅, indicating “clamming up”, I have omitted it. Typ-
ically, this message finds support within babbling equilibria. Its significance only arises when considering
equilibrium refinements, which might be preferable to the expert. Instead, in Section 2.4, I show a sufficient
condition for truth-telling to be expert-efficient.
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the evaluator considers him as competent, or, having higher information acquisition ability.

The reputation, however, depend only on the expected ability calculated upon the ex post

distribution. For example, two different ex post distributions with the same mean, give the

expert the same reputational payoffs.

2.3 Truth-telling equilibria

This section aims to present equilibria on whose path truth-telling occurs throughout peri-

ods, often considered the most socially desirable equilibria. A straightforward strategy for

the expert resulting in such outcomes, is to be honest, in any occasions. That is, he reports

the signal received in the period every time a new piece of signal arrives at any history.

This strategy, denoted as fully truthful recommendation strategy (hereinafter, referred to as

FT strategy; an FT equilibrium refers to an equilibrium where FT strategy is employed.),

will serve as a benchmark.5 In corresponding equilibrium, the evaluator forms her beliefs

in accordance with Bayes’ rule. Formally, FT strategy and the beliefs in FT equilibri-

ums are given by rT1 (s1) = s1, r
T
2 (s1, s2; r1) = s2 and θTr1r2ω = E[θ|s1 = r1, s2 = r2, ω].

By symmetricity, θTxxx = θTyyy, θTxxy = θTyyx, θTxyx = θTyxy and θTxyy = θTyxx. Moreover,

θTxyx = θTyxy = θTxyy = θTyxx. Notice that, given arbitrarily fixed θ and ω,

LR(s1 = ω|θ, ω)
LR(s1 ̸= ω|θ, ω)

=
LR(s2 = ω|θ, ω)
LR(s2 ̸= ω|θ, ω)

=
θH
θL

/
1− θH
1− θL

. (2.1)

The ratio of likelihood-ratio of correct message to that of incorrect message is held at the

same level through periods. On the other hand, by definition of reputation, θTr1r2ω can be

written as

θTr1r2ω = θL + (θH − θL)Pr(H|s1 = r1, s2 = r2, ω)

= θL + (θH − θL)
1

1 + LR(r1|ω)−1LR(r2|ω)−1(1− π)/π
.

(2.2)

5See Tajika (2021).
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Taking (2.1) into account, (2.2) implies that one correct and one incorrect messages give

the same reputation no matter which period which message is sent. To summarize, under

FT strategy, outcomes of reputations result in three different levels.

Let ps1s2 := Pr(ω = x|s1, s2) be the posterior of the state being x after observing s1 and

s2. Since α ≥ 0 and .5 < θL < θH < 1, .5 < pyy < pxy ≤ pyx < pxx < 1. By symmetricity,

pyy + pxx = pxy + pyx = 1. It follows that, 1−pxx
pxx

< 1−pyx
pyx

< 1 < pyx
1−pyx

< pxx
1−pxx

. Then,

pyx
1− pyx

=
pyx
pxy

=
Pr(s1 ̸= ω)Pr(s2 = ω)

Pr(s1 = ω)Pr(s2 ̸= ω)
= 1 + α (2.3)

Lemma 2.1. FT strategy and the corresponding beliefs form an equilibrium iff

1

1 + α
≤

Φ(θTxyy)− Φ(θTxxy)

Φ(θTxxx)− Φ(θTxyx)
≤ 1 + α (2.4)

Proof. See Appendix 2.A.

Proposition 2.1. Suppose that Φ is differentiable and Φ(·) > 0. For any α ≥ 0 and

1/2 < θL < θH < 1, there exists π(θL, θH ;α) such that a distribution characterized by

(θL, θH , π(θL, θH ;α)) satisfies (2.4).

Proof. See Appendix 2.A.

Lemma 2.1 above characterizes the necessary and sufficient condition for FT equilibria

to exist. Not only that, but the next proposition shows that such a prior that satisfies

the condition exists over a sufficiently wide range. Fixing α, the distribution of abilities is

determined by 3 parameters, (θL, θH , π). In other words, it states that it can be reduced

down to a 2-dimensional manifold of (θL, θH). It can easily follow that, when α > 0, one

can find an open ball around π(θL, θH ;α) that satisfies (2.4), given (θL, θH).

Truth-telling equilibria – not only FT equilibria – require
Φ(θTxyy)−Φ(θTxxy)

Φ(θTxxx)−Φ(θTxyx)
sufficiently close

to 1. Roughly speaking, a moderate – not the best nor the worst – reputation, θTxyx = θTyxy =

θTxyy = θTyxx can be seen as reserved payoff, that can be earned regardless of realized signals,

by simply changing from the one in previous period. Notice that,
Φ(θTxyy)−Φ(θTxxy)

Φ(θTxxx)−Φ(θTxyx)
increases
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with the reserved payoff. Suppose the expert recommended truthfully in the first period. If

the second signal is consistent with the first one and the reserved payoff is relatively great,

the expert may choose it, instead of taking a risky shot. If the second signal is inconsistent

with the first one and the reserved payoff, in this case, the payoff from truth-telling, is

relatively small, the expert may not choose to be truthful.

A sufficient condition for (2.4) to hold, is that Φ(θTxyy)− Φ(θTxxy) = Φ(θTxxx)− Φ(θTxyx).

For simplicity, let Φ(θ) = θ and α = 0. Given .5 < θL < θH < 1, there is a unique π ∈ (0, 1)

that satisfies it, given by

π∗ =
θH(1− θH)

θH(1− θH) + θL(1− θL)
. (2.5)

Given a distribution, increments in signal accuracy, parameterized by α, also influence

the existence of an FT equilibrium. As α approaches infinity, players in the first period

anticipate a precise signal with few error arriving as the next signal. Intuitively speaking,

this situation essentially reduces the game to one in which uncertainty lasts only for the

first period. To see this, suppose Φ(θ) = θ. It derives

θxxx − θxyx =
θ2Lκ+ θ2H
θLκ+ θH

− θL(1− θL)κ+ θH(1− θH)

(1− θL)κ+ (1− θH)
=

κZ(θL, θH)

(θLκ+ θH)((1− θL)κ+ (1− θH))

θxyy − θxxy =
θ2Lν + θ2H
θLν + θH

− θL(1− θL)ν + θH(1− θH)

(1− θL)ν + (1− θH)
=

νZ(θL, θH)

(θLν + θH)((1− θL)ν + (1− θH))

(2.6)

and

θxyy − θxxy
θxxx − θxyx

=
(1− θL)(1− θH)

θLθH

θ2L(1 + αθH)(1− π) + θ2H(1 + αθL)π

(1− θL)2(1 + αθH)(1− π) + (1− θH)2(1 + αθL)π
(2.7)

where

κ =
θL(1 + αθH)(1− π)

θH(1 + αθL)π
,

ν =
(1− θL)(1 + αθH)(1− π)

(1− θH)(1 + αθL)π
=

1− θL
1− θH

θH
θL

κ, and

Z(θL, θH) = θ2L(1− θH) + θ2H(1− θL)− θHθL(1− θH)− θHθL(1− θL) > 0

(2.8)

11



Then, it is clear Lemma 2.1 is satisfied when α is sufficiently large:

lim
α→∞

1

1 + α
= 0

< lim
α→∞

θxyy − θxxy
θxxx − θxyx

= (1− θH)(1− θL)
θL(1− π) + θHπ

(1− θL)2θH(1− π) + (1− θH)2θLπ

< lim
α→∞

1 + α = ∞

(2.9)

Proposition 2.2. Suppose Φ(·) is differentiable with Φ′(·) ≥ 0 and Φ′′(·) ≤ 0. For each

(θL, θH , π), there exists αF ≥ 0 such that for any α ≥ αF , distribution (θL, θH , π) satisfies

(2.4).

Proof of Proposition 2.2. It is sufficient to show that limα→∞
Φ(θxyy)−Φ(θxxy)

Φ(θxxx)−Φ(θxyx)
∈ (0,∞). Since

θxxx > θxyx = θxyy > θxxy and Φ(·) is concave, limα→∞
Φ(θxyy)−Φ(θxxy)

Φ(θxxx)−Φ(θxyx)
≥ limα→∞

θxyy−θxxy
θxxx−θxyx

>

0. In addition, taking the limits of (2.6), limα θxxx > limα θxyx > 0 and limα θxyy >

limα θxxy. By continuity,

lim
α→∞

Φ(θxyy)− Φ(θxxy)

Φ(θxxx)− Φ(θxyx)
=

limα→∞(Φ(θxyy)− Φ(θxxy))

limα→∞(Φ(θxxx)− Φ(θxyx))
=

Φ(limα θxyy)− Φ(limα θxxy)

Φ(limα θxxx)− Φ(limα θxyx)
< ∞

(2.10)

2.3.1 On-Path Truth-telling Recommendation

FT equilibrium, however, is more demanding than it actually needs for truth-telling out-

comes. This is because under FT strategy the expert always tell the truth even off the

path. In this subsection, on-path truth-telling recommendation strategy is introduced

(hereinafter, referred to as PT; PT equilibrium refers to equilibriums where PT strategy

is played). PT strategy is the same with FT strategy on the path. Specifically, the ex-

pert recommends truthfully in the first period. In the following period, he recommends

truthfully, if he did in the previous period. It is different only when the expert reported

12



untruthfully in the first period. Formally, r∗1(s1) = s1, r
∗
2(s1, s2; r1 = s1) = s2, and

r∗2(x, x; y) =


x if 1−pxx

pxx
≤ Φ(θTxyy)−Φ(θTxxy)

Φ(θTxxx)−Φ(θTxyx)

y otherwise

(2.11)

r∗2(x, y; y) =


y if

Φ(θTxyy)−Φ(θTxxy)

Φ(θTxxx)−Φ(θTxyx)
≤ 1 + α

x otherwise

(2.12)

r∗2(y, x;x) and r∗2(y, y;x) are defined analogously. The corresponding beliefs are given by

θTr1r2ω.

WLOG, suppose s1 = x and r1 = y. When
Φ(θTxyy)−Φ(θTxxy)

Φ(θTxxx)−Φ(θTxyx)
/∈ [1−pxx

pxx
, 1 + α], in histories

where the expert previously lied, the following recommendation does not depends on the

signal. If
Φ(θTxyy)−Φ(θTxxy)

Φ(θTxxx)−Φ(θTxyx)
< 1−pxx

pxx
, r∗2(x, x; y) = r∗2(x, y; y) = y = r1. In this case, the expert

simply repeats the previous recommendation. If 1+α <
Φ(θTxyy)−Φ(θTxxy)

Φ(θTxxx)−Φ(θTxyx)
, the opposite occurs:

r∗2(x, x; y) = r∗2(x, y; y) = x ̸= r1. In this case, the expert simply recommends against his

own previous recommendation. Recall that, rT required truth-telling always, including in

any of these cases.

Proposition 2.3. Suppose Φ is differentiable and Φ(·) > 0. For any α ≥ 0 and 1/2 <

θL < θH < 1, there exists π(θL, θH ;α) such that PT strategy and the corresponding beliefs

form an equilibrium. A prior sustains PT equilibriums iff

1

1 + α
≤

Φ(θTxyx)− Φ(θTxxy)

Φ(θTxxx)− Φ(θTxyx)
≤ pxx

1− pxx
(2.13)

Moreover, 1 + α < pxx
1−pxx

.

Proof. See Appendix 2.A.

PT strategy, maintaining the same outcomes with FT strategy, requires (2.13), with the

inequality of the right side of (2.4) replaced with a weaker condition. Hence, a distribution

that sustains an FT equilibrium sustains a PT equilibrium. However, the reverse does

not hold, in general. This especially outstands when α approaches to 0. The interval
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characterized by (2.4) converges to {1}, which pins down the type ratio by Φ(θTxxx) −

Φ(θTxyx) = Φ(θTxyx)−Φ(θTxxy). On the other hand, the interval characterized by (2.13) has a

positive length even if α = 0.

Example 2.1. Suppose that θH = 0.8, θL = 0.5 and π = 0.9. Suppose Φ(θ) = θ2 and set

α = 1. Then, there exists a PT but not an FT equilibrium.

Proposition 2.4. Suppose Φ(·) is differentiable with Φ′(·) ≥ 0 and Φ′′(·) ≤ 0. For each

(θL, θH , π), there exists αF such that for any α ≥ αP , distribution (θL, θH , π) satisfies

(2.13). Moreover, under such Φ, αF (θL, θH , π) ≥ αP (θL, θH , π) where

αF (θL, θH , π) := inf
{
αF : ∀α ≥ αF , distribution (θL, θH , π) satisfies (2.4)

}
αP (θL, θH , π) := inf

{
αP : ∀α ≥ αP , distribution (θL, θH , π) satisfies (2.13)

} (2.14)

The inequality hold strictly when

(1− θL)(1− θH)

θLθH

θ2L(1− π) + θ2Hπ

(1− θL)2(1− π) + (1− θH)2π
> 1 (2.15)

Proof. See Appendix 2.A.

2.4 Analysis

2.4.1 Expert-efficiency

There are equilibria with different paths, other than truthful ones. While truth-telling

path is most favorable to the evaluator, the expert may prefer other equilibrium in which

he receives higher expected payoff. However, if the expert does prefer truth-telling, Pareto-

efficient equilibriums must be ones that deliver full information to the evaluator.

To explore the circumstances under which such equilibria are favored by the expert,

this subsection compares the ex ante payoffs of the expert under different strategies. In

particular, I contrast truth-telling with “waiting strategy” in which the expert sends an

informative message only in the last period.6 The beliefs of the evaluator are assumed to

6One can, of course, consider a strategy in which the expert sends an informative message only in the
first period. Switching the periods results in a similar discussion.
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be consistent with the expert’s strategy.

Under waiting strategy, the expert maintains silence in the first period, and waits for

a more accurate signal. Formally, rW1 (s1) ∈ {x, y} and rW2 (s1, s2; r1) = s2. The belief

system is given by θW∅r2ω
= Pr(θH |s2 = r2). A waiting equilibrium is an equilibrium in

which waiting strategy is played. The proposition below provides a sufficient condition

for the expert to ex-ante prefers truth-telling equilibria over waiting equilibria, that he is

risk-loving.

Proposition 2.5. The expected payoff of the expert under FT (or PT) strategy and belief

θTr1r2ω is greater than one under waiting strategy and belief θW∅r2ω
, if Φ is strictly convex.

Proof. See Appendix 2.A.

2.4.2 Monetary Transfer

So far, it has been assumed that the expert yields payoffs solely determined by reputation.

In many cases, however, experts are employed by firms and paid for their expertise. In

what follows, a monetary reward is given to the expert depending on the recommendations

and the state. The payoff will be given by

K1(r2 = ω) + Φ(Eβ[θ|r1, r2, ω])

The second term indicates reputational payoff. Assumptions regarding Φ remain un-

changed. The first term indicates the monetary reward with K ≥ 0.

The monetary reward is granted only when the final recommendation matches with the

state. Consequently, the first recommendation affects the payoff through the reputational

term. While the model does not explicitly illustrate the evaluator’s action, she may take an

action after receiving all the recommendations, resulting in a positive payoff if her action

aligns with the true state. Assuming the recommendations are perceived as truthful, she

would likely adhere to the final recommendation, given the increased precision of the second
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signal compared to the first. In this context, K can be interpreted as a contingent fee to

the expert.

Denote by qcc, qci, qic, and qii,

qcc = Pr(ω = s2 = s1|s1) = π
θ2H(1 + α)

1 + αθH
+ (1− π)

θ2L(1 + α)

1 + αθL

qci = Pr(ω = s1 ̸= s2|s1) = π
θH(1− θH)

1 + αθH
+ (1− π)

θL(1− θL)

1 + αθL

qii = Pr(s2 = s1 ̸= ω|s1) = π
(1− θH)

2

1 + αθH
+ (1− π)

(1− θL)
2

1 + αθL
, and

qic = Pr(ω = s2 ̸= s1|s1) = π
θH(1− θH)(1 + α)

1 + αθH
+ (1− π)

θL(1− θL)(1 + α)

1 + αθL
≡ (1 + α)qci,

(2.16)

respectively. These are the probabilities of the signals with regard to the state, conditional

on the first signal; the subscript i stands for “incorrect”, and c stands for “correct.” Also

note that because the states are equally likely, the realization of the first signal does not

change the ex ante probability of the second signal being correct. For example, qcc is

equal to Pr(ω = s2 = s1); and it is analogous for qci, qic, and qii. Additionally, let

qc := qcc + qci ≡ Pr(ω = s1|s1) and qi := qic + qii ≡ Pr(ω ̸= s1|s1). These denote the

probabilities of the first signal being correct and incorrect, respectively, given the first

signal.

Proposition 2.6. Suppose Φ is differentiable and Φ(·) > 0. FT strategy and the corre-

sponding beliefs form an equilibrium iff

1

1 + α
≤

Φ(θTxyx)− Φ(θTxxy) +K

Φ(θTxxx)− Φ(θTxyx) +K
≤ 1 + α. (2.17)

PT strategy and the corresponding beliefs form an equilibrium iff

1

1 + α
≤

Φ(θTxyx)− Φ(θTxxy) +K

Φ(θTxxx)− Φ(θTxyx) +K
≤ pxx

1− pxx
− qc − qi

qii

K

Φ(θTxxx)− Φ(θTxyx) +K
. (2.18)

Moreover,

1 + α <
pxx

1− pxx
− qc − qi

qii

K

Φ(θTxxx)− Φ(θTxyx) +K
. (2.19)
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Proof. See Appendix 2.A.

The impact of K ≥ 0 in FT equilibriums is straight forward. As K increases, the (LHS)

of the right inequality of (2.17) in the proposition monotonically approaches to 1. Although

(2.18) may appear more intricate, but it addresses a similar intuition. The inequality on

the right side of (2.18) is equivalent to

qcc(Φ(θ
T
xxx)− Φ(θTxyx)) + qii(Φ(θ

T
xxy)− Φ(θTxyx)) + (qic − qci)︸ ︷︷ ︸

≥0

K ≥ 0 (2.20)

Since the (LHS) increases withK, if it holds atK = 0, then it holds forK ≥ 0. Substituting

K = 0 to (2.20) is equivalent, however, with the inequality on the right side of (2.13). Thus,

if a distritubion satisfies (2.4) and (2.13), it satisfies (2.17) and (2.18), respectively. From

(2.17), (2.18) and (2.20), it follows that, for any distribution, if K is sufficiently large and

α > 0, both FT and PT equilibria exist. This is consistent with the intuition.

The last inequality states that the inclusion relationship between the supports of FT

and PT equilibria is robust to the monetary transfer. Even with K > 0, existence of FT

equilibria implies that of PT equilibria; but the reverse does not necessarily hold.
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Appendix of Chapter 2

2.A Proofs

Proof of Lemma 2.1. Suppose the expert played according to r1. Then, the expected pay-

offs of playing r2 are given as

pxxΦ(θ
T
xxx) + (1− pxx)Φ(θ

T
xxy) if s1 = s2,

pyxΦ(θ
T
xyy) + (1− pyx)Φ(θ

T
xyx) if s1 ̸= s2,

If the expert lies in the second period, that is, r2 ̸= s1 the expected payoffs are

pxxΦ(θ
T
xyx) + (1− pxx)Φ(θ

T
xyy) if s1 = s2,

pyxΦ(θ
T
xxy) + (1− pyx)Φ(θ

T
xxx) if s1 ̸= s2

(2.21)

For the continuation strategy to recommend truthfully in the second period to be opti-

mal, the following has to hold:

pxx
1− pxx

≥
Φ(θTxyx)− Φ(θTxxy)

Φ(θTxxx)− Φ(θTxyx)
≥ 1− pyx

pyx
=

1

1 + α
(2.22)

Now suppose the expert recommended the opposite signal from what he received in the

first period. For the expert to recommend truthfully in the second period, the following

two inequalities are required:

pxxΦ(θ
T
xyy) + (1− pxx)Φ(θ

T
xyx) ≥ pxxΦ(θ

T
xxy) + (1− pxx)Φ(θ

T
xxx)

pyxΦ(θ
T
xxx) + (1− pyx)Φ(θ

T
xxy) ≥ pyxΦ(θ

T
xyx) + (1− pyx)Φ(θ

T
xyy)

(2.23)
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It is now equal to

pxx
1− pxx

≥

(
Φ(θTxyx)− Φ(θTxxy)

Φ(θTxxx)− Φ(θTxyx)

)−1

≥ 1

1 + α
(2.24)

Combining (2.22) and (2.24), it has to be

min

{
pxx

1− pxx
, 1 + α

}
≥

Φ(θTxyx)− Φ(θTxxy)

Φ(θTxxx)− Φ(θTxyx)
≥ max

{
1− pxx
pxx

,
1

1 + α

}
(2.25)

Considering 1 + α = pxy/(1− pxy) and pxx > pxy = 1− pyx, (2.25) results in (2.4).

It remains to show that, given rT2 (s1, s2; r1) = s2, the optimal behavior for the expert in

the first period is to recommend truthfully. As the monetary rewards are only determined

by the second recommendation, only the reputational payoffs will be taken into account.

It is obvious that there is no incentive to send r1 = ∅, because the evaluator believes the

expert is of type θL with probability 1.

For truthful recommendation to be the optimal behavior given the second period strat-

egy, rT2 , it needs to be satisfied that

qccΦ(θ
T
xxx) + qiiΦ(θ

T
xxy) + qciΦ(θ

T
xyx) + qicΦ(θ

T
xyx)

≥ qccΦ(θ
T
xyx) + qiiΦ(θ

T
xyx) + qciΦ(θ

T
xxy) + qicΦ(θ

T
xxx).

(2.26)

It is summarized as

(1 + α)

{
π
θH(2θH − 1)

1 + αθH
+ (1− π)

θL(2θL − 1)

1 + αθL

}
︸ ︷︷ ︸

>0

(Φ(θTxxx)− Φ(θTxyy))

≥
{
π
(1− θH)(1− 2θH)

1 + αθH
+ (1− π)

(1− θL)(1− 2θL)

1 + αθL

}
︸ ︷︷ ︸

<0

(Φ(θTxyx)− Φ(θTxxy)).

(2.27)

It always holds that, as 1 > θH > θL > 0.5, the (LHS) is always positive and the (RHS) is

always negative.

Proof of Proposition 2.1. Lemma 2.1 shows a sufficient condition for a truthful equilibrium

to hold, represented by

Φ(θTxxx)− Φ(θTxyx) = Φ(θTxyx)− Φ(θTxxy) (2.28)
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It is obvious that, when there is only one type of accuracy, the ex post belief would not

change. In other words, for any fixed θH and θL, if π = 0 or π = 1, θTxxx = θTxyx = θTxxy;

hence, Φ(θTxxx) + Φ(θTxxy) − 2Φ(θTxyx) = 0. On the other hand, as Φ is a differentiable

increasing function, the derivatives of Φ(θTxxx) + Φ(θTxxy)− 2Φ(θTxyx) at π = 0 and π = 1 is

positive if and only if,

d θTxxx
dπ

∣∣∣∣
π=0

+
d θTxxy
dπ

∣∣∣∣
π=0

− 2
d θTxyx
d π

∣∣∣∣
π=0

=
(θH − θL)

3(1 + αθL)

(1− θL)2θL(1 + αθH)
> 0

d θTxxx
dπ

∣∣∣∣
π=1

+
d θTxxy
dπ

∣∣∣∣
π=1

− 2
d θTxyx
d π

∣∣∣∣
π=1

=
(θH − θL)

3(1 + αθH)

(1− θH)2θH(1 + αθL)
> 0.

Therefore, by the intermediate value theorem, there must exist π∗ ∈ (0, 1) to make Φ(θTxxx)−
Φ(θTxxy) − 2Φ(θTxyx) = 0. It fulfills the sufficient condition for the existence of truthful

equilibrium. And by continuity, if α > 0, there is an interval with positive length around

π∗.

Proof of Proposition 2.3. The proof of Lemma 2.1 has already demonstrated the following:

(i) if the continuation strategy in the second period is set as truth-telling, recommending

truthfully in the first period is always a best response, (ii) if the expert deceived in the first

period and received the same signal, s2 = s1, it is a unique best response to recommend

truthfully, and (iii) Inequalities (2.13) are equivalent with the sufficient and necessary

condition for the expert to maintain truthfulness in the second period after doing so in the

first period. (ii) is derived by the fact that the inequality in the left side of (2.13) implies

the strict inequality in the left side of (2.24).

(i) implies that, if there exists an optimal profitable deviation, there must exist ŝ ∈
{x, y} on which the expert in the first period misreports r1 observing. (ii) implies that,

in such continuation game, if s2 = ŝ, the expert must send r2 = s2. (iii) implies that,

in such continuation game, if s2 ̸= ŝ, the expert must send r2 ̸= s2 = ŝ. Otherwise,

the continuation strategy becomes a truth-telling one, contradicting the observable (i). It

follows that, profitable deviating expert recommends r1 ̸= r2 when observing ŝ in the first

period.

On the other hand, from (2.1) and (2.2), sending different messages (r1, r2) = (r, r′) with

r ̸= r′ yields a fixed reputation, θTxyx = θTxyy = θTyxx = θTyxy. This implies that the expert

receives the same payoff by recommending truthfully in the first period and recommends

the opposite in the second period. However, it contradicts (i), concluding that, when (2.13)

holds, any deviation strategy from FT strategy cannot be profitable.

20



Proof of Proposition 2.4. Find A,B > 0 and K > 0 depending on (θL, θH , π) so that (2.7)

is written by in a form of
1

A+Bα
+K (2.29)

By (2.8), A,B > 0 and K > 0 are uniquely determined.

Claim 2.1. θxyy−θxxy
θxxx−θxyx

> 1
1+α

holds for α ≥ 0 under inequality (2.15).

Suppose Claim 2.1 holds for a while until proven. Since Φ(·) is concave, it follows that

1

1 + α
<

θxyy − θxxy
θxxx − θxyx

≤ Φ(θxyy)− Φ(θxxy)

Φ(θxxx)− Φ(θxyx)
(2.30)

Substitute (2.29) and take the limits as below.

0 < K = lim
α

θxyy − θxxy
θxxx − θxyx

≤ lim
α

Φ(θxyy)− Φ(θxxy)

Φ(θxxx)− Φ(θxyx)
< ∞. (2.31)

The last inequality in (2.31) derives from the proof of Proposition 2.2, which guarantees

the existence of α∗ such that Φ(θxyy)−Φ(θxxy)

Φ(θxxx)−Φ(θxyx)

∣∣
α=α∗ = 1+α∗. Although it may not be unique,

but there exists infimum:

α̂F = inf
α

{
α∗ :

Φ(θxyy)− Φ(θxxy)

Φ(θxxx)− Φ(θxyx)

∣∣∣∣
α=α∗

= 1 + α∗
}

= min
α

{
α∗ :

Φ(θxyy)− Φ(θxxy)

Φ(θxxx)− Φ(θxyx)

∣∣∣∣
α=α∗

= 1 + α∗
} (2.32)

Similarly define α̂P as follows.

α̂F = min
α

{
α∗ ≥ 0 :

Φ(θxyy)− Φ(θxxy)

Φ(θxxx)− Φ(θxyx)

∣∣∣∣
α=α∗

=
pxx

1− pxx

∣∣∣∣
α=α∗

}
(2.33)

However, the set in (2.33) may be empty, that is, Φ(θxyy)−Φ(θxxy)

Φ(θxxx)−Φ(θxyx)
< pxx

1−pxx
for α ≥ 0. In such

cases, let α̂F = 0.

By Claim 2.1, under (2.15), αF and αP are determined solely by the right side of

inequality in (2.4) and (2.13), respectively. Then, 1 + α < pxx
1−pxx

for any α, by continuity,

the proposition is proven if Claim 2.1 holds.

Notice that the equation below with respect to α has at most 2 solutions.

1

A+Bα
+K =

1

1 + α
, A,B,K > 0 (2.34)
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The (LHS) has its discontinuity point at α = −A/B. Because

−A/B =
(1− θL)

2(1− π) + (1− θH)
2(1− π)

(1− θL)2θH(1− π) + (1− θH)2θL(1− π)
< −1, (2.35)

it follows that

lim
α↑−A/B

1

A+Bα
+K = −∞ < lim

α↑−A/B

1

1 + α
(2.36)

Since limα→−∞
1

A+Bα
+K = K > limα→−∞

1
1+α

, there exist one solution of (2.34) such that

smaller than −1. Besides,

lim
α↓−1

1

A+Bα
+K < ∞ = lim

α↓−1

1

1 + α
. (2.37)

If

lim
α→0

1

A+Bα
+K > lim

α→0

1

1 + α
= 1, (2.38)

which is equivalent with (2.15), there exists another solution between -1 and 0. Since (2.15)

is guaranteed by assumption, (2.34) has its maximum number of solutions; (LHS) of (2.34)

is strictly greater than the (RHS) and there exists no α ≥ 0 that satisfies the equality.

Proof of Proposition 2.5. Let Φ̃(x) := Φ(θL + (θH − θL)x). It is a different form of Φ

such that Φ(θTs1s2ω) = Φ̃(Pr(H|s1, s2, ω)). The expected accuracy corresponding to waiting

strategy will be denoted by θW∅r2ω := Pr(θH |s2, ω); and the expected reputational payoff

under the strategy is given by

FW (α,Φ) = Pr(ω = s2)Φ(θ
W
∅xx) + Pr(ω ̸= s2)Φ(θ

W
∅xy) (2.39)

On the other hand,

Φ(θW∅xx) = Φ(θL + (θH − θL)Pr(θH |s2 = ω))

= Φ(θL + (θH − θL)[Pr(θH , s1 = ω|s2 = ω) + Pr(θH , s1 ̸= ω|s2 = ω)])

= Φ(θL + {(θH − θL)Pr(θH |s1 = ω, s2 = ω)Pr(s1 = ω|s2 = ω)}

+ {(θH − θL)Pr(θH |s1 ̸= ω, s2 = ω)Pr(s1 ̸= ω|s2 = ω)})

= Φ(Pr(s1 = ω|s2 = ω) {θL + (θH − θL)Pr(θH |s1 = ω, s2 = ω)}

+ Pr(s1 ̸= ω|s2 = ω) {θL + (θH − θL)Pr(θH |s1 ̸= ω, s2 = ω)})

(2.40)

The first equality derives from the definition, and the second and third derives from Bayes’
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rule. The last equality is from the fact that Pr(s1 = ω|s2 = ω) + Pr(s1 ̸= ω|s2 = ω) = 1.

Now, since we have assumed convexity in Φ(·),

Φ(θW∅xx) = Φ(Pr(s1 = ω|s2 = ω) {θL + (θH − θL)Pr(θH |s1 = ω, s2 = ω)}

+ Pr(s1 ̸= ω|s2 = ω) {θL + (θH − θL)Pr(θH |s1 ̸= ω, s2 = ω)})

< Pr(s1 = ω|s2 = ω)Φ(θL + (θH − θL)Pr(θH |s1 = ω, s2 = ω))

+Pr(s1 ̸= ω|s2 = ω)Φ(θL + (θH − θL)Pr(θH |s1 ̸= ω, s2 = ω))

= Pr(s1 = ω|s2 = ω)Φ̃(Pr(θH |s1 = ω, s2 = ω))

+Pr(s1 ̸= ω|s2 = ω)Φ̃(Pr(θH |s1 ̸= ω, s2 = ω))

(2.41)

In a similar fashion,

Φ(θW∅xy) <Pr(s1 = ω|s2 ̸= ω)Φ̃(Pr(θH |s1 = ω, s2 ̸= ω))

+ Pr(s1 ̸= ω|s2 ̸= ω)Φ̃(Pr(θH |s1 ̸= ω, s2 ̸= ω))
(2.42)

Substituting (2.41) and (2.42) to (2.39),

FW (α,Φ) <Pr(s2 = ω)Pr(s1 = ω|s2 = ω)Φ̃(Pr(θH |s1 = ω, s2 = ω))

+ Pr(s2 = ω)Pr(s1 ̸= ω|s2 = ω)Φ̃(Pr(θH |s1 ̸= ω, s2 = ω))

+ Pr(s2 ̸= ω)Pr(s1 = ω|s2 ̸= ω)Φ̃(Pr(θH |s1 = ω, s2 ̸= ω))

+ Pr(s2 ̸= ω)Pr(s1 ̸= ω|s2 ̸= ω)Φ̃(Pr(θH |s1 ̸= ω, s2 ̸= ω))

=Pr(s1 = s2 = ω)Φ̃(Pr(θH |s1 = ω, s2 = ω))

+ Pr(s1 ̸= ω = s2)Φ̃(Pr(θH |s1 ̸= ω, s2 = ω))

+ Pr(s1 = ω ̸= s2)Φ̃(Pr(θH |s1 = ω, s2 ̸= ω))

+ Pr(s1 = s2 ̸= ω)Φ̃(Pr(θH |s1 ̸= ω, s2 ̸= ω)) = F T (α,Φ)

(2.43)

Proof of Proposition 2.6. Start with the last claim. Re-arrange (2.19) to

(qc − qi)
K

Φ(θTxxx)− Φ(θTxyx) +K
< qcc − (1 + α)qii. (2.44)

The fact that qcc/qii = pxx/(1− pxx) is used to derive (2.44). Using the definition of qc and

qi, and the fact that Φ(θTxxx) > Φ(θTxyx), (2.44) holds if the following inequality holds which
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is always true.

αqii < qic − qci ≡ αqci (2.45)

As the monetary payoff only depends on the recommendation in the final period, the

first recommendation only affects the reputational term. Therefore, there is no deviation

incentive in the first period as long as the continuation strategy is truth-telling, as seen in

the proof of Lemma 2.1. In the second period, it can be readily shown that the incentive

compatibility conditions in the same proof, (2.22) and (2.24), are the special cases with

K = 0. With K ≥ 0, they are re-written to

pxx
1− pxx

≥
Φ(θTxyx)− Φ(θTxxy) +K

Φ(θTxxx)− Φ(θTxyx) +K
≥ 1

1 + α
(2.46)

and

pxx
1− pxx

≥

(
Φ(θTxyx)− Φ(θTxxy) +K

Φ(θTxxx)− Φ(θTxyx) +K

)−1

≥ 1

1 + α
, (2.47)

resulting in (2.17).

The optimality of truth-telling after previous truth-telling recommendation under PT

strategy is guaranteed if

1

1 + α
≤

Φ(θTxyx)− Φ(θTxxy) +K

Φ(θTxxx)− Φ(θTxyx) +K
≤ pxx

1− pxx
, (2.48)

which is satisfied if (2.18) holds. Hence, provided the last claim into account, if there exists

a deviation strategy, it implies that there is a signal s1 = ŝ such that, upon observing

it, the expert chooses to deceive. By the same logic as with the proof of Proposition 2.3,

profitable deviating expert recommends r1 ̸= r2 when observing ŝ in the first period. By

this deviation, the expert receives the monetary reward iff ω = ŝ1. Then, truth-telling

performs equally or better than this deviation if the following holds,

qccΦ(θ
T
xxx) + qiiΦ(θ

T
xxy) + qciΦ(θ

T
xyx) + qicΦ(θ

T
xyx) + (qcc + qic)K

≥Φ(θTxyx) + (qcc + qci)K

≡qccΦ(θ
T
xyx) + qiiΦ(θ

T
xyx) + qciΦ(θ

T
xyx) + qicΦ(θ

T
xyx) + (qcc + qci)K,

(2.49)

which is equivalent to the right inequality of (2.18).
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Chapter 3

Reputational Cheap-talk in a

Dynamic Game

3.1 Introduction

It may seem curious at a first glance that an expert may have incentive to fabricate their

informative source to enhance reputation, even when priors are even. Consider two, inde-

pendent and unverifiable experiments A and B about a binary, ex-ante equally likely state.

The accuracy depends on the ability of an expert, who sequentially (wlog, in order of A

and B) receives the results and sends a message, each time after a result. If the second

signal is inconsistent with the previous message, a new honest message would convince

evaluators expecting truth-telling that, the expert is not talented enough to receive two

correct signals. On the other hand, two same messages connote a risk of a state inconsistent

with it, which will convince the evaluator to assign the lowest assessment. In either case,

the expert may have incentive to misreport. Notice that, A (or B) alone, truth-telling is a

best response for the expert, being expected truthful.

The expert may prefer to send a message after collecting both A and B. The situation is

reminiscent of Blackwell (1953); consider another experiment C whose posterior distribution

is the same with one generated by B after A. As before, when C alone, one can eaily expect

that truth-telling equilibrium exists. Suppose in an equilibrium, a correct signal followed
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by a wrong one is more valuated than a wrong one followed by a correct one. If experiment

B is ex-ante more accurate than A is, the expert may interim better off by switching the

results of A and B.1 The incentive to misreport may persist even in cases where it is feasible

for the expert to truthfully report in sequential-message environment.

The main questions of this paper are when we can expect truth-telling in dynamic

information structure and what makes it difficult. This study analyzes a simple dynamic

model, following Tajika (2021). In the model, an expert predicts a state of the world

multiple times before the true state reveals, based on a sequence of signals whose accuracy

depends on time as well as the information acquisition ability of the expert. The more

competent the expert is, the higher the accuracy of the signals s/he receives is. When

the reputation is determined by the messages s/he has sent and the true state revealed

out, I focus on the distributions of the abilities that enable truthful outcomes.2 This is

one of key differences between Tajika (2021), who focused on the equilibria in which the

expert reports the interim belief only once through the whole game. The mentioned above

question, whether the expert wants to be truthful, does not arise in such equilibria.

Two distinct truth-telling strategies and their corresponding equilibria are character-

ized. These strategies differ in off-path behavior, where the ‘FT’ strategy mandates re-

porting the true signal even after a misreport, while the ‘PT’ strategy permits lying after

previous deception. The supports of each equilibrium are both non-empty, and will be

compared. It is suggested that the flexibility in off-path behavior may expand the support,

particularly noticeable when increments in signal accuracy uniformly approach zero.

Further analysis explores that the genuine factor that hampers truth-telling is more

attributed to multi-dimensionality rather than dynamicity. In the model, the expert waiting

for the complete collection of information results in a similar effect of multi-dimensionalizing

1Readers may refer to Ottaviani and Sørensen (2006a) who pointed out the difference between reporting
posterior and reporting signal.

2In this paper, the signal set is assumed to be discrete. The generic impossibility theorem of Ottaviani
and Sørensen (2006a,b) does not apply here.
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signals and the messages. Whether this alternation promotes previously unattained truth-

telling or impedes existing truth-telling depends on the strategy adopted by the expert,

which is, however, non-observable in general. These insights shed light on the complex

interplay between multi-dimensionality and dynamicity in communication dynamics, and

highlight the challenges faced by society designers in promoting truthful outcomes.

A sufficient condition found in Woo (2022) for truth-telling to be ex-ante profitalbe,

is generalized. The expert prefers the strategy that results in more informative posterior

distribution, when risk-loving. This result holds for any finite and discrete time horizon,

and any information structure. Not to say, it is also socially the most desirable outcome,

in Blackwell (1953)’s sense.

The existence of ability distributions that sustain truth-telling outcomes does not depict

the shape of such distributions. I reduced the model down while inheriting the essence of

the original model, with a linear payoff function and binary types, to make an explicit

example. This exploration sheds light on the nature of ability distributions that facilitate

truth-telling outcomes. Moreover, through this example, I dispute one of the claims in

Tajika (2021). See a counter example in Section 3.5.

Section 3.2 describes the model through the paper. Section 3.3 provides a static bench-

mark and truth-telling equilibria of the model. In section 3.4, I compare the ex ante payoffs

for the expert in different equilibria and derives a condition for truth-telling equilibria to

be favored. Then, I alter the timing of messages and staticize the model to assess its im-

pact. Section 3.5 focuses on a binary-type model and produces a results differing from one

in Tajika (2021). Here, I not only provide a counterexample to his claim but also offer

an intuitive explanation of how the distribution’s shape influences the expert’s incentives.

Section 3.6 concludes.
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3.1.1 Related Literature

This paper is related to a large body of literature on reputation building on information

acquisition abilities initiated by Holmstrom and Costa (1986). It has been shown in many

previous researches that, information is distorted when the expert is a careerist. Hence,

many of the literature consider contract schemes to have experts take a desirable action

in view of the principal. Results in this paper share the insight that experts are reluctant

to share their information when they are risk-averse. However, in cheap-talk environment,

if there exists a truth-telling equilibrium, it seems reasonable to choose the most desirable

one in equilibrium refinement.3 I prove the existence of truth-telling equilibria by cheap

talk to exist, which does not involve monetary transfer.

In this respect, growing literature of cheap-talks on being well-informed, is another

vein this paper contribute. Existing works, such as Ottaviani and Sørensen (2006a,b),

and Tajika (2021), have predominantly discussed the vulnerability of fully truth-telling

equilibria. However, in this paper I show, besides the existence of such equilibria, their

robustness. One type of truth-telling equilibria, which I call PT equilibria, are robust both

in the prior and the growth of accuracy. Regarding another one, which I call FT equilibria,

I derive a different result on robustness of it, other than one in Tajika (2021).

In sender-receiver games, settings of multi-dimensions in signal, are often a blessing

for receivers. For instance, it may have cheap talk truthful (Battaglini (2002)), along

with multiple-sender; even make it credible (Chakraborty and Harbaugh (2010)); or may

enable receiver to infer additional information from the timing of disclosure (Guttman

et al. (2014)). By contrast, in this paper, it is suggested that, multi-dimensional signal in a

static model may fail to achieve truth-telling when it is always possible to achieve one with

unidimensional signal. The result in this regard gives a different insight than Ottaviani and

Sørensen (2006a) who argued that expert of a certain type has higher desires to misreport

when reporting posterior than when reporting signal. Their result holds when the signal is

3For example, as do Crawford and Sobel (1982) and Alonso et al. (2008).
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unidimensional but assumes the expert knows their ability.

Finally, this work can be seen as a literature about media bias of a monopolist. There

are plenty of empirical studies on it in the century; and relatively a few of theoretical

approaches. Baron (2006), Mullainathan and Shleifer (2005), and Gentzkow and Shapiro

(2006) showed that the media would be biased to the prior of the public. While the first two

focused on the demand from public and sales, the third viewed it partially as reputation

building. Gentzkow and Shapiro (2006), however, considered reputation-driven bias arises

because the expert would choose to predict the state that is more likely ex ante. They

viewed bias lying outside of expert. In this paper, however, the states are equally likely.

The incentives to misreport arise because of previous messages sent by expert themselves.

3.2 Model

Consider the following dynamic single-player game that lasts for two periods. There is a

state of the world, ω ∈ Ω := {x, y} whose probabilities are equally likely. It is drawn when

the game starts and continues to be unknown until the last stage of the game. However,

there is an expert in this world, who receives a series of informative but noisy signals about

the state. The expert receives a signal each period from a signal space S ≡ Ω, where the

extent of the noise is determined by type. In particular, the accuracy of the first signal

that an expert of type τ receives is given by θτ , or, Pr(s1 = ω|ω) = θτ . Assume there

is monotone likelihood ratio property in types, i.e., θτ ′ > θτ ′′ if and only if τ ′ is more

competent than τ ′′. WLOG, let T = [.5, 1] and θτ = τ . The distribution of the type

is commonly known by a (possibly discrete) p.d.f. f . Assume that f is bounded and

supp f ≥ 2.

In the second period, the accuracy increases by ∆τ ≥ 0; {∆τ}τ∈T preserves the order

in types. In other words,

Pr(s2 = ω|ω) = θτ +∆τ ,
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and there does not exist τ ′ > τ ′′ such that θτ ′ + ∆τ ′ < θτ ′′ + ∆τ ′′ . That is, τ ′ > τ ′′ if and

only if Pr(s1 = ω|τ ′, ω) > Pr(s1 = ω|τ ′′, ω) and Pr(s2 = ω|τ ′, ω) ≥ Pr(s2 = ω|τ ′′, ω).

The increment in accuracies expresses the nature of information, typically becoming more

accessible to the public as time elapses. It may be due to information leakage, rumors

spreading, or advances in technologies. For example, more advanced technology for exper-

iment may be adopted in the later period. The experiment with the new technology would

be independent with the first experiment. However, it does not affect the proficiency in

information acquisition ability that belongs to the individual.

Each period, after observing a signal, the expert publicly sends a message. Messages

are transferred in cheap talks – by revelation principle, the message space will be denoted

by R ≡ S = {x, y}. The expert’s message strategy is denoted by r1 : S → R and

r2 : S × S × R → R. After the second message r2 is sent, the state becomes public.

Thus, it naturally reveals whether the messages match with the state. For notational

convenience, define a switching mapping that returns the complement signal. That is, for

a ∈ {x, y}, ā ∈ {x, y} \ {a}. I will refer a deterministic strategy as symmetric, if for any

s1, s2, ω ∈ {x, y}, r1(s1) = r1(s1) and r2(s1, s2; r1) = r2(s1, s2; r1).

The beliefs over the ability of the expert is updated by β : R × R × Ω → ∆T that

follows Bayes rule. If any off-path message is sent, it puts probability 1 on inf{supp f}.4

Reputation refers to the ex post expected accuracy of signal at t = 1 after observing r1, r2

and ω. The payoff for the expert is determined by the reputation:

Φ(Eβ[θ|r1, r2, ω]), (3.1)

where Φ(·) is a differentiable function with Φ′(·) > 0. Hence, the objective of the expert is

to maximize his/her expected reputation. Notice that, the reputation term only depends on

the ex post expected ability. For example, two different ex post distribution with a same

mean gives the same reputational payoff. This setting can be seen in earlier researches

4A rationale of this off-path beliefs will be provided in the section 3.4.
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including Gentzkow and Shapiro (2006) and Tajika (2021) while Ottaviani and Sørensen

(2006a,b) considered a more gnenral expression.

3.3 Benchmarks and Equilibriums

Any cheap-talk communication have a babbling equilibrium. In an analogous sense, one

can consider a period where babbling occurs, and some informative message is sent in the

other periods. I consider here only deterministic and symmetric strategies, as it is sufficient

to address the essence. Suppose, in an equilibrium, truth-telling is expected in a period

t ∈ {1, 2}. In other words, the expert sends rt = st with a unit probability and β puts

1 on st = rt upon receiving rt. Denote by mt ∈ {c, i}, the event representing whether

the message was equal to ω or not. mt = c if and only if rt = ω. ‘c’ stands for ‘correct’

and ‘i’ stands for ‘incorrect’. If babbling is expected in a period t ∈ {1, 2}, rt would not

affect the reputation. In other words, for any rt, Eβ[θ|rt, r−t, ω] = Eβ[θ|r̄t, r−t, ω] for any

rt, r−t ∈ {x, y}, and ω ∈ Ω. In such cases, let mt = ∅. Then, a tuple (r1, r2, ω) will be

uniquely re-written in a form of (m1,m2, ω).

Let θβm1m2ω
be the corresponding reputation after observing (m1,m2, ω). The superscrip-

tion is used to explicitly stress the belief function under which the reputation is formed.

By symmetricity of the model, if the message strategy is symmetric, E[θτ |s1, s2, ω] =

E[θτ |s̄1, s̄2, ω̄]. Hence, if there are no rooms for confusion, I will drop off the last ar-

gument in θ
(β)
m1m2ω and simply write the reputation by θ

(β)
m1m2 . It is also useful to define

ps1s2 = Pr(ω = x|s1, s2), the interim belief on ω = x after receiving (s1, s2).

In this section, two benchmark cases are presented. One is a static case, where the game

lasts only for one period. It is essentially the same case with an equilibrium of dynamic

case where the expert babbles in all the periods except in one. Another benchmark case is

concerned with a truthful strategy, suggested by Tajika (2021), where the expert reports

truthfully under any history. Then another strategy is proposed, which also induces truthful
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recommendation on path.

3.3.1 Static Benchmark

Suppose the game only has one period. From the perspective of Receiver, it is equivalent

with the original game where only uninformative messages are conveyed in the second

period. As the information structure reveals MLRP, a report that is matching with the

state will give the expert favorable payoffs than a report that fails to match with the state.5

For τ ′ > τ ′′,

E[s = ω|τ ′, ω] > E[s = ω|τ ′′, ω]. (3.2)

In other words,

Eτ [θτ |s = ω] ≥ Eτ [θτ |s ̸= ω]. (3.3)

The incentive constraint for the expert to report the true signal is∫
(θΦ(E[θ|s = ω]) + (1− θ)Φ(E[θ|s ̸= ω]))f(θ)dθ

≥
∫

((1− θ)Φ(E[θ|s = ω]) + θΦ(E[θ|s ̸= ω]))f(θ)dθ

(3.4)

This inequality always holds because of θ > 1−θ and (3.3). As a consequence, the incentives

of the expert and the society (who wants truthful information) align, and the desire of the

expert for constructing reputation is fulfilled by truth-telling. Therefore, under any prior

distribution of θ, there exists an equilibrium where the expert makes reports only truthfully.

The following subsection shows, in a dynamic setting, how the expert becomes biased.

It is worth noting that there always exists equilibria in which babbling occurs in one

period and truth-telling occurs in the other period. Consider a following strategy such that

the expert tells the signal truthfully in the first period and in the second, s/he merely repeats

the first message. In a PBE, the second message does not convey any new information, as

r1, equivalently s1, is already reflected in the interim beliefs. By definition, there babbling

5Milgrom (1981)
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occurs in the second period. Then it is essentially equal to a static model, in which I argued

above that there always exist truth-telling equilibria.

3.3.2 Fully Truthful Strategy

Suppose the expert adopts fully truthful strategy (hereinafter, FT strategy; FT equilibria

are the equilibria where FT strategy is played). That is, rT1 (s1) = s1 and rT2 (r1, s1, s2) = s2.

By superscription T , I will refer to the belief that puts 1 on st = rt upon receiving rt. The

reputations formed under such belief are given as E[θ|m1,m2, ω] formt ∈ {i, c} and t = 1, 2.

Obviously, θTcc > θTci, θ
T
ic > and θTci, θ

T
ic > θTii . The two intermediate reputations (θTci and θTic)

can be seen as reserved payoffs in a broad sense. Notice that, since the expert can earn one

of those intermediate reputations for sure, by just sending two different messages, regardless

of the true state. Sending the same messages is relatively more adventurous. In this sense,

Φ(θTcc)−Φ(θTci) is the gain from sending the first signal through two periods, conditional on

that the signal is indeed correct. Analogously, Φ(θTic)− Φ(θTii) is the loss from sending the

first signal through two periods, conditional on that the signal is indeed incorrect. Define

ratio of loss to gain to describe further results.

E :=
Φ(θTic)− Φ(θTii)

Φ(θTcc)− Φ(θTci)
(3.5)

Note that E approaches 1 as the potential gain and loss become similar to each other. I

introduces a similar notation,

E ′ :=
Φ(θTci)− Φ(θTii)

Φ(θTcc)− Φ(θTic)
, (3.6)

representing the ratio of the potential gain and loss of deception in the first period, followed

by the opposite recommendation in the second period.

Proposition 3.1. rT and the corresponding beliefs consist a PBE if and only if

1− pyx
pyx

≤ E ≤ pyx
1− pyx

, (3.7)
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where E is given by (3.5).

Proof. See Appendix 3.A.

Since pyx > 1/2, Proposition 3.1 state that FT equilibrium requires E sufficiently close

to 1. If loss from sending the same messages in a row is relatively large enough, the expert

will have an anti-self-herding incentive, ignoring new, more convincing information. If the

gain from sending the same messages in a row is relatively large enough, maintaining the

original stance and pretending as if the signals were consistent will be a more attractive op-

tion, causing a self-herding incentive. For these reasons, to establish an FT equilibrium, the

sizes of loss and gain from sending the same messages need to be similar. This presents the

sufficient and necessary condition for an FT equilibria in Proposition 3.1, and Proposition

3.2 below demonstrates that there exist such priors that satisfy the condition.

Proposition 3.2. For any differentiable Φ(·) with Φ′(·) > 0, there always exist priors on

abilities that sustain FT equilibrium.

Proof. See Appendix 3.A.

Corollary 3.1. pyx is weakly greater than 1/2 and converges to 1/2 if ∆τ uniformly con-

verges to 0.

Proof. pyx is weakly greater than 1/2 because the second signal is more informative. Since

the type is independently determided with the true state, f(τ |r) = f(τ). Additionally,

for any bounded function h of τ ,
∫
h(τ)∆τ d τ converges to 0. Therefore, both Pr(m1 =

c,m2 = i) and Pr(m1 = i,m2 = c) converge to
∫
θτ (1 − θτ )f(τ) d τ > 0. By Bayes rule,

pyx converges to Pr(x) which is equal to 1/2.

It should be noticed from Corollary 3.1 that, when ∆τ uniformly approaches 0, the

existence of FT equilibrium becomes non-generic. ∆τ uniformly approaching 0 also implies

that the information arrivals in two peroids becomes similar. It can be interpreted as an

identical experiment being executed independently twice. As seen in the static benchmark,

however, when the experiment is run once, there always existed truthful outcomes, regard-

less of the distribution of abilities. This extension leaves few distributions that support FT

equilibrium.
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3.3.3 On-Path Truthful Strategy

I attempt to expand truth-telling outcomes in this dynamic model. Notice that FT strategy

requires the expert to send a message truthfully in the second period, even after lying in the

first period. This demands more than necessary to have a truth-telling outcome, because, if

the expert played along the strategy in the first period, the histories where s/he lied in the

past period never come with a positive probability in the equilibrium. The requirements

contingent on such events may restrict the support of truth-telling outcomes.

Define r∗ = (r∗1, r
∗
2) by r∗1(s1) = s1, r

∗
2(s1, s2; s1) = s2 and

r∗2(s1, s2 = s1; r1 ̸= s1) =


s2 if 1−pxx

pxx
≤ E

s2 otherwise

r∗2(s1, s2 ̸= s1; r1 ̸= s1) =


s2 if E ≤ pyx

1−pyx

s2 otherwise

(3.8)

Despite that off-the-path continuation strategy sends a truthful message on some occa-

sions, it may not convey any information about s2. To see why, suppose the expert misre-

ported in the first period, sending r ̸= s after observing s1 = s. If E is sufficiently great,

r∗(s, ·; r1 ̸= s) will send s, regardless of realized s2: when s2 = s, r∗(s, s2; r1 ̸= s) = s2 = s

and when s2 ̸= s, r∗(s, s2; r1 ̸= s) = s2 = s = s. Recall that, r1 = s̄. In this case, the expert

is reluctant to send the same message with the previous one, leading to an anti-self-herding

phenomenon. If E is sufficiently small, r∗(s, ·; r1 ̸= s) will send s̄, regardless of realized

s2: when s2 = s, r∗(s, s2; r1 ̸= s) = s2 = s and when s2 ̸= s, r∗(s, s2; r1 ̸= s) = s2 = s.

Similarly, in this case, the expert has a strong incentive to be consistent, leading to a self-

herding phenomenon. However, these phenomena would not arise if the expert has played

along with r∗.

Proposition 3.3. Suppose that θTic > θTci. r∗ and the corresponding beliefs consist a PBE
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if
1− pyx
pyx

≤ E ≤ pxx
1− pxx

(3.9)

and

E ′ ≤ pxx
1− pxx

(3.10)

where E and E ′ are given by (3.5) and (3.6), respectively.

Proof. See Appendix 3.A.

Corollary 3.2. If E ′ ≤ E, PT equilibrium exists when FT equilibrium does. The inclusion

relationship is strict. If E ′ > E, the inclusion relationship is ambiguous.

Recall that range of E in (3.7) that sustain FT equilibrium converges to a singleton, {1},

as ∆τ uniformly approaches 0. However, pxx is strictly greater than pyx, as the first signal

is also ex-ante informative. Indeed, for a sequence {∆τ,n}n such that uniformly converges

to 0, there exists the limit of pxx
1−pxx

, which is given as

lim
n→∞

pxx
1− pxx

=

∫ θ2τ
θ2τ+(1−θτ )2

f(τ |s1 = s2) d τ∫ (1−θτ )2

θ2τ+(1−θτ )2
f(τ |s1 = s2) d τ

> 1 (3.11)

3.4 Analysis

Thus far, I have analyzed equilibria where information is conveyed in both periods. Slightly

alter the message set so that it contains a neologism, 0, which implies the expert chooses to

keep silent. However, these are out-of-equilibrium messages of both FT and PT strategies,

and as assumed, the expert will be considered of type inf{supp f} for sure. Under this

assumption, it is clear that the expert does not have an incentive to choose 0. One might

argue that the existence of the truthful equilibria is contributed by such severe off-path

belief assumption. They might claim: if it had not been the assumption, the expert might

strategically choose when to reveal their information. For example, Guttman et al. (2014)

claimed that, the expert will benefits from revealing information in the last period and keep

silent in the first period compared to earlier revelation. In contrast, Tajika (2021) claimed
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that the expert would reveal the information in earlier period and ignore the information

that arrives later. However, in the first subsection, I argue that it seems to be natural for

truthful equilibria to arise under a certain condition even without such an assumption.

On the other hand, I have investigated the factors that make truth-telling difficult even

under this simple, symmetric environment. Section 3.3 suggested dynamicity as one of such

factors by comparing a static benchmark to dynamic models. But another class they fall

into, is multi-dimensionality – one would agree that any series of signals can be perceived

as having multiple dimensions.

The second subsection considers an adjusted variation in which the expert sends a

message only at t = 2 about (s1, s2) after collecting all the information. It can be essentially

seen as a static model where the signal space is 2-dimensional, whose elements have different

accuracies. The support of truth-telling equilibria in this version differs from those in the

original model under both FT and PT strategies.

3.4.1 Expert-efficient Equilibrium

Consider a following strategy: the expert sends a message truthfully in the first period

and repeat it regardless of the second signal. Formally, rC1 (s1) = s1 and rC2 (·, ·; r1) = r1.

For simplicity, a corresponding belief, βC , will put θCm1m2
= inf{suppf} for any off-path

messages, r1 ̸= r2. Then rC = (rC1 , r
C
2 ) the corresponding beliefs consist an equilibrium. To

see why, observe that the second message does not deliver information about s2; instead,

it is only correlated with s1 that is already conveyed. Bayes feasible beliefs will assign the

same ex post distribution upon receiving r2 = r1. Then the second period is, by definition,

a babbling period, thereby m2 will be taken as ∅. With the second period where babbling

occurs, it can be essentially seen as a single period model. It can be easily shown that a

single period version of this game always has truth-telling equilibria.

It is obvious that, r∗ is more informative than rC . This implies the ex post distribution

under r∗ is more dispersed than that under rC (cf. Blackwell (1953)). Define θCm1m2
in an
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analogous manner.

θCm1∅ = Am1cθ
T
m1c

+ Am1iθ
T
m1i

for m1 ∈ {c, i}

where Am1c = Pr(m2 = c|m1) and Am1i = Pr(m2 = i|m1). The ex ante payoff under rC

will be calculated as

Pr(m1 = c)Φ(Accθ
T
cc + Aciθ

T
ci) + Pr(m1 = i)Φ(Aicθ

T
ic + Aiiθ

T
ii) (3.12)

By Jensen’s inequality and Bayes rule, if Φ is convex, (3.12) is weakly smaller than

Pr(m1 = c){AccΦ(θ
T
cc) + AciΦ(θ

T
ci)}+ Pr(m1 = i){AicΦ(θ

T
ic) + AiiΦ(θ

T
ii)}

= qccΦ(θ
T
cc) + qciΦ(θ

T
ci) + qicΦ(θ

T
ic) + qiiΦ(θ

T
ii).

(3.13)

The RHS of (3.13) is none other than the ex ante payoff under rT (equivalently, that under

r∗). Intuitively, a risk-loving expert would ex ante prefer more dispersed distributions of

reputation. Likewise, less dispersed distributions of reputation would be more preferable

to a risk-averse expert.

This discussion can go further. While this paper focuses on a two-period game, with

a specific information structure, it can be extended to a T -period game, with an arbitrary

information structure. rC and βC can be generalized so that the expert reports truthfully

in period t1, · · · , tT ′ with T ′ < T .6

Proposition 3.4. Consider an extended T -period game and two strategies and correspond-

ing beliefs; (1) the expert always sends a message truthfully in every period, and (2) the

expert sends a message truthfully only in some fixed periods, t1, · · · , tT ′ with T ′ < T and

babbles for the remaining period. For any information structure, the former overperforms

the latter in terms of expected reputational payoffs for the expert if Φ is convex.

Proof. See Appendix 3.A.

6An easy way to describe such strategy and belief is to assume the expert tells the truth only when
t = t1, · · · , tT ′ ; and babbles otherwise. Proposition 3.4 does not necessarily require it constitutes an
equilibrium.
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3.4.2 Delayed Communication

In subsection 3.3.1, I compared a static benchmark with a dynamic model and showed

how dynamicity in model makes truth-telling difficult, even under one of the most simple

environments. The logic is that, when the expert makes additional announcement after

one another, the past announcement causes incentives to misreport. Such incentive only

occurs in the later period. One should be aware that, however, this does not necessarily

imply that staticity always fosters truth-telling.

Suppose there is a society designer who naively conjectures one-shot communication

makes the society truthful. She does not know which strategy the expert is adopting, but

does observe that truth-telling in both period is not an equilibrium in the current society.

She forces the expert to keep silence until the expert collects all the information at t = 2.

Therefore, in new timeline, s1 arrives at t = 1; the expert observes s2 in addition to s1 at

t = 2 and sends two messages r1 and r2. Alternatively assume that, in another universe, the

expert receives a multi-dimensional signal (s1, s2) and sends a multi-dimensional message

(r1, r2) in a single period. These two situations are essentially the same. In other words,

the social designer made a dynmaic game into a static one. How would this change affect

truth-telling behavior?7

Due to the symmetricity in this model, it is sufficient to consider symmetric strategies.

Assume that the expert received the same signals in both periods. Then the incentives to

fabricate the one of those signals for safer reputation may arise. It is incentive compatible

to report truthfully if

pxxΦ(θ
T
cc) + (1− pxx)Φ(θ

T
ii) ≥ max


pxxΦ(θ

T
ci) + (1− pxx)Φ(θ

T
ic),

pxxΦ(θ
T
ic) + (1− pxx)Φ(θ

T
ci),

pxxΦ(θ
T
ii) + (1− pxx)Φ(θ

T
cc)

 (3.14)

The last inequality always holds because pxx > 1/2 and θTcc > θTii . The first inequality is no

7I appreciate Ishida Junichiro for the comment of this idea.
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other than the condition under which the expert keeps being truthful after two same signals

in the original model, corresponding to the right side of inequalities in (3.9). The second

inequality is new, a constraint that has not existed in the timely message protocol. This

corresponds to the incentive that the expert pretends to have received a different signal in

the past, while reporting truthfully in regard with the signal in the current period. Then,

(3.14) is equivalent with

max

{
Φ(θTic)− Φ(θTii)

Φ(θTcc)− Φ(θTci)
,
Φ(θTci)− Φ(θTii)

Φ(θTcc)− Φ(θTic)

}
≤ pxx

1− pxx
(3.15)

Assume now that the expert received the different signals in two periods. If the expert

received different signals, the expert would believe the second signal is more likely. Then,

the incentives to fabricate the first signal in accordance with the second signal so that s/he

can pretend to be more competent may arise. Additionally, there is another incentive, of

switching s1 and s2. These two incentives are new, that has not been existed in the timely

message protocol. It is incentive compatible to report truthfully if

pyxΦ(θ
T
ic) + (1− pyx)Φ(θ

T
ci) ≥ max


pyxΦ(θ

T
ci) + (1− pyx)Φ(θ

T
ic),

pyxΦ(θ
T
cc) + (1− pyx)Φ(θ

T
ii),

pyxΦ(θ
T
ii) + (1− pyx)Φ(θ

T
cc)

 (3.16)

The last inequality holds if the second holds because pyx > 1/2 and θTcc > θTii . The second

inequality is the condition under which the expert does not fabricate the past signal. The

first inequality indicates the incentive constraint that the expert does not switch the signals.

Indeed, it is equivalent with θTic ≥ θTci. Then, (3.16) is equivalent with θTic ≥ θTci and

pyx
1− pyx

≤ Φ(θTci)− Φ(θTii)

Φ(θTcc)− Φ(θTic)
(3.17)

It immediately follows the proposition below.

Proposition 3.5. If θTci > θTic, there cannot be a truth-telling equilibrium in the delayed

communication game. If θTci ≤ θTic, there exists a truth-telling equilibrium in the delayed
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communication game if

E ≤ pxx
1− pxx

(3.18)

and
pyx

1− pyx
≤ E ′ ≤ pxx

1− pxx
(3.19)

where E and E ′ are given by (3.5) and (3.6), respectively.

When θTci > θTic, truth-telling is not feasible at all. This is because signals are more

accurate in the second period. When two different signals arrive, the expert would believe

the second signal is more likely. If θTci > θTic, it is strictly better for the expert to tell the

more likely signal arrived first.

For intuitive explanation, in the rest of this subsection, assume θTci = θTic and thereby

E = E ′: one correct and one incorrect messages give the same reputations, no matter

which period. Then, the condition is reduced to

pyx
1− pyx

≤ E = E ′ ≤ pxx
1− pxx

(3.20)

The right side of inequalities in (3.20) is the condition under which the expert would not lie

when observed two same signals. It corresponds with the condition about anti-self-herding

phenomenon in the original setting.

On the other hand, self-herding incentive, corresponding to the left side of inequalities in

(3.20), becomes stronger, compared with the original with timely messages. This incentive

had been prevented by a relatively mild condition. Note that, a sufficient condition was

that E is greater than 1. This is because the second signal is more accurate. To see this,

suppose you recevied two different signals. As soon as you received s2, you realize that

ω = s2 is more likely. In the original model, since you already have sent r1 = s1 = s̄2, your

options are limited. In this alternative setting, there has not been a message sent yet for

s1, providing an opportunity to potentially fabricate it. The expert can align the messages

with the most likely state, pretending to be more competent. E > 1 is no longer a sufficient
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condition, and we need a stronger constraint.

In the society designer example, she changed the communication timing without know-

ing which strategy the expert was adopting. Suppose the expert was employing FT strategy

and failed to achieve truth-telling because E was relatively great. In such cases, delayed

communication may help lead to a truth-telling equilibrium. However, suppose the expert

was employing PT strategy and failed to achieve truth-telling because E was relatively

small. In such cases, altering the timing of communication does not resolve the problem.

3.5 Back to Fully Truthful Equilibrium with a Binary

Case

In this section, I focus on a specific information structure, suggested by Tajika (2021). In

particular, Pr(s2 = ω|ω, τ) is given by

(1 + α)θτ
1 + αθτ

,

for some α ≥ 0 where α is common across the types. Note that it is an increasing function

of α, equivalent with an identity function if and only if α = 0. Furthermore, it satisfies the

monotonicity in θτ . Hence, this is a specific form of the main model with ∆τ = 1−θτ
1+αθτ

αθτ

and α is interpreted as the degree of increments in accuracies.

To understand this structure better, consider a binary type space, {L,H} with proba-

bility π on H and θL < θH . Notice that

LR(s1 = ω|τ, ω)
LR(s1 ̸= ω|τ, ω)

=
LR(s2 = ω|τ, ω)
LR(s2 ̸= ω|τ, ω)

=
θH
θL

/
1− θH
1− θL

. (3.21)

The ratio of likelihood-ratio of correct message to that of incorrect message is held at the

same level through periods. On the other hand, by definition of reputation, θTs1s2 can be
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written as

θTs1s2 = θL + (θH − θL)Pr(H|s1, s2, ω) = θL +
(θH − θL)

1 + LR(s1|ω)−1LR(s2|ω)−1(1− π)/π
(3.22)

Taking (3.21) into account, (3.22) implies that one correct and one incorrect messages give

the same reputation no matter which period which message is sent. Indeed, with this

specific information structure, reputations are given by

θTcc =
θ3L(1 + αθH)(1− π) + θ3H(1 + αθL)π

θ2L(1 + αθH)(1− π) + θ2H(1 + αθL)π
,

θTci =θTic =
(1− θL)θ

2
L(1 + αθH)(1− π) + (1− θH)θ

2
H(1 + αθL)π

(1− θL)θL(1 + αθH)(1− π) + (1− θH)θH(1 + αθL)π
,

θTii =
(1− θL)

2θL(1 + αθH)(1− π) + (1− θH)
2θH(1 + αθL)π

(1− θL)2(1 + αθH)(1− π) + (1− θH)2(1 + αθL)π
.

(3.23)

Although the second signal is more informative with regard to the state (pyx > pxy), it does

not mean it is more informative with regard to the type of the expert. With this property,

the intermediate reputation θTci = θTic can be seen as a reserved payoff.

Tajika (2021) asserted that, with all other held constant, an FT equilibrium cannot

exist if α is sufficiently small and the payoffs are weakly convex in the reputation. However,

this section shows that it is not the case, using a linear Φ and the information structure

illustrated above.

Let Φ(θ) = θ. A sufficient condition for (3.7) is

θL(1− θL)(1− π) = θH(1− θH)π. (3.24)

For any fixed θL and θH , there always exists a well-defined distribution, denoted by π∗ ∈

(0, 1) that satisfies (3.24).

π∗ =
θH(1− θH)

θH(1− θH) + θL(1− θL)
(3.25)

By design, at α = 0, (θL, θH , π) sustains an FT equilibrium.
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Letting Φ(θ) = θ and substituting θTcc, θ
T
ii and θTci = θTic in (3.23) to (3.7) yields

1

1 + α
≤ αθ2H(1− θL) + αθ2L(1− θH) + θH + θL − 2θHθL

αθHθL(θH + θL)(2− (θH + θL)) + θH + θL + 2θHθL
≤ 1 + α (3.26)

Note that, when α = 0, the inequalities hold with the equalities and all equal to 1, as π∗

is designed as such. As d(1/(1 + α))/ dα = −1 and d(1 + α)/ dα = 1, to demonstrate

the inequalities hold when α is sufficiently small, it is sufficient to show that the derivative

when α = 0 is between −1 and 1.

d

dα

(
αθ2H(1− θL) + αθ2L(1− θH) + θH + θL − 2θHθL

αθHθL(θH + θL)(2− (θH + θL)) + θH + θL + 2θHθL

) ∣∣∣∣
α=0

= − (θH − θL)
2

θH + θL − 2θHθL
,

(3.27)

which is in (−1, 0) because θL < θH < 1. It provides the following proposition.

Proposition 3.6. Let Φ(θ) = θ and suppose the distribution is characterized by (θH , θL, π
∗)

with θL < θH and π∗ given by (3.25). An FT equilibrium exists when α is sufficiently small.

Although his proposition was not correct, the intuition does mean something. Certainly,

it is true that when α = 0, an FT equilibrium exists only if Φ(θTcc)−Φ(θTci) = Φ(θTic)−Φ(θTii).

In PT equilibria, the threshold of the left side in (3.27) is the same and the right side

threshold is replaced with pxx/(1 − pxx), which also decreases with α. This implies that

when the accuracy remains the same or the increment is negligible, truth-telling may not

persist.

The simplified environment effectively helps us derives an explicit and unique solution

of E = 1. Thus, we will explore further to see an observation below.

Remark 3.1. π∗ given in (3.25) decreases in θH and increases in θL.

Intuitively speaking, in the second period, the expert has to choose whether to report

truthfully. To behave truthfully, the expert has to be confident enough with the second

signal. The confidence increases in θH , the accuracy conditional on being a more competent

type. If θH decreases the confidence would decrease; to compensate this, the expert has
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to believe more strongly that s/he is of type θH . On the other hand, if θL increases, or,

if less competent type receives more accurate signal than before, receiving correct signal

would be a weaker evidence that the expert is competent. Thus, it requires higher ex-ante

probability of being of type θH .

3.6 Conclusion Remarks

This paper analyzes a dynamic cheap talk game where the sender cares about his/her

reputation for being well-informed. The structure of the model is so simple that if there was

only one period, the existence of truth-telling equilibrium is obvious. However, extending

the game by adding one period causes incentives for self-herding and anti-self-herding,

depending on histories. If the realized signals were aligned to each other, truth-telling

behavior may be interfered by anti-herding incentives. The incentive may arise because

two incorrect messages will give the expert the worst reputation. If the realized signals

are opposite to each other, truth-telling behavior may be interfered by herding incentives.

The incentive may arise because two incompatible messages will make the sender less

competent. To build truth-telling equilibria, it is important to manage both incentives

properly. Following Woo (2022), I considered two different truth-telling strategies and

corresponding equilibria.

The truth-telling strategies are different in off-path behavior. In FT strategy, the sender

is required to report the true signal even after a misreport. On-path truthful strategy loosen

this constraint and allow the sender to lie if there has been a lie in the past. If E ′ ≤ E, as

in the binary example in the last section, this tweak strictly expands the set of distributions

compatible with truth-telling outcomes.

In section 3.4, I analyzed the results more deeply. Firstly, it demonstrated a condition

for truth-telling all the time to be, in turn, beneficial to the expert as well. As being a

cheap talk game, there always exists a babbling equilibrium. However, I showed that more
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informative equilibrium performs better for the expert than ones less informative, such as

a babbling equilibrium, if the payoffs function is convex in the reputation. Therefore, one

can assume that truth-telling outcome is the one that arises naturally under such payoff

functions that reveal convexity. It also obviously maximizes the payoffs of principal. This

result implies that managers in industries where agents have career concerns may consider

incorporating reputation-based elements into contract terms to incentivize agents to reveal

their inverifiable expertise.

Secondly, the impact of delayed communication has been investigated. In the original

model, the sender receives multiple signals over time and must send messages after each

signal. However, from the results above, one may naively assume dynamicity is the factor

that hinders truth-telling. In the alternative setting, the sender still receives multiple signals

over time, but must wait until all information is collected before sending messages. It can

be interpreted that the change staticized the original model. The analysis concluded that

altering the timing of message transmission could promote truth-telling in certain scenarios,

while in others, it may not. Even worse, it may potentially undermine already established

truth-telling behavior. These results imply that changing the timing of communication,

not knowing the current status the society, for examples, the strategy the people employs

or the distribution in the society, may be dangerous.

Section 3.5 analyzed a stylized version of the model and provided an explicit solution

of distribution. Using the solution, I present a counter example of a proposition in Tajika

(2021). More specifically, I showed the existence of the ability distribution of the first period

that sustains FT equilibria when the degree of accuracy increment is sufficiently small,

under a weakly convex payoff function. Moreover, the solution suggests a characteristic of

distributions that facilitate truth-telling equilibria.
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Appendix of Chapter 3

3.A Proofs

Proof of Proposition 3.1. Suppose the expert played according to rT1 . Then the expected

payoffs of playing rT2 are given as

pxxΦ(θ
T
cc) + (1− pxx)Φ(θ

T
ii) if s1 = s2,

pyxΦ(θ
T
ic) + (1− pyx)Φ(θ

T
ci) if s1 ̸= s2.

(3.28)

If the expert lies in the second period, that is, r2 ̸= s2 the expected payoffs are

pxxΦ(θ
T
ci) + (1− pxx)Φ(θ

T
ic) if s1 = s2,

pyxΦ(θ
T
ii) + (1− pyx)Φ(θ

T
cc) if s1 ̸= s2.

(3.29)

Combining (3.28) and (3.29), for rT2 to be an optimal, the following inequalities have to

hold:
1− pyx
pyx

≤ Φ(θTic)− Φ(θTii)

Φ(θTcc)− Φ(θTci)
≤ pxx

1− pxx
(3.30)

Now suppose the expert has sent a message that is the opposite to the signal that arrived

in the first period. In the second period, it requires the following two inequalities to send

a truthful message.

pxxΦ(θ
T
ic) + (1− pxx)Φ(θ

T
ci) ≥ pxxΦ(θ

T
ii) + (1− pxx)Φ(θ

T
cc)

pyxΦ(θ
T
cc) + (1− pyx)Φ(θ

T
ii) ≥ pyxΦ(θ

T
ci) + (1− pyx)Φ(θ

T
ic)

(3.31)

It is summarized by
1− pxx
pxx

≤ Φ(θTic)− Φ(θTii)

Φ(θTcc)− Φ(θTci)
≤ pyx

1− pyx
. (3.32)
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Given the continued strategy in the second period as r2(s1, s2; r1) = s2, the expert has no

incentive to lie in the first period. To see this, let qm1m2 = Pr(m1,m2|s1) be the conditional
probability of the matching results at the interim point after receiving the first signal. For

truthful recommendation to be an optimal behavior given the second period strategy is to

do so, it needs to be satisfied that

qccΦ(θ
T
cc) + qiiΦ(θ

T
ii) + qciΦ(θ

T
ci) + qicΦ(θ

T
ic)

≥ qccΦ(θ
T
ic) + qiiΦ(θ

T
ci) + qciΦ(θ

T
ii) + qicΦ(θ

T
cc)

(3.33)

By re-arranging (3.33),

(qcc − qic)(Φ(θ
T
cc)− Φ(θTic)) + (qci − qii)(Φ(θ

T
ci)− Φ(θTii)) ≥ 0, (3.34)

which always holds. Hence, the only effective restrictions are (3.30) and (3.32). To put it

together,

max

{
1− pyx
pyx

,
1− pxx
pxx

}
≤ Φ(θTic)− Φ(θTii)

Φ(θTcc)− Φ(θTci)
≤ min

{
pxx

1− pxx
,

pyx
1− pyx

}
(3.35)

It can be easily shown that (3.7) is equivalent with (3.35) because pyx < pxx.

Proof of Proposition 3.2. Arbitrarily fix two (possibly degenerate) p.d.f. functions denoted

by f and f , having different means θ and θ, respectively. WLOG, θ > θ. For each

m = (m1,m2), let qm and qm be qm calculated under f and f , respectively. Define a p.d.f.

f(a) over the type space as a function of a ∈ R. In particular, f(τ) = af(τ) + (1− a)f(τ).

Consider reputation θTm, calculated under f . The derivative with respect to a at a = 1

yields below.

∂θTm
∂a

∣∣∣∣
a=1

=
∂

∂a

∫
θτqm(τ){af(τ) + (1− a)f(τ)}dτ∫
qm(τ){af(τ) + (1− a)f(τ)}dτ

∣∣∣∣
a=1

=

∫
θτqm(τ){f(τ)− f(τ)}dτ∫

qm(τ)f(τ)dτ
−
∫
qm(τ){f(τ)− f(τ)}dτ

∫
θτqm(τ)f(τ)dτ(∫

qm(τ)f(τ)dτ
)2

=(θ − θ)
qm

qm

(3.36)

Similarly,
∂θTm
∂a

∣∣∣∣
a=0

= (θ − θ)
qm
qm

(3.37)
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Now, using the structure of the model, the following properties hold: (1) when type and

state are fixed, signals in different periods are independently drawn, and (2) the signal in

the first period does not contain information about the accuracy of itself and information

structure is symmetric with regard to the states, i.e., qm1m2 = Pr(m1,m2|s1) = Pr(m1,m2).

Then,
qm1m2

qm1m2

=
Pr(m1,m2|θ)
Pr(m1,m2|θ)

=
Pr(m1|θ)
Pr(m1|θ)

Pr(m2|θ)
Pr(m2|θ)

≡ LR(m1)LR(m2), (3.38)

where LR(mt) = Pr(st = ω|θ, ω)/Pr(st = ω|θ, ω). The first equality derives from the

second property and second derives from the first property. The third is a re-statement in

terms of likelihood ratio.

On the other hand, given a prior, a sufficient condition for the truthful equilibrium is

Φ(θTcc)− Φ(θTci) = Φ(θTic)− Φ(θTii). Denote by θTm1m2
(a) be the reputation corresponding to

m = (m1,m2) calculated under f(a) = af+(1−a)f . Solutions of following function satisfy

the sufficient condition.

g(a) := Φ(θTcc(a))− Φ(θTci(a))− (Φ(θTic(a))− Φ(θTii(a))) = 0 (3.39)

Notice first that, if f is a degenerate distribution, this condition always holds: for

any outcome, f and ex-post posterior put probability 1 on the same type. Additionally,

(3.39) is continuous in a. Letting f and f be p.d.f. that put probability 1 on θ ∈ T and

θ ∈ T , respectively, f(a) is a degenerate distribution at a = 1 and a = 0. At a = 1,

θTcc(1) = θTci(1) = θTic(1) = θTii(1) = θ and a = 0, θTcc(0) = θTci(0) = θTic(0) = θTii(0) = θ. It

immediately follows that g(1) = g(0) = 0. Additionally,

dg(a)

da

∣∣∣∣
a=1

= Φ′(θ)
d

da

{
θTcc(a) + θTii(a)− θTci(a)− θTic(a)

}∣∣∣∣
a=1

, and

dg(a)

da

∣∣∣∣
a=0

= Φ′(θ)
d

da

{
θTcc(a) + θTii(a)− θTci(a)− θTic(a)

}∣∣∣∣
a=0

.

(3.40)

By assumption, Φ′(·) > 0. Using (3.37),

d(θTcc + θTii − θTci − θTic)

da

∣∣∣∣
a=0

= (θ − θ)

{
qcc
qcc

+
qii
qii

− qci
qci

− qic
qic

}
(3.41)
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Substituting (3.38),

qcc
qcc

+
qii
qii

− qci
qci

− qic
qic

= LR(s1 = ω|ω)LR(s2 = ω|ω) + LR(s1 ̸= ω|ω)LR(s2 ̸= ω|ω)

− LR(s1 = ω|ω)LR(s2 ̸= ω|ω)− LR(s1 ̸= ω|ω)LR(s2 = ω|ω)

= (LR(s1 = ω|ω)− LR(s2 = ω|ω))(LR(s2 = ω|ω)− LR(s2 ̸= ω|ω)) > 0

(3.42)

In an analogous manner,

d(θTcc + θTii − θTci − θTic)

da

∣∣∣∣
a=1

= (θ − θ)(LR(s1 = ω|ω)−1 − LR(s2 = ω|ω)−1)(LR(s2 = ω|ω)−1 − LR(s2 ̸= ω|ω)−1) > 0

(3.43)

To wrap up, g(0) = g(1) = 0 and g′(0) = g′(1) > 0. By continuity, there exists a∗ ∈ (0, 1)

such that a∗f + (1− a∗)f satisfies (3.39).

Proof of Proposition 3.3. It is shown in the proof of Proposition 3.1 that, those inequalities

in (3.9) are equivalent to the condition of the expert sending a truthful message in the second

period, if s/he did in the first period. In regard with that, if there exists any profitable

deviation strategy, there must exist some a ∈ {x, y} such that the expert sends r1(a) = ā

upon receiving s1 = a. Consider an optimal strategy and the continuation game after

s1 = a and r1 = ā.

From the same proof, it follows that truth-telling is a unique best reponse when s2 = a,

because the inequality in the left side of (3.9) implies that the left side inequality in (3.32)

holds strictly. If the expert tells the truth when s2 ̸= a, s/he always behaves truthfully

in the continuation game. However, I have shown in the proof that if the continuation

behavior is truth-telling, it is always a best response to do the same in the first period.

Hence, in the continuation game, a profitable deviation strategy has to be r2(a) = a and

r2(ā) = a.

The interim expected payoff after receiving s1 = a is given by

qccΦ(θ
T
ic) + qiiΦ(θ

T
ci) + qciΦ(θ

T
ic) + qicΦ(θ

T
ci)

> qccΦ(θ
T
cc) + qiiΦ(θ

T
ii) + qciΦ(θ

T
ci) + qicΦ(θ

T
ic),

(3.44)
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where the (RHS) is the expected payoff under truth-telling. Comparing the first two terms

on each side, and then the second two terms on each side individually, (3.44) does not hold

if
Φ(θTci)− Φ(θTii)

Φ(θTcc)− Φ(θTic)
≤ qcc

qii
(3.45)

and

(qic − qci)Φ(θ
T
ic) ≥ (qic − qci)Φ(θ

T
ci) (3.46)

Since

qcc
qii

=
Pr(s1 = s2 = ω|s1)
Pr(s1 = s2 ̸= ω|s1)

=
Pr(s1 = s2 = ω)

Pr(s1 = s2 ̸= ω)
=

Pr(s1 = s2 = ω|s1 = s2)

Pr(s1 = s2 ̸= ω|s1 = s2)
=

pxx
1− pxx

,

(3.47)

(3.45) is equivalent with (3.10). Additionally, because the second signal is more accurate,

qic > qci. Then the assumption θTic ≥ θTci guarantees that (3.46) holds.

Proof of Proposition 3.4. In T -period games with truthful strategies, there are n := 2T

possible message profiles. Without loss of generality, arbitrarily fix a state x ∈ {x, y}. Let
{h1, · · · , hn} be the sequence of realized signals. Let {zi}ni=1 denote the expected ability

corresponds with {hi}ni=1, assessed after the true state is realized. The ex ante probability

of hi ∈ {h1, · · · , hn} for type τ will be written by bi(τ). Then the expected reputational

payoff in the equilibrium under FT or PT strategy is given by

∫ ( n∑
i=1

bi(τ)Φ(zi)

)
f(τ) d τ (3.48)

Consider a strategy where the expert sends messages truthfully in only specific T ′ (T ′ <

T ) periods, and let m := 2T
′
. For the rest of the periods, the messages are babbling. Focus

on the periods where truth-telling occurs and let {õ1, · · · , õm} be the sequence of realized

messages. Analogously, let {z̃j}mj=1 denote the expected ability based on the messages sent

and the true state, and let b̃j(τ) denote the ex ante probability of õj for type τ . Then the

expected reputational payoff in the equilibrium under this strategy is given by

∫ ( n∑
j=1

b̃i(τ)Φ(z̃i)

)
f(τ) d τ (3.49)

For each õj ∈ {õj}mj=1, there exists a corresponding subset of {hi}ni=1 whose each element

is compatible with õj. Let {hj1 , · · · , hjk} be the set, where {j1, · · · , jk} ⊆ {1, · · · , n}.
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{hj1 , · · · , hjk} is the set of sequences of signals whose elements might have been happened

upon observing õj. The conditional probability of hi upon observing õj, will be denoted by

c(j, i) = Pr(hi|õj) (3.50)

for i = j1, · · · , jk. Note that, the collection of the subset, {{hjγ}γ}mj=1, is disjoint and its

union equals to {h1, · · · , hn}. That is, {{hjγ}γ}mj=1 is a partition of {h1, · · · , hn}. On the

other hand, (õj, b̃j)
m
j=1 and (hi, bi)

n
i=1 can be seen as ex ante and ex post distributions of

expected abilities, respectively, before and after an experiment. Using (3.50), each z̃j can

be expressed as below.

z̃j =
k∑

γ=1

c(j, jγ)zjγ (3.51)

Substituting z̃j in (3.51) to (3.49), the expected payoff under the strategy where the expert

does not tell the truth in some period, (3.49), is written by

∫ ( n∑
j=1

b̃i(τ)Φ

(
k∑

γ=1

c(j, jγ)zjγ

))
f(τ) d τ (3.52)

By Jensen’s inequality, Φ is convex only if

∫ ( n∑
j=1

b̃i(τ)Φ

(
k∑

γ=1

c(j, jγ)zjγ

))
f(τ) d τ ≤

∫ ( n∑
j=1

b̃i(τ)
k∑

γ=1

c(j, jγ)Φ(zjγ )

)
f(τ) d τ

(3.53)
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The (RHS) of (3.53) equals with

∫ ( m∑
j=1

b̃j(τ)
k∑

γ=1

c(j, jγ)Φ(zjγ )

)
f(τ) d τ

=

∫ ( m∑
j=1

k∑
γ=1

b̃j(τ)c(j, jγ)Φ(zjγ )

)
f(τ) d τ

=

∫ ( m∑
j=1

k∑
γ=1

Pr(õj)Pr(hjγ |õj)Φ(zjγ )

)
f(τ) d τ

=

∫ ( m∑
j=1

k∑
γ=1

Pr(hjγ )Φ(zjγ )

)
f(τ) d τ

=

∫ ( n∑
i=1

Pr(hi)Φ(zi)

)
f(τ) d τ

(3.54)

The last equation derives from the fact that {{hjγ}γ}mj=1 is a partition of {h1, · · · , hn}.
Since the (RHS) is equal to (3.48), this completes the proof.
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Chapter 4

Rational Bubble in Resell Markets in

Networks

4.1 Introduction

The rational bubble literature derived from Allen et al. (1993) considers a bubble as a trade

of a good at a price that is above everyone’s valuation. It is often assumed that the market

is efficient so that the good goes to the agent with the highest valuation. What they do

not consider is the chance that the good may not reach the one. Most researches in the

branch are modeled upon Walrasian market, where all agents have the same investment

opportunities. The assumption may fit with large enough markets such as markets for

public stocks, however, may not fit with small, specific market, such as markets for private

equities and tickets (cf. Boyer et al. (2023) and Leslie and Sorensen (2014)). Research in

search theory literature assumes that intermediaries may only probabilistically encounter

the next buyer (See Rubinstein and Wolinsky (1987) and Wright and Wong (2014)).

In smaller markets with relatively fewer potential buyers available for resale, this may be

particularly due to ambiguity surrounding who knows whom. When you decided a purchase

to “flip”, your next step is to look for someone who will buy it next. You may know an

intermediary, but do not know if the one who appreciates the good is in his customer list. It

goes vice versa: your customer may not know if you reached her because you do not know
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other agents who would pay more or because you expect them not buying your good, as

they do not have the next one to sell. This kind of information asymmetricity may generate

higher-order uncertainty, even when assuming ex ante common prior over the structures.

It has long been shown that higher order uncertainty is necessary for a bubble if players’

rationality is common knowledge (See Tirole (1982), Milgrom and Stokey (1982) and Allen

et al. (1993)). Allen et al. (1993) introduced the concept of expected and strong bubbles

among rational players, assuming heterogeneous information structures and heterogeneous

marginal state-dependent utilities. In their model, it is interchangeable with heterogeneous

priors. They considered that a state exhibits strong bubble in an equilibrium, if every player

certainly knows a good is traded at a price strictly above anyone’s valuation when the state

is realized.

In the realm of rational bubble literature, however, as far as I know, few are interested

in why such information asymmetricity takes place. In this regard, Awaya et al. (2022),

who modeled rational bubbles in a network, attributed it to information loss during non-

strategic communication. Of course, it is difficult to confirm if something is really known as

common knowledge (See Rubinstein (1989)). Still, I believe it is useful to provide another

tractable structure leading to such uncertainty that naturally arise in human network.

In this paper model, the asymmetricity arises because of different scopes of vision. I

formulated such situations with networks on which trades occur. In the model, state is

given by a graph in which nodes correspond to players. Players can trade with adjacent

players, but cannot trade with ones who are not in their neighborhood. There is uncertainty

about the networks, since, when the game starts, players can tell different states apart iff

they have different neighbor sets in it. Their information structure is given by partitions

which can be refined as the game flows, by the trade offers, whether the offer has been

accepted, and the price determined. It is assumed that the price reflects the willingness to

pay of the trading party.

Let us more simplify the model. There is only one player who appreciates a good; any
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other players put zero value on it. Trades between the rest of players with a positive price,

are based on a belief of buyer that the next buyer may believe s/he can sell it to someone

who believes ... to the player who appreciate and would pay fair value for it. If there exists

a state, in a given equilibrium, in which every player know they are not connected to the

player, but in which trade occur at a positive price, the state is referred to as network

bubble state.

I embedded bubbles defined in Allen et al. (1993) into the model; and defined network

bubble which satisfies the revised definitions. Under the circumstance, I investigated neces-

sary conditions that a minimal bubble must have, following Liu and Conlon (2018) and Liu

et al. (2023). Both of which are in the same vein derived from Allen et al. (1993) in whch

heterogeneous marginal state-dependent utilities are assumed. In the former it is claimed

that it needs at least 5 states between 2 players, and that when the number of the states

coincides with 5, the information structure is unique. In the latter, it requires three states

with strictly risk-averse players. It is found that if the equilibrium has a state where the

player finally buys the good on the path, it needs at least 5 players and 4 states. Moreover,

players are risk-neutral, thus have same marginal utilities, following Awaya et al. (2022).

On the contrary, the minimal condition for network bubble does not impose uniqueness

not only on the graphs but also on the information structure.

Furthermore, any perfect Bayes equilibrium (PBE) with a network bubble has a severe

condition on probability space, which keeps the buyers believing that there may be a next

buyer. In this sense, it has the same limitation pointed out by Doblas-Madrid (2012)

and Awaya et al. (2022) that the bubbles need knife-edge parameter restrictions. It is

because, however, in their model, the price does not reflect players’ private valuations. In

Doblas-Madrid (2012), borrowing constraints and liquidity shocks are assumed; in Awaya

et al. (2022), price function is exogenously given. Liu and Conlon (2018) and Liu et al.

(2023) share the same limitation, since prices have to coincide to the willingness-to-pay

of the buyer. However, there exists a subtle difference between this model and theirs: in
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their model, the price reflects the WTP, due to market clearing condition. In this model,

there would be no significant difference if a well-defined price function different from WTP

were given exogenously as long as it is incentive compatible and it keeps the next buyers

uncertain.

Section 4.2 provides the model. Section 4.3 considers a single-state setting which will

be a thought-experimental base of definition of network bubble and assumptions which

Section 4.4 will provide. Section 4.5 proposes necessary conditions for a probability set of

states and argues that network bubbles require a severe probability constraint. Section 4.6

shows an example.

4.2 Model

4.2.1 Players and Market

Consider a market with finitely many K + 1 players, A1, · · · , AK , and A0. They are able

to identify other players but may and may not know each other. In particular, players are

in a network; if a couple of players are adjacent to each other, they know each other. If a

player has more than one neighbor, the player is able to tell one neighbor from the others.

While they are precisely aware of their own neighbors, they face uncertainty about k-th

order neighbors when k > 1. In other words, they do not precisely know which network

they belong to.

Formally, the state of this world is represented by a graph that indicates the network

between the players. Let G = {g1, · · · , gM} be a finite set of graphs with K + 1 nodes

and G be a probability space with π as its probabilistic measure such that πm := π({gm})

can be defined and is known as common knowledge for each m = 1, · · · ,M . Assume that

πm > 0 for every m = 1, · · · ,M . In graphs, each node corresponds to a player. A pair of

adjacent nodes in a graph implies that the corresponding players know each other if the

state is realized. Let N g
k be the set of neighbors of Ak in graph g. Say, gn ∼k gm if and only
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if N gn
k = N gm

k . This equivalence relationship ∼k dividing G forms an information partition

for Ak. Let S0
k := G/ ∼k be the information partition generated by ∼k. The superscription

indicates that the partition is formed at the very first history where the game started.

It will sometimes be dropped when there are no rooms for confusion. Abusing notation,

S0
k(N) ∈ S0

k denotes the element in S0
k such that player Ak has a neighbor set N . This

may not be defined if there is no such g ∈ G. For any partition of G, S, S(g) denotes the

element in S such that contains g. This is a well-defined mapping.

There is a market for an indivisible good; and A0 is the initial owner of the good at

the start of the game. Players are risk-neutral and not wealth-constrained. The ways the

players valuate the good are not the same, so that the utility from consuming the good

generally varies. For k = 0, · · · , K, the valuation for the good of Ak will be denoted by

vk ≥ 0. Not only do the players identify other players, they also have {vk}Kk=0 as common

knowledge. The player who owns the good can either consume it on his/her own or try to

sell it to someone else through a day-long trade. If the current owner chose to not consume

today; s/he can also save it to try to sell it tomorrow. However, players do not have access

to all other players; they can only reach out within their neighborhood to offer a trade.

Say, Ai, who currently owns the good, has reached Aj. If Aj accepts the trade, a mediator,

who can extract their private information and thus their willingness to pay without errors,

comes in and decides the price. For simplicity, I assume that the mediator is in favor of the

seller so that the price decided exactly matches with the willingness to pay of the buyer.

Details about willingness to pay are discussed later. Trade offers can be made at most once

a day. Let δ ∈ (0, 1] be a common discount rate.

Following Wright and Wong (2014), I do not consider those situations where a player

who sold it to another player buys it back. To put it differently, the good is not traded

along any cycle: there are no a finite sequence of players, {kn}mn=1, such that Akn sells

the good to Akn+1 for n = 1, · · · ,m − 1 and Akm sells the good to Ak1 . Although it may

also mathematically be a solution, but is not our interest. To simplify the problem, I pose
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another assumption that, a player who rejected a trade offer from current owner cannot

buy the good from the same player. It does not require that the player cannot buy the

good ever. The owner can sell it to another one, who will (possibly indirectly through a

path) deliver the good to the player.

4.2.2 Strategies and Willingness-to-pay

Past trade offers, trades that accepted, the price, and the timings are publicly observed

and comprise a public history. Denote the set of all public histories by H. Neighbor set

that each player faces is only private information that they have in this model. It also can

be seen as a history that is determined at the beginning of the game and is never updated.

Xk = {(h, S) ∈ H × S0
k |∃g ∈ S s.t. h is feasible in g} (4.1)

Strategies of Ak must be a function from Xk to the action set. Suppose x = (h, S) is a

history where Ak received an offer of a trade; and has not accepted. Let x′ = (h′, S) be

the history that succeeded x where Ak accepted the trade; and has yet to consume it or

decide whom to try to sell it. Define a mapping Nk(·) : (h, S) 7→ S for (h, S) ∈ Xk, an

inverse function in a sense. For k = 0, · · · , K, a strategy of Ak as a seller is given by

σS
k (x

′) = σS
k (h

′, N) ∈ A(x′) where A(x′) is the set of players Ak can reach. In particular,

Ak(x
′) := (Nk(x

′) \N1(x′) \N2(x′)) ∪ {Ak} (4.2)

where N1(x′) is the set of players who has owned the good and N2(x′) is the set of players

that current owner, Ak, had offered a trade to be rejected at h′. σS
k (x

′) = σS
k (h

′, N) = Al ̸=

Ak implies that Ak offers a trade to Al at history (h′, N); and σS
k (x

′) = σS
k (h

′, N) = Ak

implies that Ak consumes the good at history (h′, N). The strategy of Ak as a buyer is

given by σB
k (x) = σB

k (h,N) ∈ {0, 1}. σB
k (x) = 0 or σB

k (x) = 1 implies Ak rejects or accepts

the offer under x, respectively. This game ends either when a player consumes the good by
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her/himself or when A(x) becomes a singleton.

To consider willingness-to-pay, focus on a player, say, Ak. At a history x = (h,N) ∈ Xk

where Ak accepted a trade offer. The behavior plan can equivalently be re-written as a

finite sequence in Ak(h,N) that does not allow repetitions and ends with Ak. Let h1 be

the history where Ak accepted the offer and h2 be the history that follows h1 such that

Ak offered a trade to σS
k (h

1, N) to be rejected and continued to offer a trade to σS
k (h

2, N).

Inductively define history hl+1 following hl such that Ak has been rejected by σS
k (h

l, N) and

tried with σS
k (h

l+1, N). As the graph is finite, there must be a history hL such that Ak will

give up offering trades and consume the good by her/himself, or, σS
k (h

L, N) = Ak. One can

define a sequence ⟨σS
k (x

l)⟩Ll=1. Convert ⟨σS
k (h

l, N)⟩Ll=1 into a sequence in the set of indices of

players, ⟨al⟩Ll=1, so that Aal = σS
k (h

l, N) for l = 1, · · · , L. If σS
k (x

1) = Ak, i.e., Ak consumes

it right after the purchase at x1, the sequence will be of length 1, ⟨σS
k (x

l)⟩1l=1 = ⟨Ak⟩. In

such cases the willingness-to-pay of Ak is obvious. Hence, assume that L ≥ 2.

Let Gx be the set of graphs that Ak puts a positive probability at x. Given a strat-

egy profile σ = (σ0, · · · , σK) fixed, where σk = (σS
k , σ

B
k ) for k = 0, · · · , K, we can expect

whether players in ⟨σS
k (x

l)⟩Ll=1 will accept or decline the offer when their turn came, when

a state (that is consistent with x) is realized. In other words, when a state and a strat-

egy profile are fixed, the trade path realization, can be deterministically anticipated. Let

1l(g) = σB
al
(hl, N g

al
) and let 1l(g) be equal to

σB
al
(hl, N g

al
)
l−1∏
n=1

(1− σB
an(h

n, N g
an)) ≡ 1l(g)

l−1∏
n=1

(1− 1n(g))

1
l(g) is an indicator function that returns 1 if and only if Ak has all failed to sell the good

until Ak reach Al. The willingness-to-pay of Ak under x, Wk(h,N ;σ), will be given by

E
g∈Gx

 L−1∑
l=1

δl B(Wk(h
l, N ;σ),Wal(h

l, N g
al
;σ))︸ ︷︷ ︸

the price determined

1
l(g)

+ δL−1vk1
L(g)

∣∣∣∣∣σ, x1

 , (4.3)
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where B(wS, wB) is the price that mediator decides when wS (wB) is the willingness-to-pay

of seller (buyer). δlB(Wk,Wal) captures the present value of the price that Aal will pays

conditional on the purchase of Aal on the path. Recall that the mediator is assumed to be

on behalf of the seller. Therefore, it is equal to

E
g∈Gx

[
L−1∑
l=1

δlWal(h
l, N g

al
;σ)1l(g) + δL−1vk1

L(g)

∣∣∣∣∣σ, x1

]
(4.4)

The second term in the expectation captures the payoff of consuming the good after either

failed to or not trying to sell it. The present value when consuming it, will be as less

discounted as one day. This is because, Ak can consume the good on the day of purchase

or of rejection, while trades must wait until the next day. I will say, Ak purchasing the

good at x is speculative or the purchase is made in a speculative motive, if Wk(x;σ) > vk.

4.2.3 Information Updates

The expectations in (4.3) or (4.4) are operated in the set of graphs that Ak puts a positive

probability at x, not under Nk(x
1). This is because the information partition that Ak has

may have been changed from S0
k that is given by the private information. Players can learn

from public history, at each step, as well under an equilibrium. In particular, there are

three kinds of source of information: Whom the current owner of the good reach out to

try to sell it, whether the player who received the trade offer accepted it, and the price

determined in a case of acception.

To elaborate this, fix a strategy profile σ. Let h1 be a public history where it is Ai’s

turn to take an action a from an action set. Let h2 be the public history after a is taken.

The action set is a subset of {A1, · · · , AK} ∪ {0, 1}. If a ∈ {A1, · · · , AK}, Ai is the current

owner at h who is looking for a player whom to sell it, including him/herself. If a ∈ {0, 1},

Ai is a potential buyer who just received a trade offer and has not decided yet. Let Sh
k

denote the information partition of Ak after observing public history h. After observing a,

Ak will learn that, the action is feasible. There is another thing that Ak will learn, that
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the action is chosen. Therefore, for k ̸= i, Sh2
k is determined by the join of Sh1

k ,

{{g : a ∈ N g
i }, {g : a /∈ N g

i }} (4.5)

and

{{g : σS
i (h,N

g
i ) = a or σB

i (h,N
g
i ) = a}, {g : (σS

i (h,N
g
i ) ̸= a and σB

i (h,N
g
i )) ̸= a}} (4.6)

If Ai acted based on σi, (4.5) is implied by (4.6). However, if Ai deviated and a was not

supposed to occur under σ, then, players will only learn from (4.5). Note that, this update

would return the same information partition if Ak = Ai.

Now suppose a = 1, which implies Ai was a potential buyer in history h1 and decided

to buy. The price, q, will be determined publicly. Let h3 denote the public history after

observing q. Suppose that Aj is the seller. For all k = 0, · · · , K, Sh3
k is determined by the

join of Sa
k and

{
{g : B(Wj(h,N

g
j ),Wi(h,N

g
i )) = q}, {g : B(Wj(h,N

g
j ),Wi(h,N

g
i )) ̸= q}

}
(4.7)

Notice that under the assumption that the mediator makes the price equal to the willingness-

to-pay of the buyer, (4.7) will be equal to

{{g : Wi(h,N
g
i ) = q}, {g : Wi(h,N

g
i ) ̸= q}} (4.8)

and Ai will learn nothing from this update, again. However, if not, Ai will learn some

information about Aj, thus about the information that Aj has.

Suppose the state is given by g, which is not directly observable from players. Let h

be the public history observed. Player Ak whose information partition is given by Sh
k at h,

would observe an information cell, Sh
k (g). The interim belief of Ak at h will be given by

Prob(g′|g) ≡ π(g′)∑
gm∈Sh

k (g)
πm

(4.9)
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if g′ ∈ Sh
k (g) and 0, otherwise.

4.3 Bubbles in networks

How to define a bubble when players do not share a same prior, has been suggested by Allen

et al. (1993) and continues to be used in related researches. They proposed two classes of

bubble, expected bubbles and strong bubbles, that can be adopted in Walrasian markets.

In the former, it refers to a situation where a price is set strictly above the expected

fundamental value, calculated by each player. In the latter, it refers to a situation where

all players know that the price is set strictly above the fundamental value even though they

may not know the exact value of it. But they set an upper bound of the value high enough

that readers could be easily convinced.

It is necessary to modify those concepts to apply to the model in this paper, however,

because of different environments. I suggest a way to inherit the spirits of those concepts

using the concept of maximum valuation I will define later. Furthermore, another concept

of bubbles will be provided, which I call a network bubble, that is defined in a stylized

environment. It fits in existing concepts of bubbles I embedded as well. Before proceeds, it

may be helpful to see an alternative model, to understand how they can be embraced in the

current model with network, and how the definition embedded in the model inherits Allen

et al. (1993). Then in the following subsection, definitions and the relationship between

them will be explained.

4.3.1 Single-state Setting

Hypothetically assume that there is no uncertainty on the structure of society: the network

is fixed at commonly known g. In this world, all players have the same information partition.

The price is determined by bilateral bargaining. Let α ∈ [0, 1] be the bargaining power of

the seller. WLOG, assume that g is a connected graph.
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Suppose, A0 can tell other all players how to choose their strategy. Since the game

focuses on the pure strategies, observe that the flow of the good is fixed uniquely once

strategies are determined. In other words, this assumption implies that A0 can choose the

flow of the good so that it maximizes her payoff. Let ⟨p0⟩ be the path of length L = |⟨p0⟩|

and re-label the players so that the good is handed from Al to Al+1 for l = 0, · · · , |⟨p0⟩|−1.

Then, {A0, A1, · · · , AL} is the finite sequence of players A0 chose, that describes whom the

good goes through in ⟨p0⟩.

Consider the last player in the path, AL, who will end up consuming the good by

him/herself, not flipping it to another player, by assumption. Therefore, AL must buy the

good for own use and the willingness to pay equals to the consumption value. Given this,

when AL−1 tries to sell the good to AL, the bargaining solution will be determined by

q∗L := argmax
q

(q − vL−1)
α(vL − q)1−α = αvL + (1− α)vL−1 (4.10)

where α ∈ [0, 1] is the bargaining power. Expecting AL paying q∗L next day, AL−1 would

want to pay at most δq∗L. It is time discounted because AL−1 will go to AL only after

a day from he paid. Replacing vL and vL−1 with δq∗L and vL−2, respectively, q∗L−1 =

αδq∗L + (1 − α)vL−2 = δα2v2L + α(1 − α)δvL−1 + (1 − α)vL−2 is the amount AL−1 will pay.

By sequential induction, Al will pay

q∗l = (1− α)
L−1∑

m=l−1

(αδ)m−l+1vm + αL−l+1δL−lvL. (4.11)

q∗l = (1−α)
∑L−1

m=l−1(αδ)
m−l+1vm+αL−l+1δL−lvL. Then the problem is reduced to choosing

the path that maximizes the equation below. As g is assumed to be finite, there must exist

a solution.

q∗1 = max
L

max
⟨p0⟩∈P g

0,L

(1− α)
L−1∑
m=0

(αδ)mvm + αLδL−1vL (4.12)

Proposition 4.1. Suppose G is a singleton, {g} where g is a connected graph. For 0 ≤
α ≤ 1, there exists a subgame perfect equilibrium that maximizes A0’s payoffs amongst all
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feasible path realizations.

Proof. See Appendix 4.A.

The proposition above states that, when G = {g} such that g is a connected graph,

there is a subgame perfect equilibrium where the payoff of initial owner of the good equals

to (4.11). Roughly speaking, if other players can earn higher payoffs by deviating from

⟨p0⟩, A0 would have already taken advatage of it. In a graph g, P g
i,j denotes the set of paths

from node i to j. It is an empty set if they are not connected, or, there is no path between

them. For p ∈ P g
i,j, |p| denotes the length of the path. Given g, define a distance function

dg of the set as follows

d(i, j; g) = dg(i, j) =


minp∈P g

i,j
|p| if |P g

i,j| > 0,

∞ if P g
i,j = ∅,

(4.13)

where |p| is the length of the path. In words, it returns the length of the shortest path

between i and j if there is any, and returns ∞ if Ai and Aj are not connected. It can be

readily shown that this is a well-defined distance function.1

Corollary 4.1. Suppose G is a singleton, {g} where g is a connected graph. In an SPE,

the profit of A0 cannot exceed

max

{
v0,max

k ̸=0
, {δd(0,k;g)−1vk}

}
(4.14)

In the SPE, the willingness-to-pay of Ai when receiving a trade offer at h cannot exceed

max
k

{δd(i,k;g̃)vk} (4.15)

where g̃(h,N g
i ) is an induced graph of g whose set of nodes equal to Ai(h,N

g
i ).

1Symmetry, identity and non-negativity hold trivially. Fix i, j, k ∈ {0, · · · ,K} and arbitrarily pick two
pairs. If at least one pair is not connected, the sum of dg(·, ·) of those pairs are weakly greater than the
dg(·, ·) of the remaing pair, as ∞ ≤ ∞. If the two pairs are connected, so is the remaining pair. Choose
paths p1 ∈ P g

i,j and p2 ∈ P g
j,k such that satisfies dg(i, j) + dg(j, k) = minP g

i,j
|p| + minP g

j,k
|p|. Consider a

walk from i to k that is composed of p1 and p2 whose length exactly equals to minP g
i,j

|p| + minP g
j,k

|p|.
One can derive a path whose length is weakly less than the walk by eliminating repeated edges if exist,
contained in P g

i,k.
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Proof of Corollary 4.1. The profit of A0 monotonically increases in α, as long as maxk vk >

0. maxk ̸=0, {δd(0,k;g)−1vk} is the amount she can get from trade today in an equilibrium that

maximizes her payoff when α = 1 and v0 is her consumption value. When Ai undertakes

the good, Ai can be seen as an initial owner of the good in the game with g̃.

It is worth noting that, if there is only one player who appreciates the good, that is,

v0 = v1 = · · · = vK−1 = 0 and vK = v > 0, A0 will maximize her payoff if and only if the

path ⟨p0⟩ is the shortest path from A0 to AK . To see this, notice that, the amount that l-th

player pays in (4.11) will be reduced down to αdg(l,K)+1δd
g(l,K)vK = (αδ)d

g(l,K)αv. Since

her consumption value is also pinned down at 0, her payoff is no more than the amount

A1 pays, or (αδ)d
g(1,K)αv. Under this setting, AK will sometimes be called end user as

there is no further buyer once he has the good. It also immediately follows that, since only

AK puts positive value on the good, if players other than AK buy it, it must be from a

speculative motive, i.e., in belief that she can re-sell it to others.

When α = 1, the willingness to pay of Ai for i = 0, · · · , K, cannot exceed maxj δ
d(i,j;g)vj.

It is also possible that i = argmaxj δ
d(i,j;g)vj. If this is the case, Ai would not look for a

potential buyer and rather consume it. When such Ai faces a trade offer, the willingness-

to-pay equals to Ai’s own valuation for the good. Note that, it does not necessarily mean

that vi = maxk vk. Even when there are some players who appreciate the good more than

Ai, Ai may choose not to deliver it to them, because the price must be discounted. In this

sense, one may interpret δ as a distance discount factor, not only a time discounter.2 In a

same vein, maxj δ
d(i,j;g)vj is the maximum present value of Ai for the good.

4.3.2 Definitions

Fix a PBE and consider Ai who faces a trade offer from Aj at a public history h. {Sh
k }Kk=0 is

the information partitions of players at h. Let {Sk}Kk=0 be the information cells that players

2d(·, ·, g) < when focusing on connected graphs. It will be a hassle, however, when there are graphs
with more than one component and δ = 1. Considering the context of this research, 1∞ will be treated as
0, taking the left limit of lima→1(limb→∞ ab) in a.
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belong at the time. Let Vi(Sk) be the expected maximum valuation of Ai calculated based

on Sk, given as below.

Vi(Sk) := E

[
max

j

{
δd(i,j;g̃(h,N

g
i ))vj

} ∣∣∣∣g ∈ Sk

]
(4.16)

The equilibrium has an expected bubble (in networks) if there are a state, a player, and

a history on the path where the player faces a trade offer such that the player undertakes

the offer at a price strictly above everyone’s expected maximum valuation at the history.

Let gb be the state where expected bubble occurs at the trade offered at h and let q be the

amount that Ai pays. Then, the definition of expected (network) bubble requires that

q > max
k

Vi(Sh
k (g

b)) = max
k

E

[
max

j

{
δd(i,j;g̃(h,N

g
i ))vj

} ∣∣∣∣g ∈ Sh
k (g

b)

]
. (4.17)

The equilibrium has a strong bubble (in networks) if there are a state, a player, and a

history on the path where the player faces a trade offer such that the player undertakes the

offer at a price strictly above each player’s any possible maximum valuation at the history.

Let gb be the state where strong bubble occurs at the trade offered at h and let q be the

amount that Ai pays. Then, the definition of strong (network) bubble requires that for any

k ∈ {0, · · · , K} and g ∈ Sh
k (g

b),

q > max
j

{
δd(i,j;g̃(h,N

g
i ))vj

}
. (4.18)

In other words, when gb is realized, every player knows that the good is traded at a price

strictly above maximum valuation no matter which state in their information cell is the

true state.

Suppose v0 = v1 = · · · = vK−1 = 0 and vK = v > 0. Under this setting, the conditions

for bubbles in (4.17) and (4.18) can be simplified. In particular, a state gb exhibits an
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expected bubble at Ai and h if

q/v > max
k

E

[
δd(i,K;g̃(h,Ng

i ))

∣∣∣∣g ∈ Sh
k (g

b)

]
. (4.19)

A state gb exhibits a strong bubble at Ai and h if q/v > δd(i,K;g) for each k and g ∈

Sh
k (g

B). Notice that the (RHS) of (4.19) approaches to the maximum probability that Ai

is connected to AK calculated based on each player’s knowledge, as δ approaches to 1.

Under the same setting, an equilibrium has a network bubble if there are a state, a

player, and a history on the path where the player faces a trade offer such that the player

undertakes the offer at a strictly positive price; and that all players know the player is not

connected to the end user. Let gb be the state where network bubble occurs at the trade

offered at h and let q be the amount that Ai pays. Then, the definition of network bubble

requires that q > 0 and for any k ∈ {0, · · · , K} and g ∈ Sh
k (g

b),

d(i,K; g) = ∞ (4.20)

Remark 4.1. If a state gb exhibits a network bubble at a history h with a player Ai in an

equilibrium, then P g
i,K = ∅ in any state g ∈ ∪kSh

k (g
b).

Verbally speaking, when gb is realized, every player knows that Ai is not connected

to AK , i.e., there is no path from Ai to AK in any states they put a positive probability

on. Nonetheless, a network bubble requires Ai to undertake the good at a positive price.

Clearly, a network bubble satisfies the definition of strong bubble: the distance between Ai

and AK is ∞ in an induced subgraph if it is in the original one.

4.4 Assumptions

I have assumptions to make to avoid both trivial and non-trivial cases. Firstly, it is not

hard to imagine a world that everyone does not want the good, i.e., v0 = · · · = vK = 0,

but still it is being trade at price 0. It does not hurt anyone’s incentive compatibility, but
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is not of our interest. I assume that if willingness-to-pay equals to 0, the player should not

buy the good, even if the good is free. It is formally described in Assumption 4.1 below.

Assumption 4.1. Let x be a history where Ak faces a trade offer. Given σ−k, σ
B
k (x) = 0

if Wk(x) = 0.

Secondly, because the mediator absorbs all the willingness-to-pay of buyers, buyers will

be indifferent between buying and not buying. It is also a PBE that all players choose not

buying, that is, σB(·) = 0. The next assumption is to prevent this sort of equilibriums from

arising. Readers may see that these assumptions are not to restrict the model but to refine

equilibria. However, before directly proceeding, I want readers to recall the alternative

setting in the previous section with a single state of common knowledge.

Corollary 4.2. Suppose that G is a singleton, {g} where g is a connected graph and that

v0 = · · · = vK−1 = 0, vK > 0 and δ, α ∈ (0, 1). An SPE σ maximizing A0’s payoff that

satisfies Assumption 4.1 has the following properties.

P1 (σB
K(x), σ

S
K(x)) = (1, AK) for any feasible history x where AK faces a trade offer.

P2 (σB
k (x), σ

S
k (x)) = (1, AK) for any feasible history x where Ak faces a trade offer if

AK ∈ Ak(x).

P3 σB
k (x) = 0 for any feasible history x where Ak faces a trade offer if Ak(x) = {Ak}

and k ̸= K

The first property states that AK , the only player appreciates the good, will buy and

consume it whenever receiving a trade offer. Otherwise, even if the end user may receive

another trade offer later, the utility from consumption will be time-discounted, while the

price remains the same. As long as vK > 0, AK would not reject any trade. The second

property states that a player must accept any trade and try to sell it to AK if the player has

AK as a potential buyer. Not buying the good may be a best response for some strategy

profile where there is a possibility that AK may not undertake it. However, by immediately

preceding this property, AK will undertake it as long as AK ∈ Ak(x). Ak will not sell it

to someone else because, even if there is no uncertainty, the price must reflect the time
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discount to reach AK . The third property requires non-end-user players not to buy the

good if there is no feasible future buyers. In such cases, the highest price they would pay

must be 0, because the consumption value is also 0. In other words, they can still accept

the trade and pay 0, which is forbidden by Assumption 4.1. In fact, the third property is

implied by the assumption.

Consider the original model. Once both parties agree on a trade, the price is determined

by mediation not by bargaining. As mediator, as mentioned above, behaves on behalf of

the seller, the buyer has to pay as much as the willingness-to-pay. In the alternative

setting, it corresponds with the special case where α = 1, i.e., the seller has the whole

bargaining power so that the buyer pays no less than the willingness-to-pay. It puts buyers

in an indifferent position – they will be indifferent between buying the good paying the

expected value from it, and not buying it. However, in the alternative setting, a unique

best response of Ak to σ−k when α ∈ (0, 1), still remains as a best response when α = 1

because of continuity in the payoff. On the other hand, in the original model, there may

be a balanced mediator, in a sense that the price is between the willingness-to-pay’s of

buyers and seller. It becomes not easy to predict the behaviors of players, from which the

prediction of the behaviors in special case may derive, especially when the support of beliefs

of both parties does not coincide, generally. Nonetheless, in the special case I set, where

the mediator extracts all the expected benefits of the buyer, the decision-making problem

buyers are facing is similar to ones in the alternative setting with α = 1. It may justify

that properties P1 to P3 apply on the strategies of original model.

Assumption 4.2. A strategy profile satisfies P1 to P3.

4.5 Simplest Network Bubble and Analysis

Proposition 4.2. Suppose v0 = · · · = vK−1 = 0, vK > 0. Consider an equilibrium that

has a network bubble state, and satisfies Assumption 4.1. In such an equilibrium, K ≥ 4.

Moreover, there exists at least 4 different states if (i) K = 4 or if (ii) there exists a state
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the good arrives in AK.

Proof. Players whose index is even will be referred as female and others will be referred as

male. Let g1 be the state that exhibits a network bubble. As the number of the players are

finite, there must be the last player who buys the good in g1. Re-label the players so that

A0 and A1 are the seller and the buyer in the trade. Let h0 be the public history observed

when A0 offers a trade to A1 at g1. Indices of players will be attached in the order that

aquire the good. Public histories following h0 will be called hk where Ak is the player who

just acquired it.

Because it is a network bubble state, by definition, A1 does not appreciate the good.

Therefore, the purchase is speculative, or, A1 bought it intending to sell it to someone. But

she cannot be certain that she will be able to, because she is the last owner of the good

in g1. The amount she will pay to purchase it must be strictly lower than v. It implies

that neither is A0 the player who sees the value in the good, because A0 will earn v if he

consumes the good today. Hence, v0 = v1 = 0.

Also, the fact that speculative A1 who is the last owner of the good in g1 bought the

good when there is a positive probability that the state is g1, imply there must be a state

that A1 cannot distinguish from g1 where there is a player who would accept trade and

pay a positive price, which will not happen in g1. Otherwise, A1 will not pay a positive

price in g1. Let g2 be the state, and A2 be the player who buys the good from A1 at

g2. For notational convenience, let Nm
k := N gm

k . Since A1 cannot distinguish g1 and g2

until the trade offer is rejected from A2, A1 must have the same neighbor set. That is,

A0, A2 ∈ N1
1 ∩N2

1 . For the same reason, players before A2 have played in the same way in

those states and prices must have been decided at a same level. In particular, in both g1

and g2, A1 buys the good from A0. On the other hand, A2 takes different actions at h1 in

both states. This implies that she must have different neighborsets in those states, that is,

N1
2 ̸= N1

2 .

By the definition of network bubble, A1 knows for certain that he is not connected to

the end user, the player who appreciates the good, when accepting the trade. That is, in

g1 and in all states that he cannot distinguish from g1, A1 and the end user is in different

component. Let A∗ be the player. Since g2 ∈ Sh0

1 (g1) and A2 ∈ N2
1 , A2 ̸= A∗, which implies

v2 = 0 as well and A2 buying the good in g2 is also speculative. A2 has a neighbor, A3,

who will buy the good with a positive probability in Sh1

2 (g2). A3 cannot sell it to A0 nor

A1, as they have owned the good in previous history. Not can he be A∗ either, A1 is not

connected to A∗ in g2, while A3 is adjacent to A2 who is adjacent to A1. We have reached
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the minimum number of players in the statement: A0, A1, A2, A3 whose valuations equal to

0 and A∗ who appreciates the good.

(i) Let K = 4 and A4 = A∗. As mentioned above, A2 believe there are some states in

Sh2

2 (g2) where A3 would buy the good after observing h2, in the equilibrium. However, g2

is not one of those states: the purchase of A3 at h
2 must be of speculative motive, because

v3 = 0. In g2, there are 4 players in the game, except A3 himself. Among those, A0, A1

and A2 had had the good in h2. A4 must not be a neighbor of A3 in g2, because A1 and A3

are already connected in the state. A4 adjacent to A3 is also connected to A1, which is a

contradiction. Therefore, there must be a state that A2 cannot distinguish from g2 where

A3 would accept the trade, while she would not in state g2. Let the state g3 ∈ Sh2

2 (g2).

As A2 cannot distinguish states in Sh2

2 (g2) after observing h2, she behaves in the same

way in those states, by asking A3 for a trade. By the same logic, A3 would not accept the

trade after h2, as long as he does not have A4 as his neighbor. However, A3 buys the good

in g3 after h2 as the state is designed so, A4 ∈ N3
3 . Let h

3 be the public history following h2.

Pick a state from Sh2

2 (g2) such that A4 accepts the trade after h
3. If there is no such state,

another player needs to be introduced, to buy the good from A3 after h3, which implies

K > 4. Therefore, there must exits such a state in Sh2

2 (g2). WLOG, let g3 be such a state

and h4 be the public history following h3.

The fact h4 is feasible in g3 implies that Ak is adjacent to Ak−1, for k = 1, 2, 3, 4. That

is, A1 is connected to A4 in g3. Remark 4.1 implies that g3 /∈ Sh0

1 (g1). Now, suppose there

are only three states, g1, g2 and g3. Under information partition Sh0

1 , A1 can tell g3 from

the others but cannot tell g1 and g2 apart. Sh0

1 is fully determined by Sh0

1 = {S1
1 , S

2
1} where

S1
1 = {g1, g2} and S2

1 = {g3}. Similarly, the information partition for A2 after h1, Sh1

2 , can

be determined by {{g1}, {g2, g3}}.
Worth noting that, players have the same amount of willingness-to-pay for the states

that are in the same cell. In equilibrium path, A2 does not buy the good after h1 when

the state is g1, and does when the state is either g2 or g3, as the states are labelled so. As

the mediator make A2 pays the whole willingness-to-pay, letting q be the price A2 pays on

path, q = W2(h
2, N2

2 ) = W2(h
2, N3

2 ). On the other hand, in g3, A2 sells the good to A3

who will sell the good to A4. Since v4 > 0, A2 will receive a positive price from A3, which

makes W2(h
2, N3

2 ) > 0. Thus, A1 will receives a positive price q, if the state is g2 or g3,

and 0, otherwise.

Consider the willingness-to-pay’s of A1. A1 will be able to sell the good to A2 in S1
1 on
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path, iff the state is g2. His willingness-to-pay for S1
1 = {g1, g2} has to match with

π2

π1 + π2

δW2(h2, N
2
2 ) =

π2

π1 + π2

δq, (4.21)

the present value of expected payoff. Notice this is strictly smaller than δq. In state g3, the

willingness-to-pay of A1 for S
2
1 = {g3} is equal to δW2(h2, N

3
2 ) = δq, since he knows that he

will be paid W2(h2, N
3
2 ) tomorrow. Thus, A1 has to have higher willingness-to-pay for S2

1

than one for S1
1 , because A2 cannot distinguish g2 from g3 at the moment A1 offers a trade

after h1. However, it contradicts the assumption: higher willingness-to-pay for S2
1 than one

for another, must have been reflected in the price in the equilibrium. Hence, there must

exist extra states, adjusting the expected payoffs of A1 so that the willingness-to-pay’s for

g2 and g3 becomes the same.

(ii) Suppose there exists a state where AK purchases the good. Let gM be the state

and AK−1 the player who is penultimate buyer of the good in gM . Replacing gM and AK−1

with g3 and A3, the proof holds analogously with (i).

The proposition above states the smallest numbers of players and states, under a single-

collector model. And not only that, it provides a part of information structure that an

equilibrium with a network bubble must have. Let A1 be the player who is the last player

who buys at a history h the good in the bubble state on the equilibrium path. Let gb be

the state and h∗ be the public history after the purchase. There must exist states, gB and

gG, widely-used notations in the literature. The subscriptions expressse the posture of A1

as a seller under the information he has. gB indicates that A1 behaves as a ‘bad’ seller in

the state, because he knows there is 0 probability that the good can reach AK . g
G indicates

that A1 behaves as a ‘good’ seller in the state, because he believes there is a probability

that the good reaches AK . The next buyer pays the same amount for the good in gB and

gG, while A1 cannot sell the good in gb. To sell the good, it is important for him to keep

A2 in uncertainty about gG and gB. However, since A1 can distinguish gG and gB, if his

willingness-to-pay is higher at one than at the other, it is bounded to be revealed out, since

the attitude is reflected in the price.
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Corollary 4.3. Suppose v0 = · · · = vK−1 = 0, vK > 0. Consider an equilibrium that

has a network bubble state under Assumption 4.1, in Proposition 4.2 and its proof. The

willingness-to-pay of A1 for the information cell containing g1 is equal to that for the in-

formation cell containing g3. That is,

W1(h
0, N1

1 ) = W1(h
0, N3

1 ) (4.22)

Proposition 4.3. Suppose v0 = · · · = vK−1 = 0, vK > 0. Suppose there exists an equi-

librium with a network bubble under Assumption 4.1, and let g1 be the bubble state. Con-

sider a probability distribution π1 = (π1, π̃2/π1, · · · , π̃M/π1), where π(gm) = π̃m/π1 for

m = 2, · · · ,M . Up to re-labelling the states and players, π1 is uniquely determined.

Proof. Similarly with the proof of the Proposition 4.2, let A1 be the last player who buys

the good in g1, A0 be the seller, h
1 be the history at the trade. By the way A1 is chosen, for

any on path history that succeeding h where any player buys the good from A1, players do

not put a positive probability on g1. On the other hand, the willingness-to-pay, described

in (4.3) and (4.4), is iteratively calculated on the supports of the beliefs of the players.

In none of those supports, g1 is not included. In particular, changes in π1 of π1 does not

change the willingness-to-pay of the players who has not owned the good at the time A1

acquires it.

Consider the willingness-to-pay of A1. Following the notation of the proof of the Propo-

sition 4.2, the same proof shows that, Sh1

0 has at least two elements in it. Sh0

1 (g1) and

Sh0

1 (g3). Changes in π1 does not change the willingness-to-pay of A1 in each state in

Sh0

1 (g3). It also does not change the expected payment from other players on the path in

each state in Sh0

1 (g1) \ {g1}. It does not change the expected payment from other players

on the path in state g1 as well, which is fixed at 0. The consumption value for A1 is 0.

Additionally, the willingness-to-pay of A1 for both cells must be the same; and Sh0

1 (g3) > 0.

This implies that increases in π1 strictly increases the willingness-to-pay for Sh0

1 (g1), while

Sh0

1 (g3) remains the same. Since I assumed that existence of an equilibrium that has g1 as

the network bubbble state, there must exist a π1 and π1 that makes (4.22) hold.

Proposition 4.4. Suppose K = 4, M = 4, v0 = · · · = v3 = 0 and v4 > 0. In a equilibrium

with a network bubble that satisfies Assumption 4.1 and 4.2, the last player who buys it in the

bubble state, has information partition {{g1, g2}, {g3, g4}} when faces the offer. Moreover,

π2

π1 + π2

=
π3

π3 + π4

(4.23)
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Proof. See Appendix 4.A.

Corollary 4.3 emphasizes a conclusion derived from the proof of Proposition 4.2, that

the willingness-to-pay of A1 for the cell he will be a ‘good’ seller, must coincide with that for

the cell he will be a ‘bad’ seller. Proposition 4.3 showed that it requires a strict restriction

over the prior set; and Proposition 4.4 gave us a specific example. There must be a forth

state, where A1 cannot distinguish from g3 until he fails to sell it. In this way, A1 has two

information cells in each of which there are one paying state and one non-paying state.

However, this is not sufficient to make A1 indifferent between those cells. Because there

will be the same amount of payoffs across paying states, the interim probability on paying

state when each cell is realized, must be the same. Therefore, the priors that sustain a

network bubble equilibrium, must be degenerated. It is not surprising that, an equilibrium

that has a bubble state requires strict conditions.

In Allen et al. (1993) the relationship between the price and the willingness-to-pay

is not explicitly discussed. In Liu and Conlon (2018) and Liu et al. (2023), the price

has to coincide with the higher willingness-to-pay’s in both parties in bilateral trades, to

satisfy market clearing condition. Both parties can learn from the price and the position

of themselves in the trade. This model not only has this feature but also introduced it

as an instrument to determine the price. In Awaya et al. (2022) who analyzed rational

bubble using e-mail game, their results hold under any prior as long as it has full-support.

This may be partially due to the exogenous price function they adopted that increases

exponentially and irrelavantly with willingness-to-pay’s.

4.6 An Example of Network Bubble

The previous section provided some necessary conditions of an equilibrium with network

bubble, if it exists. In this section, I will show a simple example of probability space of 4

graphs with 5 nodes. It exactly coincides with the necessary condition for simplest bubble
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in Proposition 4.2. Indices of players and states follow those in the proof of the proposition.

I start by drawing edges that are required to be included, through Figures 4.6.1 and 4.6.2,

to draw a true probability space with G = {g1, g2, g3, g4}. Let E(g) be the set of edges in

graph g. (i, j) ∈ E(g) implies that in graph g, nodes i and j are adjacent. m-th graph in

Figure 4.6.1 (4.6.2), g1m, has edge set E(g1m) (E(g2m)) ⊆ E(gm).
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Figure 4.6.1: Edges required for trade offers

Consider the flows of the good in each state on path, described in the proofs of Propo-

sition 4.2. In g1, the good is handed in order of indices of players until A2. In g2, the

good is handed in the same order until A3. In g3, the good is handed in order of indices of

players over and over and it reaches the end-user, A4. Proposition 4.4 implies that, in g4,

the flows of the good is the same with one in g1. The flows imply that (0, 1), (1, 2) ∈ E(g2),

(0, 1), (1, 2), (2, 3), (3, 4) ∈ E(g2), and (0, 1) ∈ E(g1), E(g4). Not only that, in g2, A2 asks

A3 for a trade, although it is supposed to be rejected. In g1, A1 asks A2 for a trade to be

rejected; it happens in g4 as well. Since trade offers are only made between neighbors, it

implies that (2, 3) ∈ E(g2), and (1, 2) ∈ E(g1), E(g4). It is described in Figure 4.6.1.

Consider the information partition of each player when they had their turn. From the

fact that A2 cannot distinguish g2 and g3 when receiving an offer from A1, the public history

at the timing must be the same, h1. Since h1 succeeds h0, the public histories when A0 offers

a trade in g2 and g3 must be the same as well. However, it is shown that, when A1 receives

an offer from A0, the information partition has to equal with Sh0

1 = {{g1, g2}, {g3, g4}}.

It follows that A1 has different neighbor sets in states g2 and g3: N2
1 ̸= N3

1 . In other

words, the difference set of N2
1 and N3

1 is not empty. However, Figure 4.6.1 requires that

76



{A0, A2} ∈ N2
1 , N

3
1 . To summarize, it must satisfy the following relationship.

∅ ̸= (N2
1 ∪N3

1 ) \

{0,2}⊆︷ ︸︸ ︷
(N2

1 ∩N3
1 ) ⊆ {3, 4} (4.24)

But by Remark 4.1, A4 /∈ N2
1 . It can neither be A4 /∈ N3

1 , by P2: considering A1 after

h1 in g3, A1 will directly go to A4 if A4 ∈ N3
1 , which action is not feasible in g2. This will

enable A2 to distinguish g2 from g3. By a similar logic, A3 /∈ N3
1 . Consider A1 after h1 in

{g3, g4}. If the state is g4, A1 will not be able to sell it on the equilibrium which will gives

him the lower bound payoff. If the state is g3, on path, A1 would sell it to A2 who will pay

him δ2v. If A3 ∈ N3
1 and theryby, A3 ∈ N4

1 , A1 would deviate to offer a trade to A3, who

will accept it (P2) and pay δv, if the state is g3. Therefore,

N1
1 = N2

1 = {A0, A2, A3}

N3
1 = N4

1 = {A0, A2},
(4.25)

which is reflected in Figure 4.6.2.
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Figure 4.6.2: Edges required for information structure of A1

By the definition of network bubble, when A1 accepts his trade, every player must

know that d(1, 4; g) = ∞ for any g they put positive probabilities on.3 However, A0 in

G2 = {g21, g22, g23, g24} has the same neighborhood in any state, that is, N1
0 = N2

0 = N3
0 =

3One may see this too strict and attempt to loosen the definition so that this requirement only applies
on the very parties of the transaction. Although the Allen et al. (1993) imposed on all players, that is
because, in their model, all players had access to the trade, any time they want. In such circumstance, it
is natural to require it for all market participants. However, in this model, players has to wait until one
of their neighbors acquire the good and offer a trade to them. Nonetheless, I keep my definition to be
prudent.
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N4
0 = {A1}. Then, G2 generates an information partition for A0, {{g21, g22, g23, g24}}. Since

A0 is the initial owner and has only one neighbor, there is no information updates by the

time A0 trades with A1. If G = G2, when g1 is realized, A0 expects there is a positive

probability that A1 may be able to reach A4, which does not yet satisfy the requirements

for network bubble. There are several ways to modify G2 to resolve it. One of them is to

simply add an edge (0, 3) to g21, separating g1 from other states. The set of graphs, and the

information partitions generated by the set of the players under this solution, are given in

Figure 4.6.3 and (4.26), respectively.
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Figure 4.6.3: An example of state set G

S0 = {{g1}, {g2, g3, g4}}

S1 = {{g1, g2}, {g3, g4}}

S2 = {{g1, g4}, {g2, g3}}

S3 = {{g1}, {g2}, {g3}, {g4}}

S4 = {{g1, g2, g4}, {g3}}

(4.26)

I will show there is an equilibrium with a network bubble in the proposition below.

However, in the game, only A0 can get a positive payoff, and others have to pay the exact

amount they expect to earn upon the purchase. Thus, it is not difficult to show that, there

is also an equilibrium such in which no trade occurs at all. Also, there may be multiple

options for a player after a trade offer is rejected. The player may either consume it or look
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for another player to offer a trade, if any. To narrow down our focus, I add two assumptions

below.

Assumption 4.3. Let x be a history where Ak is the current owner of the good. Given

σ−k, σ
S
k (x) = Ak if Wk(x) = 0.

Assumption 4.4. Let x be a history where Ak faces a trade offer. Given σ−k, σ
B
k (x) = 1

if Wk(x) > 0.

Assumption 4.3 requires that, if Ak, who currently owns the good, is certain that the

willingness-to-pay of his potential buyers equals to 0, he/she chooses to consume it by

him/herself. Consider a history where the A3 buys the good from A0 and sold it to A1, in

g1 in G, in Figure 4.6.3. Under this history, both A1 and A2 may be aware, in equilibrium,

that A2 has 0 willingness-to-pay. However, technically A1 has {A1, A2} as his action set

and may choose A2, knowing it will be rejected. Assumption 4.4, together with Assumption

4.1, require that a trade offer is accepted if and only if the buyer’s willingness-to-pay is

positive.

Proposition 4.5. Suppose G and π is given by Figure 4.6.3 and Table 4.6.1. There exists

an equilibrium with network bubble. If the equilibrium strategy profile satisfies Assumptions

4.1 to 4.4, it is unique.

Proof. See Appendix 4.A.

Table 4.6.1: Probabilities over states

states π1 π2 π3 π4

probabilities 1
4

1
4

1
4

1
4

Proposition 4.5 establishes an equilibrium with a network bubble. It is easy to confirm

that, in the equilibrium, the statements in Propositions 4.2, 4.3 and 4.4 are satisfied.

Moreover, it is shown that, under G, prior in Table 4.6.1 and Assumptions 4.1 to 4.4, if

an equilibrium has a network bubble, it is unique. In the equilibrium constructed in the

proposition, the good flows from hand to hand of players in the order of their index. Under
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Assumptions 4.1 to 4.4, if a player turns down an offer, there is no further trades or trade

offers. The flows of the good and the prices in each state on the path are given in Appendix

4.B.

Unlike Liu and Conlon (2018), the simplest structure to acquire a network bubble is not

unique; they showed that a strong bubble in their model needs at least 5 states; and the

information structure of players is essentially unique. However, in this model, this is not the

case. Figure 4.6.4 represents another version of example, G′, earned by adding an edge (3, 4)

to g4 in G. Under G′, the information partition of A4 changes to S ′
4 = {{g1, g2}, {g3, g4}}.

But it is still possible, with prior in Table 4.6.1, to construct a similar equilibrium with a

network bubble.
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Figure 4.6.4: An alternative example of state set
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Appendix of Chapter 4

4.A Proofs

Proof of Proposition 4.1. Suppose that A0, a female, can tell all other players how to choose

their strategy to maximize her (expected) payoff. The strategy profile, σ0 = (σ0
0, · · · , σ0

K),

draws a path ⟨p0⟩ in g, equivalently given by a sequence of players, {A0, · · · , AL}, upon re-

naming players. Consider Al, a male, who received an offer and has yet to decide whether

to take it at history hl and who accepts the offer at history hl+0.5 following hl. It can easily

be proven that Al does not have incentives to deviate at hl+0.5. Suppose he can profitably

deviate, resulting in the flow of the good drawing a path ⟨pl+0.5⟩ instead of ⟨p0⟩. This

implies that Al would have paid more at hl if A0 chose ⟨p0⟩ instead of ⟨p0⟩, which increases

the payoff of A0. It is a contradiction to the assumption that ⟨p0⟩ maximizes her payoff.

Additionally, every player Al ∈ {A0, · · · , AL} will receive a weakly positive payoff. For

l = 0, · · · , L− 1, the fact that they do not deviate at hl+0.5 implies that it is weakly better

to obey σ0
l , than consuming the good by themselves, which gives them vl ≥ 0. For l = L,

the fact that AL−1 does not deviate implies that vL−1 ≤ δq∗L ≤ q∗L where q∗L is given in

(4.10). This gives q∗L ≤ vL. Using this, it can also be readily shown that Al does not have

incentives to deviate at hl: not buying at all historeis that follows hl cannot be a profitable

deviation which gives him 0 payoff. Hence, a profitable deviation strategy for Al must

involve a history h′
l that follows hl in which Al turns down the offer at hl and faces another

offer of trade that he will accept. The later offer must be from an other player than Al−1,

Al−1 cannot offer a trade more than once to the same player. Moreover, at history h′
l+0.5

where Al accepts the offer at h′
l, he must sell it to someone else – if consuming it at h′

l+0.5

is a profitable deviation, doing the same at h′
0.5 should also be profitable, but it has been

proven not to be the case.

Let ⟨p′l⟩ be the path caused by the deviation of Al at hl and the sequence of players
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who owned the good is given as below,

{A0, · · · , Al−1, Al1 , · · · , Aln , Al, Aln+1 , · · · , AlN},

where {Al1 , · · · , Aln} is the squence of players who had owned the good between hl and h′
l,

and {Aln+1 , · · · , AlN} is the squence of players who will own the good after h′
0.5. Recall that

the payoff of Al depends on vln+1 , · · · , vlN , and not on Al1 , · · · , Aln neither on v0, · · · , vl−1.

Define another path, ⟨pl⟩, that is identified by a sequecne

{A0, · · · , Al, Aln+1 , · · · , AlN}.

⟨pl⟩ is 1/δn times more profitable than ⟨p0⟩, because he will receive the same amount of

payment in earlier peirod. However, since ⟨pl+0.5⟩ was chosen arbitrarily, the same logic

applies to prove that ⟨p′l⟩ is neither more profitable than ⟨p0⟩ for Al. The strategies of other

players, σ−⟨p0⟩ can be arbitrarily chosen within the incentive compatibility conditions.

Lemma 4.1. Suppose K = 4, M = 4, v0 = · · · = v3 = 0 and v4 > 0. Suppose there

is an equilibrium that satisfies Assumption 4.1 and 4.2. Consider a history h on path in

which A2 rejected a trade offer from A1 who bought the good from A0. If A1 offers a trade

to A3 next after h, A3 will accept the good if and only if A3 has A4 as his neighbor. The

statement also holds when switching A2 and A3.

Proof of Lemma 4.1 . From the fact that A2 did not accept the trade and try to re-sell it

to A4, players know that A2 does not have A4 in the state (P2). If A3 accepts the trade

after h, it must be of speculative motive (Assumption 4.1). Let x be the history where A3

accepted the trade from A1. Conditional on x, {A0, A1, A3} is the set who had owned the

good in the history. The set of possible buyer of A3, A3(x) must be a subset of {A2, A3, A4}.
If A4 ∈ A3(x), A3 will accept it (P2). If A4 /∈ A3(x), A3(x) must be a subset of {A2, A3}.
However, A3 knows that A2 will not accept the trade in the equilibrium (P3). Consuming

the good by himself will give him 0 profit as well. Thus, if A4 /∈ A3(x), buying at h is not

on equilibrium path.

Proof of Proposition 4.4 . I use the notations used in the proof of Proposition 4.2. In the

proof, it was shown that there need more than 3 states. Let there be a fourth state, g4. A1

must not distinguish g4 precisely at h0; there must be states in the same cell in Sh0

1 . If not,

recall that g2 and g3 are paying states for A1 at h0, which makes the willingness-to-pay
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for Sh0

1 (g3) strictly higher than Sh0

1 (g1). The problem remains unsolved. Thus, g4 must be

either in Sh0

1 (g1) or in Sh0

1 (g3).

Suppose g4 ∈ Sh0

1 (g1), that is, Sh0

1 = {{g1, g2, g4}, {g3}}. A1 must offer a trade to A2

first as he does in the states in the same cell. If g4 makes the willingness-to-pay’s of A1 for

both cells equal, the payment in g4 must be higher than the payment in g3.

Suppose σB
2 (h

1, N4
2 ) = 0. If A3 /∈ N4

1 , A0 will receive 0, because there is no further

players to ask for a trade and v1 = 0. Even if A3 ∈ N4
1 , A3 would not take it, because of

Lemma 4.1. In either way, A0 will receive 0 if σB
2 (h

1, N4
2 ) = 0. Suppose σB

2 (h
1, N4

2 ) = 1.

A2 must be able to distinguish g4 precisely at h1. If g4 ∈ Sh1

2 (g1), A2 will not buy the good,

since not buying at g1 is on equilibrium path and A2 cannot distinguish both states. By the

same logic, if g4 ∈ Sh1

2 (g2) = Sh1

2 (g3), A2 would pay the same amount with that she would

pay in g2 or in g3. The problem remains unsolved. Thus, Sh1

2 = {{g1}, {g2, g3}, {g4}}.
However, A2 cannot pay more than she does in g2 or in g3 either. g4 ∈ Sh0

1 (g1), including

A0, A1 and A2 any players connected to them cannot be connected to A4. If A3 /∈ N4
2 ,

A2(h
1, N4

2 ) = {A2}. A2 will not pay more than 0 (P3). If A3 ∈ N4
2 , suppose A2 offers a

trade to A3 after accepting and let h′ be the history. However, given the set of past owners

at h′ is {A0, A1, A2}, A3 would not buy the good at h′ unless A4 ∈ N4
3 (P3), which cannot

be the case. Since A2 precisely knows the state is g4, A2 can foresee that A3 will not buy

the good. This makes the willingness-to-pay of A2 0; and she will not buy at h1 in the

state (Assumption 4.1). Therefore, g4 /∈ Sh0

1 (g1).

Suppose g4 ∈ Sh0

1 (g3), or, Sh0

1 = {{g1, g2}, {g3, g4}}. Re-label S1
1 and S2

1 so that S1
1 =

{g1, g2} and S2
1 = {g3, g4}. A2 is the first player whom A1 offers a trade, since g4 ∈ Sh0

1 (g3).

Normalize the timeline and let day 0 be the day A1 buys the good from A0 in h1. That is,

A1 offers a trade to A2 on day 1 and A2 pays q in states g2 and g3. Consider the information

partition of A2 after observing h1. In equilibrium, A1 receives strictly less in g4 than he

does in g2 or g3. This excludes Sh1

2 = {{g1}, {g2, g3, g4}}, in which A2 accepts the trade at

h1 and pays the same amount for {g2, g3, g4}. The problem remains unsolved. It must be

either Sh1

2 = {{g1, g4}, {g2, g3}} or Sh1

2 = {{g1}, {g2, g3}, {g4}}.
It is convenient that, in either way, g2 and g3 are isolated in Sh1

2 , in the sense that

Sh1

2 (g2) = Sh1

2 (g3) = {g2, g3}. This enables us to explicitly calculate q. On the equilibrium

path, in g2, the good flows until A2 and A2 will receives nothing from A3; and she does

not have further potential buyers, as A2 is not connected to A4 in the state. However,

in state g3, A3 will pay a positve amount because A3 expects A4 to pay her consumption

value to him. In other words, A4 pays A3 v, on day 3; A3 pays A2 δv, on day 2 expecting
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v on next day. On day 1, when A2 is to buy the good and pay A1, she calculates the

willingness-to-pay. If the state is g2, she will have 0; if the state is g3, she will expect δv

paid on the next day. Therefore, the willingness-to-pay of A2 for {g2, g3} on day 1 equals

to

q =
π3

π2 + π3

δ(δv) =
π3

π2 + π3

δ2v (4.27)

In what follows, I will show that the (discounted) amount A1 receives in g4 is not only

strictly less than (discounted) q, but also is 0.

If Sh1

2 = {{g1, g4}, {g2, g3}} is the case, A2 will reject the trade as she would do the

same in the other state in the same cell. Let h′′ be the history following h1 after rejection.

Note that, if this is on the path, then, A4 /∈ N4
2 . Not to mention, A4 /∈ N4

1 as well (P2).

After rejection, if A1 does not have possible buyers, A1 will receive 0 in g4. If A1 has a

player left in Ak(h
′′, N4

1 ) to ask for a trade on day 2, it must be A3. He will accept iff

A4 ∈ N4
3 (Lemma 4.1). However, if this happens, A3 will pay δv on day 2, which makes S2

1

more desirable than S2
1 for A1 at h0. Thus, A4 /∈ N4

3 , A3 reject the trade, and A1 will earn

0 in g4.

If Sh1

2 = {{g1}, {g2, g3}, {g4}}, A2 can precisely know the state when it is g4. Consider

four cases: (i) A4 ∈ N4
2 , (ii) A4 /∈ N4

2 and A3 /∈ N4
2 (iii) A4 /∈ N4

2 and A3 ∈ N4
2 . If (i)

is the case, A2 will accept the trade at h0 and pay δv, the time discounted amount that

A4 will pay tomorrow, on the same day the trade is offered. This is strictly higher than

q, which makes willingness-to-pay of A1 for S2
1 strictly higher than S1

1 . Thus, (i) cannot

be the case. If (ii) is the case, A2 will not accept the trade (P3). This goes back to the

analogous problem discussed in the previous paragraph. The proof can be done similarly

when (iii) is the case and A2 reject the offer on the path. If (iii) is the case, A2 has only

one possible player whom she can ask for a trade, upon accepting the trade offer from A1:

A3. Upon observing a history where the set of the previous and current owners is given by

{A0, A1, A2}, A3 will accept the good if and only if A4 ∈ N4
3 (P2 and P3). Since Sh1

2 (g4) is

a singleton, A2 knows whether A4 ∈ N4
3 or not. If not, A2 will not accept the trade (P3),

and the discussion in the previous paragraph is repeated. If A4 ∈ N4
3 , she will know that

A3 will pay δv on day 2 for sure. If A2 accepts the trade, she will pay δ2v, which is higher

than q. This completes the proof.

Proof of Proposition 4.5. The strategy of A4 in an equilibrium can be characterized easily.

Since A4 is isolated from other players in all states except g3. g3 is the only state A4 is

able to have an opportunity to buy the good. If A4 chose buying, she has no choice but
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to consume it. Let σ4(·, ·) = (1, A4) be the strategy of A4 (P1). On the other hand, A3,

who is the only possibly connected player to A4, recognizes all the states precisely. Let

σ3(·, N3
3 ) = (1, A4) be the strategy of A3 in state g3

4 (P2). In the case A4 rejects it, the

game ends. It is readily shown that there is no incentive for A4 to deviate. Given the

strategy of A4, A3 does not have deviation incentives from σ3(·, N3
3 ). It is straightforward

to let σB
2 (·, N1

2 ) = σB
2 (·, N4

2 ) = 0 (P3) be the strategy of A2 whose neighbor set is given by

{A1}. If A2 faces an offer, the seller must be A1, the only neighbor, which implies A2 does

not have any further buyer. Since the willingness-to-pay equals to 0, A2 has no deviation

incentives from σ2(·, N1
2 ) nor from σ2(·, N4

2 ). In the case A2 accepts it, the game ends. I

will re-visit σ2(·, N2
2 ) and σ2(·, N3

2 ) later.

To consider σ3(·, N2
3 ), the strategy of A3 in g2, notice that A1, A2 and A3 form a cycle.

Let ζ be a history that contains a trade offer from A1 to A3. If A3 accepts any offer

from A1, he will have only A2 as his available buyer. At the start of the game, A2 has

S2 = {{g1, g4}, {g2, g3}} and cannot distinguish g2 and g3. However, since ζ is not feasible

with g3, Sζ
2 must be a refinement of {{g1, g4}, {g2}, {g3}}. If A3 accepts an offer from A2,

there is no available buyers for him, whether or not the history contains a trade offer from

A1 to A3. Thus, no matter whomever A3 accepts any offer from, A3 has either no buyers,

or a buyer whose willingness-to-pay equals with 0. Let σ3(·, N2
3 ) = (0, A3) be the strategy

of A3 in g2 (Assumption 4.1 and 3). It follows that, σ2(ζ,N
2
2 ) = (0, A2) is the strategy of

A2 for (ζ,N2
2 ) (Assumption 4.1 and 3). Now given σB

2 (·, N1
2 ) = 0 and σ2(ζ,N

2
2 ) = (0, A2),

A1 expects there is no further buyer with a positive willingness-to-pay in {g1, g2}, if he
offered a trade to A3. Consequently, σ1(ζ,N

1
1 ) = σ1(ζ,N

2
1 ) = (0, A1) is the strategy of A1

for (ζ, {A0, A2, A3}) (Assumption 4.1 and 3).

In g1, given σB
2 (·, N1

2 ) = 0, A0, A1 and A3 form a cycle again. Let σ3(·, N1
3 ) = (0, A3)

be the strategy of A3 in g1 (Assumption 4.1 and 3): if A3 receives a trade offer from

A1, it is obvious that there is no further buyer who had not had it in his neighborhood.

Suppose A3 receives a trade offer from A0. A direct trade offer between A0 and A3 is only

feasible in g1. If A3 accepts, he will have only A1 as his available buyer, whose information

partition is updated to a refinement of {{g1}, {g2}, {g3, g4}}; and whose willingness-to-pay is

therefore 0. Thus, no matter whomever A3 accepts any offer from, A3 has either no buyers,

or a buyer whose willingness-to-pay equals with 0. This determines σ3(·, N1
3 ) = (0, A3)

and σ1(ζ
′, N1

1 ) = (0, A1) where ζ ′ is a history that contains a trade offer from A0 to A3

4Strictly speaking, it is the strategy of A3 upon a history where he faces a trade offer. However, recall
that a player cannot offer to another more than once. Since players are aligned in a line in g3 and A3

precisely distinguish g3 from others, it is sufficient to describe σ3(·, N3
3 ).
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(Assumption 4.1 and 3).

Consider a history ξ that contains a trade offer from A0 to A3, which is only feasible

in g1. Then, the information partitions of every player will be refined so that Sξ
k(g1) is a

singleton. Given σ2(·, N1
2 ), players who might participate in trades are A0, A1 and A3 in

a cycle again. In a similar manner, it turns out that σB
1 (ξ,N

1
1 ) = σB

3 (ξ,N
1
3 ) = 0 is the

strategy for A1 and A3 at ξ respectively, and that both A1 and A3 do not have incentive

to deviate. In histories where they bought the good, they consume it by themselves. That

is, σS
1 (ξ,N

1
1 ) = A1 and σS

3 (ξ,N
1
3 ) = A3.

It remains to determine the strategies of A0, A1 and A2 for the histories that do not

contain a trade offer from A0 or A1 to A3. If A2 receives a trade offer in such histories,

the histories of trade offer and whether it was accepted is determined uniquely: A0 offers a

trade to A1 who accepts it and now offers a trade to A2. There are two types of equilibriums

to consider. In one, A2 can distinguish g2 and g3 by the time of trade offer from A1. In the

other, A2 cannot distinguish those states.

In what follows, suppose that, A2 cannot distinguish those states, under histories not

containing a trade offer from A0 or A1 to A3 in the equilibrium. This is possible only if A1

pays the same price at g2 and g3, which will be confirmed later. Let h1 be the history that

A2 receives a trade offer from A1 who was the first player whom A0 offered a trade. Given

σ3(·, N2
3 ) and σ3(·, N3

3 ), A2 knows that A2 will be paid back some positive price if and only

if the state is g3 in {g2, g3}. The willingness-to-pay of A2 for {g2, g3} will be calculated by

W2(h
1, {A1, A3}) =

π3

π2 + π3

δq3 > 0 (4.28)

where q3 is given by q3 = δq4 = δv > 0. Let σ2(h
1, {A1, A3}) = (1, A3) be the strategy of A2

under the situation (Assumption 4). In case of rejection, the game ends. Before accepting

the trade, the expected payoff is equal to 0; and after accepting the trade, the interim

expected payoff of offering a trade to A3 is strictly positive. Not buying or consuming by

himself will give 0 payoff, thus, there is no incentive to deviate. It characterizes the strategy

of A2.

Since histories containing a trade offer from A0 to A3 have been excluded, it leaves

histories that A1 receives an offer from A0 as soon as the game starts, given G. Denote the

history by h0. Notice that, if A1 accepts the offer and tries to sell it to A2, it is no other

than h1. Because it is assumed that, A2 cannot distinguish g2 and g3 after h1, A2 has a

positive willingness-to-pay and would buy it in those states under the constructed strategy.
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If the strategy satisfies Assumption 4, in the equilibrium, the strategy of A1 is (1, A2) at

h0 in states in Sh0

1 (g2) ∪ Sh0

1 (g3). In the next paragraph, I will show that Sh0

1 must be

{{g1, g2}, {g3, g4}}, and thereby Sh0

1 (g2)∪Sh0

1 (g3) = G. Then, it follows σ1(h
0, ·) = (1, A2).

When rejected, A1 consumes it by himself, if the game did not end. Although A1 may have

A3 in the neighborhood, as discussed above, players would not buy it in any history A1

had offered a trade to A3.

Given σ1(h
0, N2

1 ), σ1(h
0, N3

1 ) and positive willingness-to-pay of A1 for g2 and g3, a

unique best response to A0 is σ0(h, {A1}) = A1. Combined with the equilibrium strate-

gies, h0 and h1 will be an equilibrium path in state g2 and g3. Additionally, since A1

cannot learn information that A0 does not know upon h0, it is either Sh0

1 = S1 ∧ S0 =

{{g1}, {g2}, {g3, g4}} or Sh0

1 = S1. Suppose in the equilibrium, Sh0

1 = {{g1}, {g2}, {g3, g4}}.
That is, σ0(h, {A1, A3}) ̸= σ0(h, {A1}) = A1. However, this cannot be equilibrium. Given

σ2 and σ3, not only A2 and A3, but A1 would also not buy the good if he can isolate g1.

At the same time, A1 in {g1, g2} conjectures the state is g2 if he observes A0 offering the

trade at the start of the game; and pays a price. A0 has incentive to deviate, to fool A1

by doing so, which is feasible because A1 ∈ N1
0 . It gives us σ0(h, ·) = A1 (Assumption 4.4)

and Sh0

1 = S1 = {{g1, g2}, {g3, g4}}. When rejected, A0 consumes it by herself, if the game

did not end. Although A0 may have A3 in the neighborhood, as discussed above, players

would not buy it in any history A0 had offered a trade to A3. For the same reason, there

is no profitable devaition from σS
0 (h, ·) = A0.

I have constructed a strategy profile following Assumptions 4.1 to 4.4, and have con-

firmed there is no incentive to deviate for any players and any history. It is under the

assumption that A2 cannot distinguish g2 and g3 at h1, under the strategy profile. It can

be easily checked that A1 has the same willingness-to-pay for {g1, g2} and {g3, g4} at h0.

Given the profile, A2 will pay her willingness-to-pay for {g2, g3}, W2(h
1, {A1, A3}) at h1,

which is given by (4.28). A1 will be able to re-sell the good if the state is g2, conditional

on {g1, g2} and if the state is g3, conditional on {g3, g4}. In the rest of states, A1 will not

able to find a neighbor who will buy it. Under the prior given in Table 4.6.1,

π2

π1 + π2

δW2(h
1, {A1, A3}) =

π3

π3 + π4

δW2(h
1, {A1, A3}). (4.29)

The (LHS) of (4.29) coincides with the willingness-to-pay of A1 for {g1, g2} at h0, while the

(RHS) coincides with that for {g3, g4}. It is obvious that this equilibrium has a network

bubble, considering that there is no information refinement until A1 is rejected by A2. By
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the time A1 purchases the good in g1, the information partitions remain as {Sk}4k=0. In the

information structure, for any k and g ∈ Sk(g1), d(1, 4; g) = ∞, while the payment of A1

in g1 is given by (4.29), which is strictly positive.

4.B The Details of the Equilibrium in Proposition 4.5

The flows of the good in each state on path is given in the Figure 4.B.1. The edges in red

reflect that a trade occurred between the players at the ends. The edges in blue reflect that

a trade offer was made but rejected. Nodes in red reflect the corresponding player had had

the good on the path, in the state. The good is traded in the same way in g1 and g4: in

both states, A1 buys the good and tries to sell it to A2, but fails. In g3, the good flows

through until A4, who is the end user. In g2, A2, who thinks the state could be g3, buys

the good and tries to sell it to A3, who knows the exact state.

Table 4.B.1 represents the prices each player pays in each state. Rows represent the

states and columns represent the players. It can be easily confirmed that as the time flows,

the price goes up. However, this is not what I call bubble. The reasons price goes up here

are: 1 time discount, 2 the probability that a potential buyer may reject trade offer. Note

that, the state in which a potential buyer may reject an offer does not necessarily imply

the state exhibits a bubble. This applies only on A1 in {g1, g2}.

0
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2 3

4

g1

0

1

2 3

4

g2

0

1

2 3

4

g3

0

1

2 3

4

g4

Figure 4.B.1: The flow of the good in each state on path of the equilibrium in Proposition
4.5
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Table 4.B.1: Prices at each trade on path of the equilibrium in Proposition 4.5

A1 A2 A3 A4

g1
π2

π1+π2

π3

π2+π3
δ3v - - -

g2
π2

π1+π2

π3

π2+π3
δ3v π3

π2+π3
δ2v - -

g3
π2

π1+π2

π3

π2+π3
δ3v π3

π2+π3
δ2v δv v

g4
π2

π1+π2

π3

π2+π3
δ3v - - -
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